Enantioselective Formation of Cyano-Bearing All-Carbon Quaternary Stereocenters: Desymmetrization by Copper-Catalyzed N-Arylation†
Dr. Fengtao Zhou
Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (GIBH), No.190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou, 510530 (China)
Current Address: Molecular Catalyst Research Center, Chubu University, Aichi, 487-8501 (Japan)
These authors contributed equally to this work.
Search for more papers by this authorGui-Juan Cheng
Lab of Computational Chemistry and Drug Design, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055 (China)
These authors contributed equally to this work.
Search for more papers by this authorWenqiang Yang
Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (GIBH), No.190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou, 510530 (China)
These authors contributed equally to this work.
Search for more papers by this authorYan Long
College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081 (China)
Search for more papers by this authorShasha Zhang
Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (GIBH), No.190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou, 510530 (China)
Search for more papers by this authorProf. Dr. Yun-Dong Wu
Lab of Computational Chemistry and Drug Design, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055 (China)
Search for more papers by this authorCorresponding Author
Dr. Xinhao Zhang
Lab of Computational Chemistry and Drug Design, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055 (China)
Xinhao Zhang, Lab of Computational Chemistry and Drug Design, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055 (China)
Qian Cai, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (GIBH), No.190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou, 510530 (China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Qian Cai
Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (GIBH), No.190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou, 510530 (China)
Xinhao Zhang, Lab of Computational Chemistry and Drug Design, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055 (China)
Qian Cai, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (GIBH), No.190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou, 510530 (China)
Search for more papers by this authorDr. Fengtao Zhou
Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (GIBH), No.190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou, 510530 (China)
Current Address: Molecular Catalyst Research Center, Chubu University, Aichi, 487-8501 (Japan)
These authors contributed equally to this work.
Search for more papers by this authorGui-Juan Cheng
Lab of Computational Chemistry and Drug Design, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055 (China)
These authors contributed equally to this work.
Search for more papers by this authorWenqiang Yang
Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (GIBH), No.190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou, 510530 (China)
These authors contributed equally to this work.
Search for more papers by this authorYan Long
College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081 (China)
Search for more papers by this authorShasha Zhang
Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (GIBH), No.190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou, 510530 (China)
Search for more papers by this authorProf. Dr. Yun-Dong Wu
Lab of Computational Chemistry and Drug Design, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055 (China)
Search for more papers by this authorCorresponding Author
Dr. Xinhao Zhang
Lab of Computational Chemistry and Drug Design, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055 (China)
Xinhao Zhang, Lab of Computational Chemistry and Drug Design, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055 (China)
Qian Cai, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (GIBH), No.190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou, 510530 (China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Qian Cai
Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (GIBH), No.190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou, 510530 (China)
Xinhao Zhang, Lab of Computational Chemistry and Drug Design, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055 (China)
Qian Cai, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (GIBH), No.190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou, 510530 (China)
Search for more papers by this authorThe authors are grateful to the 100-talent program of CAS, NSFC (21272234, 21133002, & 21232001), the MOST of China (2013CB911501), and the Shenzhen STIC (KQTD201103) for their financial support. We also thank Dr. Jingsong Liu at GIBH for the X-ray experiments.
Abstract
The enantioselective construction of all-carbon quaternary stereocenters is one of the most challenging fields in asymmetric synthesis. An asymmetric desymmetrization strategy offers an indirect and efficient method for the formation of all-carbon stereocenters. An enantioselective formation of cyano-bearing all-carbon quaternary stereocenters in 1,2,3,4,-tetrahydroquinolines and 2,3,4,5-tetrahydro-1H-benzo[b]azepines by copper-catalyzed desymmetric N-arylation is demonstrated. The cyano group at the prochiral center plays a key role for the high enantioselectivity and works as an important functional group for further transformations. DFT studies provide a model which successfully accounts for the origin of enantioselectivity.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201405575_sm_miscellaneous_information.pdf16.8 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Quaternary Stereocenters: Challenges and Solutions for Organic Synthesis (Eds.: ), Wiley-VCH, Weinheim, 2005.
