Magnetic Properties of a Single-Molecule Lanthanide–Transition-Metal Compound Containing 52 Gadolinium and 56 Nickel Atoms
Da-Peng Liu
Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
These authors contributed equally to this work.
Search for more papers by this authorXin-Ping Lin
Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
These authors contributed equally to this work.
Search for more papers by this authorHui Zhang
Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
These authors contributed equally to this work.
Search for more papers by this authorXiu-Ying Zheng
Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorCorresponding Author
Dr. Gui-Lin Zhuang
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xiang-Jian Kong
Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorCorresponding Author
Prof. Dr. La-Sheng Long
Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorProf. Dr. Lan-Sun Zheng
Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorDa-Peng Liu
Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
These authors contributed equally to this work.
Search for more papers by this authorXin-Ping Lin
Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
These authors contributed equally to this work.
Search for more papers by this authorHui Zhang
Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
These authors contributed equally to this work.
Search for more papers by this authorXiu-Ying Zheng
Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorCorresponding Author
Dr. Gui-Lin Zhuang
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xiang-Jian Kong
Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorCorresponding Author
Prof. Dr. La-Sheng Long
Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorProf. Dr. Lan-Sun Zheng
Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorAbstract
Monodisperse metal clusters provide a unique platform for investigating magnetic exchange within molecular magnets. Herein, the core–shell structure of the monodisperse molecule magnet of [Gd52Ni56(IDA)48(OH)154(H2O)38]@SiO2 (1 a@SiO2) was prepared by encapsulating one high-nuclearity lanthanide–transition-metal compound of [Gd52Ni56(IDA)48(OH)154(H2O)38]⋅(NO3)18⋅164 H2O (1) (IDA=iminodiacetate) into one silica nanosphere through a facile one-pot microemulsion method. 1 a@SiO2 was characterized using transmission electron microscopy, N2 adsorption–desorption isotherms, and inductively coupled plasma-atomic emission spectrometry. Magnetic investigation of 1 and 1 a revealed J1=0.25 cm−1, J2=−0.060 cm−1, J3=−0.22 cm−1, J4=−8.63 cm−1, g=1.95, and z J=−2.0×10−3 cm−1 for 1, and J1=0.26 cm−1, J2=−0.065 cm−1, J3=−0.23 cm−1, J4=−8.40 cm−1 g=1.99, and z J=0.000 cm−1 for 1 a@SiO2. The z J=0 in 1 a@SiO2 suggests that weak antiferromagnetic coupling between the compounds is shielded by silica nanospheres.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201601199-sup-0001-misc_information.pdf2.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1K. Okamoto, R. Akiyama, H. Yoshida, T. Yoshida, S. Kobayashi, J. Am. Chem. Soc. 2005, 127, 2125.
- 2T. Mitsudome, K. Nose, K. Mori, T. Mizugaki, K. Ebitani, K. Jitsukawa, K. Kaneda, Angew. Chem. Int. Ed. 2007, 46, 3288; Angew. Chem. 2007, 119, 3352.
- 3W. E. Kaden, T. Wu, W. A. Kunkel, S. L. Anderson, Science 2009, 326, 826.
- 4J. P. Wilcoxon, P. P. Provencio, J. Am. Chem. Soc. 2004, 126, 6402.
- 5
- 5aJ. P. Bucher, D. C. Douglass, L. A. Bloomfield, Phys. Rev. Lett. 1991, 66, 3052;
- 5bI. M. L. Billas, A. Châtelain, W. A. de Heer, Science 1994, 265, 1682.
- 6
- 6aD. Ruiz-Molina, M. mas-Torrent, J. Gómez-Segura, A. I. Balana, N. Domingo, J. Tejada, M. T. Martínez, C. Rovira, J. Veciana, Adv. Mater. 2003, 15, 42;
- 6bP. Gerbier, N. Domingo, J. Gómez-Segura, D. Ruiz-Molina, D. B. Amabilino, J. Tejada, B. E. Williamson, J. Veciana, J. Mater. Chem. 2004, 14, 2455;
- 6cN. Domingo, B. E. Williamson, J. Gómez-Segura, P. Gerbier, D. Ruiz-Molina, D. B. Amabilino, J. Veciana, J. Tejada, Phys. Rev. B 2004, 69, 052405.
