Mechanistic Insights into the Radical S-adenosyl-l-methionine Enzyme NosL From a Substrate Analogue and the Shunt Products
Xinjian Ji
Department of Chemistry, Fudan University, Shanghai, 200433 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Yongzhen Li
Department of Chemistry, Fudan University, Shanghai, 200433 China
These authors contributed equally to this work.
Search for more papers by this authorYouli Jia
Department of Chemistry, Fudan University, Shanghai, 200433 China
Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, 730000 China
Search for more papers by this authorProf. Dr. Wei Ding
Department of Chemistry, Fudan University, Shanghai, 200433 China
Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, 730000 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Qi Zhang
Department of Chemistry, Fudan University, Shanghai, 200433 China
Search for more papers by this authorXinjian Ji
Department of Chemistry, Fudan University, Shanghai, 200433 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Yongzhen Li
Department of Chemistry, Fudan University, Shanghai, 200433 China
These authors contributed equally to this work.
Search for more papers by this authorYouli Jia
Department of Chemistry, Fudan University, Shanghai, 200433 China
Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, 730000 China
Search for more papers by this authorProf. Dr. Wei Ding
Department of Chemistry, Fudan University, Shanghai, 200433 China
Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, 730000 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Qi Zhang
Department of Chemistry, Fudan University, Shanghai, 200433 China
Search for more papers by this authorAbstract
The radical S-adenosyl-l-methionine (SAM) enzyme NosL catalyzes the transformation of l-tryptophan into 3-methyl-2-indolic acid (MIA), which is a key intermediate in the biosynthesis of a clinically interesting antibiotic nosiheptide. NosL catalysis was investigated by using the substrate analogue 2-methyl-3-(indol-3-yl)propanoic acid (MIPA), which can be converted into MIA by NosL. Biochemical assays with different MIPA isotopomers in D2O and H2O unambiguously indicated that the 5′-deoxyadenosyl (dAdo)-radical-mediated hydrogen abstraction is from the amino group of l-tryptophan and not a protein residue. Surprisingly, the dAdo-radical-mediated hydrogen abstraction occurs at two different sites of MIPA, thereby partitioning the substrate into different reaction pathways. Together with identification of an α,β-unsaturated ketone shunt product, our study provides valuable mechanistic insight into NosL catalysis and highlights the remarkable catalytic flexibility of radical SAM enzymes.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201509900-sup-0001-misc_information.pdf787.8 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aY. Yu, L. Duan, Q. Zhang, R. Liao, Y. Ding, H. Pan, E. Wendt-Pienkowski, G. Tang, B. Shen, W. Liu, ACS Chem. Biol. 2009, 4, 855–864;
- 1bQ. Zhang, Y. Li, D. Chen, Y. Yu, L. Duan, B. Shen, W. Liu, Nat. Chem. Biol. 2011, 7, 154–160.
- 2
- 2aX. Just-Baringo, F. Albericio, M. Alvarez, Mar. Drugs 2014, 12, 317–351;
- 2bM. C. Bagley, J. W. Dale, E. A. Merritt, X. Xiong, Chem. Rev. 2005, 105, 685–714;
- 2cF. Zhang, W. L. Kelly, Methods Enzymol. 2012, 516, 3–24;
- 2dQ. Zhang, W. Liu, Nat. Prod. Rep. 2013, 30, 218–226.
- 3
- 3aX. Ji, Y. Li, W. Ding, Q. Zhang, Angew. Chem. Int. Ed. 2015, 54, 9021–9024; Angew. Chem. 2015, 127, 9149–9152;
- 3bD. M. Bhandari, H. Xu, Y. Nicolet, J. C. Fontecilla-Camps, T. P. Begley, Biochemistry 2015, 54, 4767–4769.
- 4
- 4aJ. M. Kuchenreuther, W. K. Myers, T. A. Stich, S. J. George, Y. Nejatyjahromy, J. R. Swartz, R. D. Britt, Science 2013, 342, 472–475;
- 4bB. R. Duffus, S. Ghose, J. W. Peters, J. B. Broderick, J. Am. Chem. Soc. 2014, 136, 13086–13089;
- 4cE. M. Shepard, F. Mus, J. N. Betz, A. S. Byer, B. R. Duffus, J. W. Peters, J. B. Broderick, Biochemistry 2014, 53, 4090–4104;
- 4dP. Dinis, D. L. Suess, S. J. Fox, J. E. Harmer, R. C. Driesener, L. De La Paz, J. R. Swartz, J. W. Essex, R. D. Britt, P. L. Roach, Proc. Natl. Acad. Sci. USA 2015, 112, 1362–1367.
