Catalytic Enantioselective Addition of Thioacids to Trisubstituted Nitroalkenes†
James P. Phelan
Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520 (USA)
Search for more papers by this authorEvan J. Patel
Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520 (USA)
Search for more papers by this authorCorresponding Author
Prof. Dr. Jonathan A. Ellman
Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520 (USA)
Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520 (USA)Search for more papers by this authorJames P. Phelan
Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520 (USA)
Search for more papers by this authorEvan J. Patel
Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520 (USA)
Search for more papers by this authorCorresponding Author
Prof. Dr. Jonathan A. Ellman
Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520 (USA)
Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520 (USA)Search for more papers by this authorNSF and Yale University are acknowledged for support of this work. We gratefully acknowledge Dr. Brandon Mercado for solving the crystal structures of 3 i and 3 j.
Abstract
The first example of a catalytic enantioselective addition to and nitronate protonation of trisubstituted nitroalkenes to produce highly enantioenriched products with a tetrasubstituted carbon is reported. Thioacids added in excellent yields and with high enantioselectivities to both activated and unactivated nitroalkenes. The 1,2-nitrothioacetate products can be readily converted in two steps to biomedically relevant 1,2-aminosulfonic acids without loss of enantiopurity.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201406971_sm_miscellaneous_information.pdf4 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1For reviews of additions to nitroalkenes, see:
- 1aA. Dondoni, A. Massi, Angew. Chem. Int. Ed. 2008, 47, 4638–4660; Angew. Chem. 2008, 120, 4716–4739;
- 1bA. G. Doyle, E. N. Jacobsen, Chem. Rev. 2007, 107, 5713–5743;
- 1cS. Mukherjee, J. W. Yang, S. Hoffmann, B. List, Chem. Rev. 2007, 107, 5471–5569;
- 1dD. Enders, C. Grondal, M. R. M. Hüttl, Angew. Chem. Int. Ed. 2007, 46, 1570–1581; Angew. Chem. 2007, 119, 1590–1601;
- 1eM. S. Taylor, E. N. Jacobsen, Angew. Chem. Int. Ed. 2006, 45, 1520–1543; Angew. Chem. 2006, 118, 1550–1573;
- 1fO. M. Berner, L. Tedeschi, D. Enders, Eur. J. Org. Chem. 2002, 1877–1894.
- 2For isolated examples of highly diastereo- and enantioselective additions to acyclic α,β-disubstituted nitroalkenes, see:
- 2aB. V. S. Reddy, M. Swain, S. M. Reddy, J. S. Yadav, RSC Adv. 2013, 3, 8756–8765;
- 2bR. Wu, X. Chang, A. Lu, Y. Wang, G. Wu, H. Song, Z. Zhou, C. Tang, Chem. Commun. 2011, 47, 5034–5036;
- 2cK. L. Kimmel, J. D. Weaver, J. A. Ellman, Chem. Sci. 2012, 3, 121–125;
- 2dX. Fu, Z. Jiang, C.-H. Tan, Chem. Commun. 2007, 5058–5060.
- 3K. L. Kimmel, J. D. Weaver, M. Lee, J. A. Ellman, J. Am. Chem. Soc. 2012, 134, 9058–9061.
- 4Nonselective additions to trisubstituted nitroalkenes:
- 4aJ. A. Burkhard, G. Wuitschik, J.-M. Plancher, M. Rogers-Evans, E. M. Carreira, Org. Lett. 2013, 15, 4312–4315;
- 4bJ. A. Burkhard, B. H. Tchitchanov, E. M. Carreira, Angew. Chem. Int. Ed. 2011, 50, 5379–5382; Angew. Chem. 2011, 123, 5491–5494;
- 4cM. I. Vakulenko, L. V. Lapshina, S. I. Grishchenko, I. E. Efremova, V. M. Berestovitskaya, Russ. J. Gen. Chem. 2010, 80, 2393–2395;
- 4dJ. C. Anderson, A. J. Blake, M. Mills, P. D. Ratcliffe, Org. Lett. 2008, 10, 4141–4143;
- 4eR. Schneider, P. Gerardin, B. Loubinoux, G. Rihs, Tetrahedron 1995, 51, 4997–5010;
- 4fR. F. Cunico, C.-P. Zhang, Synth. Commun. 1991, 21, 2189–2195.
- 5For a review on asymmetric sulfa-Michael additions, see: D. Enders, Synthesis 2007, 959–980.
