Acidic Ultrafine Tungsten Oxide Molecular Wires for Cellulosic Biomass Conversion
Corresponding Author
Dr. Zhenxin Zhang
Faculty of Engineering, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa, 221-8686 Japan
Materials and Structures Laboratory, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama-city, Kanagawa, 226-8503 Japan
Search for more papers by this authorDr. Masahiro Sadakane
Department of Applied Chemistry, Hiroshima University, 1-4-1 Kagamiyama, Higashi Hiroshima, 739-8527 Japan
Search for more papers by this authorDr. Norihito Hiyoshi
Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), 4-2-1 Nigatake, Miyagino, Sendai, 983-8551 Japan
Search for more papers by this authorDr. Akihiro Yoshida
Faculty of Engineering, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa, 221-8686 Japan
Search for more papers by this authorProf. Dr. Michikazu Hara
Materials and Structures Laboratory, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama-city, Kanagawa, 226-8503 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Wataru Ueda
Faculty of Engineering, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa, 221-8686 Japan
Search for more papers by this authorCorresponding Author
Dr. Zhenxin Zhang
Faculty of Engineering, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa, 221-8686 Japan
Materials and Structures Laboratory, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama-city, Kanagawa, 226-8503 Japan
Search for more papers by this authorDr. Masahiro Sadakane
Department of Applied Chemistry, Hiroshima University, 1-4-1 Kagamiyama, Higashi Hiroshima, 739-8527 Japan
Search for more papers by this authorDr. Norihito Hiyoshi
Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), 4-2-1 Nigatake, Miyagino, Sendai, 983-8551 Japan
Search for more papers by this authorDr. Akihiro Yoshida
Faculty of Engineering, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa, 221-8686 Japan
Search for more papers by this authorProf. Dr. Michikazu Hara
Materials and Structures Laboratory, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama-city, Kanagawa, 226-8503 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Wataru Ueda
Faculty of Engineering, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa, 221-8686 Japan
Search for more papers by this authorAbstract
The application of nanocatalysis based on metal oxides for biomass conversion is of considerable interest in fundamental research and practical applications. New acidic transition-metal oxide molecular wires were synthesized for the conversion of cellulosic biomass. The ultrafine molecular wires were constructed by repeating (NH4)2[XW6O21] (X=Te or Se) along the length, exhibiting diameters of only 1.2 nm. The nanowires dispersed in water and were observed using high-angle annular dark-field scanning transmission electron microscopy. Acid sites were created by calcination without collapse of the molecular wire structure. The acidic molecular wire exhibited high activity and stability and promoted the hydrolysis of the glycosidic bond. Various biomasses including cellulose were able to be converted to hexoses as main products.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201602770-sup-0001-misc_information.pdf2.9 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aW. B. Davis, W. A. Svec, M. A. Ratner, M. R. Wasielewski, Nature 1998, 396, 60–63;
- 1bH. Sakaguchi, H. Matsumura, H. Gong, Nat. Mater. 2004, 3, 551–557;
- 1cC. M. Gothard, N. A. Rao, J. S. Nowick, J. Am. Chem. Soc. 2007, 129, 7272–7273;
- 1dR. N. Mahato, H. Lülf, M. H. Siekman, S. P. Kersten, P. A. Bobbert, M. P. de Jong, L. De Cola, W. G. van der Wiel, Science 2013, 341, 257–260.
- 2M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demsar, P. Stadelmann, F. Levy, D. Mihailovic, Science 2001, 292, 479–481.
- 3
- 3aJ. R. Galán-Mascarós, C. Giménez-Saiz, S. Triki, C. J. Gómez-García, E. Coronado, L. Ouahab, Angew. Chem. Int. Ed. Engl. 1995, 34, 1460–1462; Angew. Chem. 1995, 107, 1601–1603;
- 3bL. Chen, D. Shi, J. Zhao, Y. Wang, P. Ma, J. Wang, J. Niu, Cryst. Growth Des. 2011, 11, 1913–1923;
- 3cY. Wang, S. Pan, H. Yu, X. Su, M. Zhang, F. Zhang, J. Han, Chem. Commun. 2013, 49, 306–308.
- 4Z. Zhang, T. Murayama, M. Sadakane, H. Ariga, N. Yasuda, N. Sakaguchi, K. Asakura, W. Ueda, Nat. Commun. 2015, 6, 7731.
- 5
- 5aC. O. Tuck, E. Pérez, I. T. Horváth, R. A. Sheldon, M. Poliakoff, Science 2012, 337, 695–699;
- 5bA. Wang, T. A. O. Zhang, Acc. Chem. Res. 2013, 46, 1377–1386;
- 5cR. Rinaldi, F. Schüth, Energy Environ. Sci. 2009, 2, 610–626.
- 6
- 6aY.-B. Huang, Y. Fu, Green Chem. 2013, 15, 1095–1111;
- 6bT. Salmi, B. Holmbom, S. Willf, D. Y. Murzin, Chem. Rev. 2011, 111, 5638–5666;
- 6cK. Shimizu, A. Satsuma, Energy Environ. Sci. 2011, 4, 3140–3153;
- 6dH. Tadesse, R. Luque, Energy Environ. Sci. 2011, 4, 3913–3929.
- 7
- 7aK. Shimizu, H. Furukawa, N. Kobayashi, Y. Itaya, A. Satsuma, Green Chem. 2009, 11, 1627–1632;
- 7bW. Deng, Q. Zhang, Y. Wang, Dalton Trans. 2012, 41, 9817–9831.
- 8
- 8aH. Kobayashi, M. Yabushita, J. Hasegawa, A. Fukuoka, J. Phys. Chem. C 2015, 119, 20993–20999;
- 8bL. Shuai, X. Pan, Energy Environ. Sci. 2012, 5, 6889–6894;
- 8cS. Suganuma, K. Nakajima, M. Kitano, D. Yamaguchi, H. Kato, S. Hayashi, M. Hara, J. Am. Chem. Soc. 2008, 130, 12787–12793;
- 8dH. Kobayashi, H. Kaiki, A. Shrotri, K. Techikawara, A. Fukuoka, Chem. Sci. 2016, 7, 692–696.
- 9R. Rinaldi, R. Palkovits, F. Schüth, Angew. Chem. Int. Ed. 2008, 47, 8047–8050; Angew. Chem. 2008, 120, 8167–8170.
- 10A. Onda, T. Ochi, K. Yanagisawa, Green Chem. 2008, 10, 1033–1037.
- 11A. Takagaki, C. Tagusagawa, K. Domen, Chem. Commun. 2008, 5363–5365.
- 12K. Fukuda, K. Akatsuka, Y. Ebina, R. Ma, K. Takada, I. Nakai, T. Sasaki, ACS Nano 2008, 2, 1689–1695.
- 13N. Hiyoshi, Y. Kamiya, Chem. Commun. 2015, 51, 9975–9978.
- 14
- 14aC. F. Burmeister, A. Kwade, Chem. Soc. Rev. 2013, 42, 7660–7667;
- 14bA. Shrotri, L. K. Lambert, A. Tanksale, J. Beltramini, Green Chem. 2013, 15, 2761–2768.
- 15B. Bernet, R. Bürli, J. Xu, A. Vasella, Helv. Chim. Acta 2002, 85, 1800–1811.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.