The Synthesis of Nanostructured Ni5P4 Films and their Use as a Non-Noble Bifunctional Electrocatalyst for Full Water Splitting†
Marc Ledendecker
Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam (Germany)
Search for more papers by this authorSandra Krick Calderón
Department of Physical Chemistry II, Friedrich-Alexander Universität Erlangen Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany)
Search for more papers by this authorDr. Christian Papp
Department of Physical Chemistry II, Friedrich-Alexander Universität Erlangen Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany)
Search for more papers by this authorProf. Dr. Hans-Peter Steinrück
Department of Physical Chemistry II, Friedrich-Alexander Universität Erlangen Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany)
Search for more papers by this authorProf. Dr. Markus Antonietti
Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam (Germany)
Search for more papers by this authorCorresponding Author
Dr. Menny Shalom
Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam (Germany)
Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam (Germany)Search for more papers by this authorMarc Ledendecker
Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam (Germany)
Search for more papers by this authorSandra Krick Calderón
Department of Physical Chemistry II, Friedrich-Alexander Universität Erlangen Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany)
Search for more papers by this authorDr. Christian Papp
Department of Physical Chemistry II, Friedrich-Alexander Universität Erlangen Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany)
Search for more papers by this authorProf. Dr. Hans-Peter Steinrück
Department of Physical Chemistry II, Friedrich-Alexander Universität Erlangen Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany)
Search for more papers by this authorProf. Dr. Markus Antonietti
Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam (Germany)
Search for more papers by this authorCorresponding Author
Dr. Menny Shalom
Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam (Germany)
Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam (Germany)Search for more papers by this authorS.K.C., C.P., and H.-P.S. greatly acknowledge support by the Cluster of Excellence Engineering of Advanced Materials (EAM) at the Friedrich-Alexander-University Erlangen-Nürnberg.
Abstract
The investigation of nickel phosphide (Ni5P4) as a catalyst for the hydrogen (HER) and oxygen evolution reaction (OER) in strong acidic and alkaline environment is described. The catalyst can be grown in a 3D hierarchical structure directly on a nickel substrate, thus making it an ideal candidate for practical water splitting devices. The activity of the catalyst towards the HER, together with its high stability especially in acidic solution, makes it one of the best non-noble materials described to date. Furthermore, Ni5P4 was investigated in the OER and showed activity superior to pristine nickel or platinum. The practical relevance of Ni5P4 as a bifunctional catalyst for the overall water splitting reaction was demonstrated, with 10 mA cm−2 achieved below 1.7 V.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201502438_sm_miscellaneous_information.pdf2 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T. E. Mallouk, Nat. Chem. 2013, 5, 362–363.
- 2
- 2aS. Dunn, Int. J. Hydrogen Energy 2002, 27, 235–264;
- 2bR. F. de Souza, J. C. Padilha, R. S. Gonçalves, M. O. de Souza, J. Rault-Berthelot, J. Power Sources 2007, 164, 792–798;
- 2cK. Zeng, D. Zhang, Prog. Energy Combust. Sci. 2010, 36, 307–326.
- 3
- 3aM. Gattrell, B. MacDougall in Handbook of Fuel Cells, Wiley, Hoboken, 2010;
10.1002/9780470974001.f205034 Google Scholar
- 3bC. Zhang, M. Antonietti, T.-P. Fellinger, Adv. Funct. Mater. 2014, 24, 7655–7665.
- 4
- 4aR. Subbaraman, D. Tripkovic, K.-C. Chang, D. Strmcnik, A. P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, N. M. Markovic, Nat. Mater. 2012, 11, 550–557;
- 4bC. C. L. McCrory, S. Jung, J. C. Peters, T. F. Jaramillo, J. Am. Chem. Soc. 2013, 135, 16977–16987;
- 4cM. Ledendecker, G. Clavel, M. Antonietti, M. Shalom, Adv. Funct. Mater. 2015, 25, 393–399.
- 5M. Shalom, D. Ressnig, X. Yang, G. Clavel, T. P. Fellinger, M. Antonietti, J. Mater. Chem. A. 2015, 25, 8171–8177.
- 6W. Zhou, X.-J. Wu, X. Cao, X. Huang, C. Tan, J. Tian, H. Liu, J. Wang, H. Zhang, Energy Environ. Sci. 2013, 6, 2921–2924.
- 7P. Jiang, Q. Liu, Y. Liang, J. Tian, A. M. Asiri, X. Sun, Angew. Chem. Int. Ed. 2014, 53, 12855–12859; Angew. Chem. 2014, 126, 13069–13073.
- 8E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis, R. E. Schaak, J. Am. Chem. Soc. 2013, 135, 9267–9270.
- 9Z. Huang, Z. Chen, Z. Chen, C. Lv, H. Meng, C. Zhang, ACS Nano 2014, 8, 8121–8129.
- 10A. Lu, Y. Chen, H. Li, A. Dowd, M. B. Cortie, Q. Xie, H. Guo, Q. Qi, D.-L. Peng, Int. J. Hydrogen Energy 2014, 39, 18919–18928.