- 2
- 2aK. Fuji, Chem. Rev. 1993, 93, 2037–2066;
- 2bE. J. Corey, A. Guzman-Perez, Angew. Chem. 1998, 110, 2092–2118;
10.1002/(SICI)1521-3757(19980803)110:15<2092::AID-ANGE2092>3.0.CO;2-M Google ScholarAngew. Chem. Int. Ed. 1998, 37, 388–401;10.1002/(SICI)1521-3773(19980302)37:4<388::AID-ANIE388>3.0.CO;2-V PubMed Web of Science® Google Scholar
- 2cJ. Christoffers, A. Mann, Angew. Chem. 2001, 113, 4725–4732;
10.1002/1521-3757(20011217)113:24<4725::AID-ANGE4725>3.0.CO;2-L Google ScholarAngew. Chem. Int. Ed. 2001, 40, 4591–4597;10.1002/1521-3773(20011217)40:24<4591::AID-ANIE4591>3.0.CO;2-V CAS PubMed Web of Science® Google Scholar
- 2dI. Denissova, L. Barriault, Tetrahedron 2003, 59, 10105–10146;
- 2eC. J. Douglas, L. E. Overman, Proc. Natl. Acad. Sci. USA 2004, 101, 5363–5367;
- 2fB. M. Trost, C. Jiang, Synthesis 2006, 369–396;
- 2gP. G. Cozzi, R. Hilgraf, N. Zimmermann, Eur. J. Org. Chem. 2007, 5969–5994;
- 2hM. Bella, T. Gasperi, Synthesis 2009, 1583–1614;
- 2iJ. P. Das, I. Marek, Chem. Commun. 2011, 47, 4593–4623.
- 3
- 3aJ. T. Mohr, B. M. Stoltz, Chem. Asian J. 2007, 2, 1476–1491;
- 3bA. Y. Hong, B. M. Stoltz, Eur. J. Org. Chem. 2013, 2745–2759.
- 4
- 4aC. Hawner, A. Alexakis, Chem. Commun. 2010, 46, 7295–7306;
- 4bR. Shintani, M. Takeda, T. Nishimura, T. Hayashi, Angew. Chem. 2010, 122, 4061–4063;
10.1002/ange.201000467 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 3969–3971;
- 4cK. Kikushima, J. C. Holder, M. Gatti, B. M. Stoltz, J. Am. Chem. Soc. 2011, 133, 6902–6905.
- 5E. J. Corey, Angew. Chem. 2002, 114, 1724–1741;
10.1002/1521-3757(20020517)114:10<1724::AID-ANGE1724>3.0.CO;2-Q Google ScholarAngew. Chem. Int. Ed. 2002, 41, 1650–1667.10.1002/1521-3773(20020517)41:10<1650::AID-ANIE1650>3.0.CO;2-B CAS PubMed Web of Science® Google Scholar
- 6
- 6aF. E. Ziegler, Chem. Rev. 1988, 88, 1423–1452;
- 6bA. M. Martín-Castro, Chem. Rev. 2004, 104, 2939–3002.
- 7For other selected examples for the construction of all-carbon quaternary stereocenters, see:
- 7aK. Akagawa, K. Kudo, Angew. Chem. 2012, 124, 12958–12961;
10.1002/ange.201206916 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 12786–12789;
- 7bL.-A. Chen, X. Tang, J. Xi, W. Xu, L. Gong, E. Meggers, Angew. Chem. 2013, 125, 14271–14275; Angew. Chem. Int. Ed. 2013, 52, 14021–14025;
- 7cB. M. Trost, M. Osipov, Angew. Chem. 2013, 125, 9346–9351;
10.1002/ange.201302805 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 9176–9181;
- 7dR. Kastl, H. Wennemers, Angew. Chem. 2013, 125, 7369–7373;
10.1002/ange.201301583 Google ScholarAngew. Chem. Int. Ed. 2013, 53, 7228–7232;
- 7eQ. Chen, G. Wang, X. Jiang, Z. Xu, L. Lin, R. Wang, Org. Lett. 2014, 16, 1394–1397;
- 7fI. Marek, Y. Minko, M. Pasco, T. Mejuch, N. Gilboa, H. Chechik, J. P. Das, J. Am. Chem. Soc. 2014, 136, 2682–2694.
- 8
- 8aE. García-Urdiales, I. Alfonso, V. Gotor, Chem. Rev. 2005, 105, 313–354;
- 8bM. C. Willis, J. Chem. Soc. Perkin Trans. 1 1999, 1765–1784;
- 8cA. Studer, F. Schleth, Synlett 2005, 3033–3041;
- 8dT. Rovis in New Frontiers in Asymmetric Catalysis (Eds.: ), Wiley, Hoboken, 2007, pp. 275–309;
10.1002/9780470098004.ch10 Google Scholar
- 8eI. Atodiresei, I. Schiffers, C. Bolm, Chem. Rev. 2007, 107, 5683–5712.
- 9
- 9aM. Wadamoto, E. M. Phillips, T. E. Reynolds, K. A. Scheit, J. Am. Chem. Soc. 2007, 129, 10098–10099;
- 9bE. M. Phillips, J. M. Roberts, K. A. Scheidt, Org. Lett. 2010, 12, 2830–2833;
- 9cT. Ema, Y. Oue, K. Akihara, Y. Miyazaki, T. Sakai, Org. Lett. 2009, 11, 4866–4869;
- 9dK. Mori, T. Katoh, T. Suzuki, T. Noji, M. Yamanaka, T. Akiyama, Angew. Chem. 2009, 121, 9832–9834; Angew. Chem. Int. Ed. 2009, 48, 9652–9654;
- 9eM. Wilking, C. Mück-Lichtenfeld, C. G. Daniliuc, U. Hennecke, J. Am. Chem. Soc. 2013, 135, 8133–8136.