- 6For a general review of the biological activity of taurines, see:
- 6aL. Della Corte, R. R. Crichton, G. Duburs, K. Nolan, K. F. Tipton, G. Tirzitis, R. J. Ward, Amino Acids 2002, 23, 367–379; For natural products containing the taurine motif, see:
- 6bT. Ogata, T. Shimazaki, T. Umemoto, S. Kurata, T. Ohtsuki, T. Suzuki, T. Wada, J. Org. Chem. 2009, 74, 2585–2588;
- 6cJ. Kobayashi, S. Mikami, H. Shigemori, T. Takao, Y. Shimonishi, S. Izuta, S. Yoshida, Tetrahedron 1995, 51, 10487–10490;
- 6dH.-Y. Li, S. Matsunaga, N. Fusetani, J. Med. Chem. 1995, 38, 338–343;
- 6eJ. J. Morales, A. D. Rodríguez, J. Nat. Prod. 1992, 55, 389–394;
- 6fH. Nakamura, H. Wu, J. Kobayashi, M. Kobayashi, Y. Ohizumi, Y. Hirata, J. Org. Chem. 1985, 50, 2494–2497; For drug molecules containing the taurine motif, see:
- 6gS. Yang, M. Froeyen, E. Lescrinier, P. Marlière, P. Herdewijn, Org. Biomol. Chem. 2010, 8, 111–119;
- 6hC. Francavilla, E. Low, S. Nair, B. Kim, T. P. Shiau, D. Debabov, C. Celeri, N. Alvarez, A. Houchin, P. Xu, Bioorg. Med. Chem. Lett. 2009, 19, 2731–2734;
- 6iE. Low, S. Nair, T. Shiau, B. Belisle, D. Debabov, C. Celeri, M. Zuck, R. Najafi, N. Georgopapadakou, R. Jain, Bioorg. Med. Chem. Lett. 2009, 19, 196–198.
- 7K. L. Kimmel, M. T. Robak, J. A. Ellman, J. Am. Chem. Soc. 2009, 131, 8754–8755.
- 8For recent reviews of oxetane physicochemical properties for drug applications and chemistry, see:
- 8aJ. A. Burkhard, G. Wuitschik, M. Rogers-Evans, K. Müller, E. M. Carreira, Angew. Chem. Int. Ed. 2010, 49, 9052–9067; Angew. Chem. 2010, 122, 9236–9251;
- 8bG. Wuitschik, E. M. Carreira, B. Wagner, H. Fischer, I. Parrilla, F. Schuler, M. Rogers-Evans, K. Müller, J. Med. Chem. 2010, 53, 3227–3246.
- 9For seminal reports of (thio)urea organocatalysts using the 3,5-bistrifluoromethylphenyl motif, see:
- 9aT. Okino, Y. Hoashi, Y. Takemoto, J. Am. Chem. Soc. 2003, 125, 12672–12673;
- 9bP. R. Schreiner, A. Wittkopp, Chem. Eur. J. 2003, 9, 407–414;
- 9cP. R. Schreiner, A. Wittkopp, Org. Lett. 2002, 4, 217–220.
- 10For seminal reports of bifunctional cinchona alkaloid based (thio)urea organocatalysts, see:
- 10aB.-J. Li, L. Jiang, M. Liu, Y.-C. Chen, L.-S. Ding, Y. Wu, Synlett 2005, 603–606;
- 10bB. Vakulya, S. Varga, A. Csampai, T. Soós, Org. Lett. 2005, 7, 1967–1969;
- 10cS. H. McCooey, S. J. Connon, Angew. Chem. Int. Ed. 2005, 44, 6367–6370; Angew. Chem. 2005, 117, 6525–6528;
- 10dJ. Ye, D. J. Dixon, P. S. Hynes, Chem. Commun. 2005, 4481–4483.
- 11Synthetic details, characterization, and molecular structures obtained by X-ray structural analysis of compounds are described in the Supporting Information. CCDC 1012329 (3 i) and 1012330 (3 j) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- 12Precedent for the conversion of 1,2-nitrothioacetates to 1,2-aminosulfonic acids:
- 12aN. Chen, J. Xu, Tetrahedron 2012, 68, 2513–2522;
- 12bW. Yang, D.-M. Du, Org. Biomol. Chem. 2012, 10, 6876–6884.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.