- 7
- 7aA. Saywell, G. Magnano, C. J. Satterley, L. M. A. Perdigó, A. J. Britton, N. Taleb, M. del Carmen Giménez-López, N. R. Champness, J. N. O'Shea, P. H. Beton, Nat. Commun. 2010, 1, 75;
- 7bA. Naitabdi, J.-P. Bucher, P. Gerbier, P. Rabu, M. Drillon, Adv. Mater. 2005, 17, 1612–1616.
- 8
- 8aD. Aulakh, J. B. Pyser, X. Zhang, A. A. Yakovenko, K. R. Dunbar, M. Wriedt, J. Am. Chem. Soc. 2015, 137, 9254;
- 8bM. del Carmen Giménez-López, F. Moro, A. La Torre, C. J. Gómez-García, P. D. Brown, J. van Slageren, A. N. Khlobystov, Nat. Commun. 2011, 2, 407;
- 8cL. Bogani, C. Danieli, E. Biavardi, N. Bendiab, A.-L. Barra, E. Dalcanale, W. Wernsdorfer, A. Cornia, Angew. Chem. Int. Ed. 2009, 48, 746; Angew. Chem. 2009, 121, 760.
- 9
- 9aM. Mannini, F. Pineider, C. Danieli, F. Totti, L. Sorace, P. Sainctavit, M. A. Arrio, E. Otero, L. Joly, J. C. Cezar, A. Cornia, R. Sessoli, Nature 2010, 468, 417;
- 9bM. Mannini, F. Pineider, P. Sainctavit, C. Danieli, E. Otero, C. Sciancalepore, A. M. Talarico, M.-A. Arrio, A. Cornia, D. Gatteschi, R. Sessoli, Nat. Mater. 2009, 8, 194;
- 9cA. Cornia, M. Mannini, P. Sainctavit, R. Sessoli, Chem. Soc. Rev. 2011, 40, 3076.
- 10
- 10aF. Grasset, F. Dorson, S. Cordier, Y. Molard, C. Perrin, A.-M. Marie, T. Sasaki, H. Haneda, Y. Bando, M. Mortier, Adv. Mater. 2008, 20, 143;
- 10bT. Aubert, F. Cabello-Hurtado, M.-A. Esnault, C. Neaime, D. Lebret-Chauvel, S. Jeanne, P. Pellen, C. Roiland, L. Le Polles, N. Saito, K. Kimoto, H. Haneda, N. Ohashi, F. Grasset, S. Cordier, J. Phys. Chem. C 2013, 117, 20154;
- 10cF. Grasset, F. Dorson, Y. Molard, S. Cordier, V. Demange, C. Perrin, V. Marchi-Artzner, H. Haneda, Chem. Commun. 2008, 4729;
- 10dK. Takao, K. Suzuki, T. Ichijo, S. Sato, H. Asakura, K. Teramura, K. Kato, T. Ohba, T. Morita, M. Fujita, Angew. Chem. Int. Ed. 2012, 51, 5893; Angew. Chem. 2012, 124, 5995;
- 10eM. Clemente-León, E. Coronado, A. Forment-Aliaga, P. Amorós, J. Ramirez-Castellanos, J. M. González-Calbet, J. Mater. Chem. 2003, 13, 3089;
- 10fN. Domingo, E. Bellido, D. Ruiz-Molina, Chem. Soc. Rev. 2012, 41, 258;
- 10gT. Coradin, J. Larionova, A. A. Smith, G. Rogez, R. Clérac, C. Guérin, G. Blondin, R. E. P. Winpenny, C. Sanchez, T. Mallah, Adv. Mater. 2002, 14, 896;
- 10hM. Cavallini, J. Gómez-Segura, D. Ruiz-Molina, M. Massi, C. Albonetti, C. Rovira, J. Veciana, F. Biscarini, Angew. Chem. Int. Ed. 2005, 44, 888; Angew. Chem. 2005, 117, 910.
- 11X. J. Kong, Y. P. Ren, W. X. Chen, L. S. Long, Z. P. Zheng, R. B. Huang, L. S. Zheng, Angew. Chem. Int. Ed. 2008, 47, 2398; Angew. Chem. 2008, 120, 2432.