- 10
- 10aY. Sato, M. Sodeoka, M. Shibasaki, J. Org. Chem. 1989, 54, 4738–4739;
- 10bT. Ohshima, K. Kagechika, M. Adachi, M. Sodeoka, M. Shibasaki, J. Am. Chem. Soc. 1996, 118, 7108–7116;
- 10cM. C. Willis, L. H. Powell, C. K. Claverie, S. J. Watson, Angew. Chem. 2004, 116, 1269–1271;
10.1002/ange.200352648 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 1249–1251;
- 10dK. Takenaka, S. Nakatsuka, T. Tsujihara, P. S. Koranne, H. Sasai, Tetrahedron: Asymmetry 2008, 19, 2492–2496;
- 10eL. Porosa, R. D. Viirre, Tetrahedron Lett. 2009, 50, 4170–4173.
- 11
- 11aM. R. Albicker, N. Cramer, Angew. Chem. 2009, 121, 9303–9306;
10.1002/ange.200905060 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 9139–9142;
- 11bM. Wasa, K. M. Engle, D. W. Lin, E. J. Yoo, J.-Q. Yu, J. Am. Chem. Soc. 2011, 133, 19598–19601;
- 11cD. H. T. Phan, K. G. M. Kou, V. M. Dong, J. Am. Chem. Soc. 2010, 132, 16354–16355.
- 12
- 12aE. S. Sattely, S. J. Meek, S. J. Malcolmson, R. R. Schrock, A. H. Hoveyda, J. Am. Chem. Soc. 2009, 131, 943–945;
- 12bS. J. Meek, S. J. Malcolmson, B. Li, R. R. Schrock, A. H. Hoveyda, J. Am. Chem. Soc. 2009, 131, 16407–16409;
- 12cA. H. Hoveyda, S. J. Malcolmson, S. J. Meek, A. R. Zhugralin, Angew. Chem. 2010, 122, 38–49;
10.1002/ange.200904491 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 34–44.
- 13J. Y. Lee, Y. S. You, S. H. Kang, J. Am. Chem. Soc. 2011, 133, 1772–1774.
- 14F. Zhou, C. Tan, J. Tang, Y.-Y. Zhang, W.-M. Gao, H.-H. Wu, Y.-H. Yu, J. Zhou, J. Am. Chem. Soc. 2013, 135, 10994–10997.
- 15For other selected examples, see:
- 15aM. A. Arai, M. Kuraishi, T. Arai, H. Sasai, J. Am. Chem. Soc. 2001, 123, 2907–2908;
- 15bB. M. Bocknack, L.-C. Wang, M. J. Krische, Proc. Natl. Acad. Sci. USA 2004, 101, 5421–5424;
- 15cB. Linclau, E. Cini, C. S. Oakes, S. Josse, M. Light, V. Ironmonger, Angew. Chem. 2011, 123, 1266–1274; Angew. Chem. Int. Ed. 2011, 50, 1232–1235;
- 15dK. Aikawa, T. Okamoto, K. Mikami, J. Am. Chem. Soc. 2012, 134, 10329–10332.
- 16
- 16aF. Zhou, J. Guo, J. Liu, K. Ding, S. Yu, Q. Cai, J. Am. Chem. Soc. 2012, 134, 14326–14329;
- 16bW. Yang, Y. Long, S. Zhang, Y. Zeng, Q. Cai, Org. Lett. 2013, 15, 3598–3601;
- 16cW. Yang, J. Yan, Y. Long, S. Zhang, J. Liu, Y. Zeng, Q. Cai, Org. Lett. 2013, 15, 6022–6025.
- 17For selected reviews about copper-catalyzed coupling reactions, see:
- 17aS. V. Ley, A. W. Thomas, Angew. Chem. 2003, 115, 5558–5607;
10.1002/ange.200300594 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 5400–5449;
- 17bI. P. Beletskaya, A. V. Cheprakov, Coord. Chem. Rev. 2004, 248, 2337–2364;
- 17cG. Evano, N. Blanchard, M. Toumi, Chem. Rev. 2008, 108, 3054–3131;
- 17dF. Monnier, M. Taillefer, Angew. Chem. 2009, 121, 7088–7105; Angew. Chem. Int. Ed. 2009, 48, 6954–6971;
- 17eD. Ma, Q. Cai, Acc. Chem. Res. 2008, 41, 1450–1460;
- 17fD. S. Surry, S. L. Buchwald, Chem. Sci. 2010, 1, 13–31;
- 17gC. Sambiagio, S. P. Marsden, A. J. Blacker, P. C. McGowan, Chem. Soc. Rev. 2014, 43, 3525–3550.