- 5
- 5aM. Kriek, F. Martins, R. Leonardi, S. A. Fairhurst, D. J. Lowe, P. L. Roach, J. Biol. Chem. 2007, 282, 17413–17423;
- 5bN. C. Martinez-Gomez, M. Robers, D. M. Downs, J. Biol. Chem. 2004, 279, 40505–40510;
- 5cM. R. Challand, F. T. Martins, P. L. Roach, J. Biol. Chem. 2010, 285, 5240–5248.
- 6
- 6aL. Decamps, B. Philmus, A. Benjdia, R. White, T. P. Begley, O. Berteau, J. Am. Chem. Soc. 2012, 134, 18173–18176;
- 6bB. Philmus, L. Decamps, O. Berteau, T. P. Begley, J. Am. Chem. Soc. 2015, 137, 5406–5413.
- 7Y. Nicolet, L. Zeppieri, P. Amara, J. C. Fontecilla-Camps, Angew. Chem. Int. Ed. 2014, 53, 11840–11844; Angew. Chem. 2014, 126, 12034–12038.
- 8
- 8aH. J. Sofia, G. Chen, B. G. Hetzler, J. F. Reyes-Spindola, N. E. Miller, Nucleic Acids Res. 2001, 29, 1097–1106;
- 8bP. A. Frey, A. D. Hegeman, F. J. Ruzicka, Crit. Rev. Biochem. Mol. Biol. 2008, 43, 63–88;
- 8cS. J. Booker, T. L. Grove, F1000 Biol. Rep. 2010, 2, 52;
- 8dV. Bandarian, Biochim. Biophys. Acta Proteins Proteomics 2012, 1824, 1245–1253;
- 8eQ. Zhang, W. A. van der Donk, W. Liu, Acc. Chem. Res. 2012, 45, 555–564;
- 8fL. Flühe, M. A. Marahiel, Curr. Opin. Chem. Biol. 2013, 17, 605–612;
- 8gJ. Wang, R. P. Woldring, G. D. Roman-Melendez, A. M. McClain, B. R. Alzua, E. N. Marsh, ACS Chem. Biol. 2014, 9, 1929–1938;
- 8hJ. B. Broderick, B. R. Duffus, K. S. Duschene, E. M. Shepard, Chem. Rev. 2014, 114, 4229–4317;
- 8iA. P. Mehta, S. H. Abdelwahed, N. Mahanta, D. Fedoseyenko, B. Philmus, L. E. Cooper, Y. Liu, I. Jhulki, S. E. Ealick, T. P. Begley, J. Biol. Chem. 2015, 290, 3980–3986.
- 9
- 9aQ. Zhang, W. A. van der Donk, ChemBioChem 2012, 13, 627–629;
- 9bS. S. Kamat, H. J. Williams, L. J. Dangott, M. Chakrabarti, F. M. Raushel, Nature 2013, 497, 132–136;
- 9cP. Seweryn, L. B. Van, M. Kjeldgaard, C. J. Russo, L. A. Passmore, B. Hove-Jensen, B. Jochimsen, D. E. Brodersen, Nature 2015, 525, 68.
- 10
- 10aA. K. Boal, T. L. Grove, M. I. McLaughlin, N. H. Yennawar, S. J. Booker, A. C. Rosenzweig, Science 2011, 332, 1089–1092;
- 10bT. L. Grove, J. S. Benner, M. I. Radle, J. H. Ahlum, B. J. Landgraf, C. Krebs, S. J. Booker, Science 2011, 332, 604–607;
- 10cK. P. McCusker, K. F. Medzihradszky, A. L. Shiver, R. J. Nichols, F. Yan, D. A. Maltby, C. A. Gross, D. G. Fujimori, J. Am. Chem. Soc. 2012, 134, 18074–18081.
- 11
- 11aY. Ko, M. W. Ruszczycky, S. H. Choi, H. W. Liu, Angew. Chem. Int. Ed. 2015, 54, 860–863; Angew. Chem. 2015, 127, 874–877;
- 11bG. M. Lin, S. H. Choi, M. W. Ruszczycky, H. W. Liu, J. Am. Chem. Soc. 2015, 137, 4964–4967.
- 12A. Bondi, J. Phys. Chem. 1964, 68, 441.
- 13
- 13aN. S. Lees, D. W. Chen, C. J. Walsby, E. Behshad, P. A. Frey, B. M. Hoffman, J. Am. Chem. Soc. 2006, 128, 10145–10154;
- 13bM. Horitani, A. S. Byer, K. A. Shisler, T. Chandra, J. B. Broderick, B. M. Hoffrnan, J. Am. Chem. Soc. 2015, 137, 7111–7121.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.