- 12
- 12aY.-Z. Zheng, M. Evangelisti, F. Tuna, R. E. P. Winpenny, J. Am. Chem. Soc. 2012, 134, 1057;
- 12bJ.-B. Peng, Q. C. Zhang, X. J. Kong, Y. Z. Zheng, Y. P. Ren, L. S. Long, R. B. Huang, L. S. Zheng, Z. Zheng, J. Am. Chem. Soc. 2012, 134, 3314;
- 12cJ.-B. Peng, Q. C. Zhang, X. J. Kong, Y. P. Ren, L. S. Long, R. B. Huang, L. S. Zheng, Z. Zheng, Angew. Chem. Int. Ed. 2011, 50, 10649; Angew. Chem. 2011, 123, 10837.
- 13
- 13aP. H. Lin, T. J. Burchell, R. Clérac, M. Murugesu, Angew. Chem. Int. Ed. 2008, 47, 8848; Angew. Chem. 2008, 120, 8980;
- 13bJ.-D. Leng, J.-L. Liu, M.-L. Tong, Chem. Commun. 2012, 48, 5286.
- 14
- 14aA. Baniodeh, C. E. Anson, A. K. Powell, Chem. Sci. 2013, 4, 4354;
- 14bC. Xiang, S. M. Hu, T. L. Sheng, R. B. Fu, X. T. Wu, X. D. Zhang, J. Am. Chem. Soc. 2007, 129, 15144;
- 14cT. N. Hooper, J. Schnack, S. Piligkos, M. Evangelisti, E. K. Brechin, Angew. Chem. Int. Ed. 2012, 51, 4633; Angew. Chem. 2012, 124, 4711.
- 15O. Kahn, Molecular magnetism, Wiley-VCH, Weinheim, 1993.
- 16C. Benelli, D. Gatteschi, Chem. Rev. 2002, 102, 2369.
- 17J. J. Borrás-Almenar, J. M. Clemente-Juan, E. Coronado, B. S. Tsukerblat, J. Comput. Chem. 2001, 22, 985.
- 18R. Caballol, O. Castell, F. Illas, I. de P. R. Morera, J. P. Malrien, J. Phys. Chem. A 1997, 101, 7860.
- 19W. Heisenberg, Z. Phys. 1928, 49, 619.
- 20A. W. Sandvik, Phys. Rev. B 1999, 59, R 14157.
- 21A. F. Albuquerque, F. Alet, P. Corboz, P. Dayal, A. Feiguin, S. Fuchs, L. Gamper, E. Gull, S. Gürtler, A. Honecker, R. Igarashi, M. Körner, A. Kozhevnikov, A. Läuchli, S. R. Manmana, M. Matsumoto, I. P. McCulloch, F. Michel, R. M. Noack, G. Pawłowski, L. Pollet, T. Pruschke, U. Schollwöck, S. Todo, S. Trebst, M. Troyer, P. Werner, S. Wessel, J. Magn. Magn. Mater. 2007, 310, 1187.
- 22
- 22aY. Yukawa, G. Aromi, S. Igarashi, J. Ribas, S. A. Zvyagin, J. Krzystek, Angew. Chem. Int. Ed. 2005, 44, 1997; Angew. Chem. 2005, 117, 2033;
- 22bS. K. Singh, N. K. Tibrewal, G. Rajaraman, Dalton Trans. 2011, 40, 10897;
- 22cE. Cremades, S. Gómez-Coca, D. Aravena, S. Alvarez, E. Ruiz, J. Am. Chem. Soc. 2012, 134, 10532.
- 23
- 23aX. Y. Zheng, S. Q. Wang, W. Tang, G. L. Zhuang, X. J. Kong, Y. P. Ren, L. S. Long, L. S. Zheng, Chem. Commun. 2015, 51, 10687;
- 23bL. E. Roy, T. Hughbanks, J. Am. Chem. Soc. 2006, 128, 568.
- 24
- 24aK. K. Nanda, L. K. Thompson, J. N. Bridson, K. Nag, J. Chem. Soc. Chem. Commun. 1994, 1337;
- 24bV. V. Pavlishchuk, S. V. Kolotilov, A. W. Addison, M. J. Prushan, D. Schollmever, L. K. Thompson, E. A. Goreshnik, Angew. Chem. Int. Ed. 2001, 40, 4734;
10.1002/1521-3773(20011217)40:24<4734::AID-ANIE4734>3.0.CO;2-D CAS PubMed Web of Science® Google ScholarAngew. Chem. 2001, 113, 4870.
- 25T. P. M. Alegre, F. G. G. Hernandez, A. L. C. Pereira, G. Medeiros-Ribeiro, Phys. Rev. Lett. 2006, 97, 4.
- 26CCDC-1436656 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or [email protected])..
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.