- 18For a recent example of asymmetric Ullmann ether coupling, see: M. Quamar Salih, C. M. Beaudry, Org. Lett. 2013, 15, 4540–4543.
- 19For a review about tetrahydroquinolines, see: V. Sridharan, P. A. Suryavanshi, J. C. Menéndez, Chem. Rev. 2011, 111, 7157–7259.
- 20For reviews of binol-derived ligands in asymmetric synthesis, see:
- 20aJ. M. Brunel, Chem. Rev. 2005, 105, 857–897;
- 20bY. Chen, S. Yekta, A. K. Yudin, Chem. Rev. 2003, 103, 3155–3211.
- 21The absolute configuration of 2 f is opposite to that of 2 i. See the Supporting Information.
- 22The absolute configurations of 6 c and 8 were determined through X-ray crystallography.
- 23
- 23aE. R. Strieter, B. Bhayana, S. L. Buchwald, J. Am. Chem. Soc. 2008, 130, 78–88;
- 23bA. Shafir, P. A. Lichtor, S. L. Buchwald, J. Am. Chem. Soc. 2007, 129, 3490–3491.
- 24G. O. Jones, P. Liu, K. N. Houk, S. L. Buchwald, J. Am. Chem. Soc. 2010, 132, 6205–6213.
- 25H.-Z. Yu, Y.-Y. Jiang, Y. Fu, L. Liu, J. Am. Chem. Soc. 2010, 132, 18078–18091.
- 26Calculations were conducted with B3LYP and LANL2DZ basis sets with polarization function for Pd and I, and 6–31G(d) for other atoms. All calculations were performed with Gaussian 09, M. J. Frisch, et al., Gaussian, Inc., Wallingford CT, 2009. More details are included in the Supporting Information.
- 27This method has been demonstrated to be well-performed in similar copper systems:
- 27aC. Kleeberg, L. Dang, Z. Lin, T. B. Marder, Angew. Chem. 2009, 121, 5454–5458;
10.1002/ange.200901879 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 5350–5354;
- 27bR. Shang, Y. Fu, Y. Wang, Q. Xu, H.-Z. Yu, L. Liu, Angew. Chem. 2009, 121, 9514–9518; Angew. Chem. Int. Ed. 2009, 48, 9350–9354;
- 27cB. Chen, X.-L. Hou, Y.-X. Li, Y.-D. Wu, J. Am. Chem. Soc. 2011, 133, 7668–7671;
- 27dG.-J. Cheng, L.-J. Song, Y.-F. Yang, X. Zhang, O. Wiest, Y.-D. Wu, ChemPlusChem 2013, 78, 943–951.
- 28
- 28aJ. W. Tye, Z. Weng, A. M. Johns, C. D. Incarvito, J. F. Hartwig, J. Am. Chem. Soc. 2008, 130, 9971–9983;
- 28bH. Kaddouri, V. Vicente, A. Ouali, F. Ouazzani, M. Taillefer, Angew. Chem. 2009, 121, 339–342; Angew. Chem. Int. Ed. 2009, 48, 333–336;
- 28cJ. W. Tye, Z. Weng, R. Giri, J. F. Hartwig, Angew. Chem. 2010, 122, 2231–2235;
10.1002/ange.200902245 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 2185–2189.
- 29
- 29aS.-L. Zhang, L. Liu, Y. Fu, Q.-X. Guo, Organometallics 2007, 26, 4546–4554;
- 29bS. Zhang, Y. Ding, Organometallics 2011, 30, 633–641.
- 30A larger ring is required to use the linear cyano group as directing group:
- 30aD. Leow, G. Li, T.-S. Mei, J.-Q. Yu, Nature 2012, 486, 518–522;
- 30bL. Wan, N. Dastbaravardeh, G. Li, J.-Q. Yu, J. Am. Chem. Soc. 2013, 135, 18056–18059;
- 30cS. Lee, H. Lee, K. L. Tan, J. Am. Chem. Soc. 2013, 135, 18778–18781;
- 30dY.-F. Yang, G.-J. Cheng, P. Liu, D. Leow, T.-Y. Sun, P. Chen, X. Zhang, J.-Q. Yu, Y.-D. Wu, K. N. Houk, J. Am. Chem. Soc. 2014, 136, 344–355;
- 30eG.-J. Cheng, Y.-F. Yang, P. Liu, P. Chen, T.-Y. Sun, G. Li, X. Zhang, K. N. Houk, J.-Q. Yu, Y.-D. Wu, J. Am. Chem. Soc. 2014, 136, 894–897;
- 30fR.-Y. Tang, G. Li, J.-Q. Yu, Nature 2014, 507, 215–220.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.