- 11
- 11aE. J. Popczun, C. G. Read, C. W. Roske, N. S. Lewis, R. E. Schaak, Angew. Chem. Int. Ed. 2014, 53, 5427–5430; Angew. Chem. 2014, 126, 5531–5534;
- 11bQ. Liu, J. Tian, W. Cui, P. Jiang, N. Cheng, A. M. Asiri, X. Sun, Angew. Chem. Int. Ed. 2014, 53, 6710–6714; Angew. Chem. 2014, 126, 6828–6832.
- 12P. Xiao, M. A. Sk, L. Thia, X. Ge, R. J. Lim, J.-Y. Wang, K. H. Lim, X. Wang, Energy Environ. Sci. 2014, 7, 2624–2629.
- 13P. Liu, J. A. Rodriguez, J. Am. Chem. Soc. 2005, 127, 14871–14878.
- 14A. B. Laursen, K. R. Patraju, M. J. Whitaker, M. Retuerto, T. Sarkar, N. Yao, K. V. Ramanujachary, M. Greenblatt, G. C. Dismukes, Energy Environ. Sci. 2015, 8, 1027–1034.
- 15
- 15aK. Sun, X. Pang, S. Shen, X. Qian, J. S. Cheung, D. Wang, Nano Lett. 2013, 13, 2064–2072;
- 15bM. J. Kenney, M. Gong, Y. Li, J. Z. Wu, J. Feng, M. Lanza, H. Dai, Science 2013, 342, 836–840;
- 15cM. S. Faber, K. Park, M. Cabán-Acevedo, P. K. Santra, S. Jin, J. Phys. Chem. 2013, 4, 1843–1849.
- 16
- 16aX. Wang, Y. V. Kolen’ko, L. Liu, Chem. Commun. 2015, 51, 6738–6741;
- 16bY. Shi, Y. Xu, S. Zhuo, J. Zhang, B. Zhang, ACS Appl. Mater. Interfaces 2015, 7, 2376–2384.
- 17
- 17aY. Yang, H. Fei, G. Ruan, J. M. Tour, Adv. Mater. 2015, 27, 3174–31800;
- 17bN. Jiang, B. You, M. Sheng, Y. Sun, Angew. Chem. Int. Ed. 2015, 54, 6251–6254; Angew. Chem. 2015, 127, 6349–6352;
- 17cJ. Tian, Q. Liu, A. M. Asiri, X. Sun, J. Am. Chem. Soc. 2014, 136, 7587–7590.
- 18R. Madhu , V. Veeramani , S.-M. Chen, P. Veerakumar, S.-B. Liu, Chem. Eur. J. 2015, 21, 8200–82060.
- 19R. Franke, Spectrochim. Acta 1997, 53, 933–941.
- 20B. Elsener, M. Crobu, M. Scorciapino, A. Rossi, J. Appl. Electrochem. 2008, 38, 1053–1060.
- 21
- 21aL. Feng, H. Vrubel, M. Bensimon, X. Hu, Phys. Chem. Chem. Phys. 2014, 16, 5917–5921;
- 21bW. F. Chen, C. H. Wang, K. Sasaki, N. Marinkovic, W. Xu, J. T. Muckerman, Y. Zhu, R. R. Adzic, Energy Environ. Sci. 2013, 6, 943–951;
- 21cJ. R. McKone, B. F. Sadtler, C. A. Werlang, N. S. Lewis, H. B. Gray, ACS Catal. 2012, 2, 166–169.
- 22J. Barber, S. Morin, B. E. Conway, J. Electroanal. Chem. 1998, 446, 125–138.
- 23R. Frydendal, E. A. Paoli, B. P. Knudsen, B. Wickman, P. Malacrida, I. E. L. Stephens, I. Chorkendorff, ChemElectroChem 2014, 1, 2075–2081.
- 24C. Bocca, A. Barbucci, G. Cerisola, Int. J. Hydrogen Energy 1998, 23, 247–252.
- 25D. S. Hall, C. Bock, B. R. MacDougall, J. Electrochem. Soc. 2013, 160, F 235–F243.
- 26A. R. J. Kucernak, V. N. Naranammalpuram Sundaram, J. Mater. Chem. 2014, 2, 17435–17445.
- 27S. Deabate, F. Henn, Electrochim. Acta 2005, 50, 2823–2835.
- 28J. McBreen, Handbook of Battery Materials, Wiley-VCH, Weinheim, 2007, pp. 135–151.
- 29H.-Y. Wang, Y.-Y. Hsu, R. Chen, T.-S. Chan, H. M. Chen, B. Liu, Adv. Energy Mater. 2015, 5.
- 30P. W. T. Lu, S. Srinivasan, J. Electrochem. Soc. 1978, 125, 1416–1422.
- 31M. W. Louie, A. T. Bell, J. Am. Chem. Soc. 2013, 135, 12329–12337.
- 32
- 32aV. Molinari, C. Giordano, M. Antonietti, D. Esposito, J. Am. Chem. Soc. 2014, 136, 1758–1761;
- 32bX.-H. Li, M. Antonietti, Chem. Soc. Rev. 2013, 42, 6593–6604.
- 33J. Luo, J.-H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N.-G. Park, S. D. Tilley, H. J. Fan, M. Grätzel, Science 2014, 345, 1593–1596.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.