Ligand-Assisted Co-Assembly Approach toward Mesoporous Hybrid Catalysts of Transition-Metal Oxides and Noble Metals: Photochemical Water Splitting†
Dr. Ben Liu
Department of Chemistry, University of Connecticut, Storrs, CT 06269 (USA)
Search for more papers by this authorChung-Hao Kuo
Department of Chemistry, University of Connecticut, Storrs, CT 06269 (USA)
Search for more papers by this authorJiejie Chen
Department of Chemistry, University of Science & Technology of China, Hefei 230026 (China)
Search for more papers by this authorZhu Luo
Institute of Material Science, University of Connecticut, Storrs, CT 06269 (USA)
Search for more papers by this authorSrinivas Thanneeru
Department of Chemistry, University of Connecticut, Storrs, CT 06269 (USA)
Search for more papers by this authorDr. Weikun Li
Department of Chemistry, University of Connecticut, Storrs, CT 06269 (USA)
Search for more papers by this authorWenqiao Song
Department of Chemistry, University of Connecticut, Storrs, CT 06269 (USA)
Search for more papers by this authorSourav Biswas
Department of Chemistry, University of Connecticut, Storrs, CT 06269 (USA)
Search for more papers by this authorCorresponding Author
Prof. Steven L. Suib
Department of Chemistry, University of Connecticut, Storrs, CT 06269 (USA)
Institute of Material Science, University of Connecticut, Storrs, CT 06269 (USA)
Department of Chemistry, University of Connecticut, Storrs, CT 06269 (USA)Search for more papers by this authorCorresponding Author
Prof. Jie He
Department of Chemistry, University of Connecticut, Storrs, CT 06269 (USA)
Institute of Material Science, University of Connecticut, Storrs, CT 06269 (USA)
Department of Chemistry, University of Connecticut, Storrs, CT 06269 (USA)Search for more papers by this authorDr. Ben Liu
Department of Chemistry, University of Connecticut, Storrs, CT 06269 (USA)
Search for more papers by this authorChung-Hao Kuo
Department of Chemistry, University of Connecticut, Storrs, CT 06269 (USA)
Search for more papers by this authorJiejie Chen
Department of Chemistry, University of Science & Technology of China, Hefei 230026 (China)
Search for more papers by this authorZhu Luo
Institute of Material Science, University of Connecticut, Storrs, CT 06269 (USA)
Search for more papers by this authorSrinivas Thanneeru
Department of Chemistry, University of Connecticut, Storrs, CT 06269 (USA)
Search for more papers by this authorDr. Weikun Li
Department of Chemistry, University of Connecticut, Storrs, CT 06269 (USA)
Search for more papers by this authorWenqiao Song
Department of Chemistry, University of Connecticut, Storrs, CT 06269 (USA)
Search for more papers by this authorSourav Biswas
Department of Chemistry, University of Connecticut, Storrs, CT 06269 (USA)
Search for more papers by this authorCorresponding Author
Prof. Steven L. Suib
Department of Chemistry, University of Connecticut, Storrs, CT 06269 (USA)
Institute of Material Science, University of Connecticut, Storrs, CT 06269 (USA)
Department of Chemistry, University of Connecticut, Storrs, CT 06269 (USA)Search for more papers by this authorCorresponding Author
Prof. Jie He
Department of Chemistry, University of Connecticut, Storrs, CT 06269 (USA)
Institute of Material Science, University of Connecticut, Storrs, CT 06269 (USA)
Department of Chemistry, University of Connecticut, Storrs, CT 06269 (USA)Search for more papers by this authorJ.H. is grateful for the financial support of startup funds from the University of Connecticut. S.L.S. acknowledges support of the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical, Biological and Geological Sciences under grant DE-FG02-86ER13622A000. The authors thank Yan Xia for her assistance on SAXS measurement. This work was also partially supported by the Green Emulsions Micelles and Surfactants (GEMS) Center.
Abstract
A bottom-up synthetic approach was developed for the preparation of mesoporous transition-metal-oxide/noble-metal hybrid catalysts through ligand-assisted co-assembly of amphiphilic block-copolymer micelles and polymer-tethered noble-metal nanoparticles (NPs). The synthetic approach offers a general and straightforward method to precisely tune the sizes and loadings of noble-metal NPs in metal oxides. This system thus provides a solid platform to clearly understand the role of noble-metal NPs in photochemical water splitting. The presence of trace amounts of metal NPs (≈0.1 wt %) can enhance the photocatalytic activity for water splitting up to a factor of four. The findings can conceivably be applied to other semiconductors/noble-metal catalysts, which may stand out as a new methodology to build highly efficient solar energy conversion systems.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201502892_sm_miscellaneous_information.pdf2 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. Yang, D. Wang, H. Han, C. Li, Acc. Chem. Res. 2013, 46, 1900–1909;
- 1bH. A. Atwater, A. Polman, Nat. Mater. 2010, 9, 205–213;
- 1cN. Serpone, A. Emeline, J. Phys. Chem. Lett. 2012, 3, 673–677.
- 2Y. Xu, M. A. Schoonen, Am. Mineral. 2000, 85, 543–556.
- 3
- 3aS. Linic, P. Christopher, D. B. Ingram, Nat. Mater. 2011, 10, 911–921;
- 3bK. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, T. Watanabe, J. Am. Chem. Soc. 2008, 130, 1676–1680;
- 3cD. B. Ingram, S. Linic, J. Am. Chem. Soc. 2011, 133, 5202–5205;
- 3dA. Primo, T. Marino, A. Corma, R. Molinari, H. Garcia, J. Am. Chem. Soc. 2011, 133, 6930–6933;
- 3eZ. W. Seh, S. Liu, M. Low, S. Y. Zhang, Z. Liu, A. Mlayah, M. Y. Han, Adv. Mater. 2012, 24, 2310–2314;
- 3fD. Tsukamoto, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka, T. Hirai, J. Am. Chem. Soc. 2012, 134, 6309–6315;
- 3gZ. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka, T. Majima, J. Am. Chem. Soc. 2014, 136, 458–465;
- 3hA. Tanaka, K. Hashimoto, H. Kominami, J. Am. Chem. Soc. 2014, 136, 586–589;
- 3iJ. B. Joo, R. Dillon, I. Lee, Y. Yin, C. J. Bardeen, F. Zaera, Proc. Natl. Acad. Sci. USA 2014, 111, 7942–7947;
- 3jJ. B. Priebe, M. Karnahl, H. Junge, M. Beller, D. Hollmann, A. Brückner, Angew. Chem. Int. Ed. 2013, 52, 11420–11424; Angew. Chem. 2013, 125, 11631–11635.
- 4M. Murdoch, G. Waterhouse, M. Nadeem, J. Metson, M. Keane, R. Howe, J. Llorca, H. Idriss, Nat. Chem. 2011, 3, 489–492.
- 5
- 5aC. u. Gomes Silva, R. Juárez, T. Marino, R. Molinari, H. García, J. Am. Chem. Soc. 2011, 133, 595–602;
- 5bH. Li, Z. Bian, J. Zhu, Y. Huo, H. Li, Y. Lu, J. Am. Chem. Soc. 2007, 129, 4538–4539.
- 6
- 6aK. Qian, B. C. Sweeny, A. C. Johnston-Peck, W. Niu, J. O. Graham, J. S. DuChene, J. Qiu, Y.-C. Wang, M. H. Engelhard, D. Su, J. Am. Chem. Soc. 2014, 136, 9842–9845;
- 6bV. Subramanian, E. E. Wolf, P. V. Kamat, J. Am. Chem. Soc. 2004, 126, 4943–4950;
- 6cN. Wang, T. Tachikawa, T. Majima, Chem. Sci. 2011, 2, 891–900;
- 6dF. Amano, E. Ishinaga, A. Yamakata, J. Phys. Chem. C 2013, 117, 22584–22590.
- 7
- 7aT. Schaaff, D. Blom, Nano Lett. 2002, 2, 507–511;
- 7bD. R. Rolison, Science 2003, 299, 1698–1701;
- 7cA. T. Bell, Science 2003, 299, 1688–1691.
- 8
- 8aZ. Jin, M. Xiao, Z. Bao, P. Wang, J. Wang, Angew. Chem. Int. Ed. 2012, 51, 6406–6410; Angew. Chem. 2012, 124, 6512–6516;
- 8bA. Tanaka, K. Hashimoto, H. Kominami, J. Am. Chem. Soc. 2012, 134, 14526–14533.
- 9
- 9aY. Li, W. Luo, N. Qin, J. Dong, J. Wei, W. Li, S. Feng, J. Chen, J. Xu, A. A. Elzatahry, M. H. Es-Saheb, Y. Deng, D. Zhao, Angew. Chem. Int. Ed. 2014, 53, 9035–9040; Angew. Chem. 2014, 126, 9181–9186;
- 9bJ. Lee, M. C. Orilall, S. C. Warren, M. Kamperman, F. J. DiSalvo, U. Wiesner, Nat. Mater. 2008, 7, 222–228.
- 10J. He, Y. Liu, T. Babu, Z. Wei, Z. Nie, J. Am. Chem. Soc. 2012, 134, 11342–11345.
- 11
- 11aJ. J. Mock, D. R. Smith, S. Schultz, Nano Lett. 2003, 3, 485–491;
- 11bS. Link, M. A. El-Sayed, J. Phys. Chem. B 1999, 103, 8410–8426.
- 12G. Wang, Y. Ling, H. Wang, X. Yang, C. Wang, J. Z. Zhang, Y. Li, Energy Environ. Sci. 2012, 5, 6180–6187.
- 13P. V. Kamat, J. Phys. Chem. Lett. 2012, 3, 663–672.
- 14C. Harris, P. V. Kamat, Acs Nano 2010, 4, 7321–7330.
- 15C. H. Kuo, W. Li, L. Pahalagedara, A. M. El-Sawy, D. Kriz, N. Genz, C. Guild, T. Ressler, S. L. Suib, J. He, Angew. Chem. Int. Ed. 2015, 54, 2345–2350; Angew. Chem. 2015, 127, 2375–2380.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.