Luminescent Cyclometalated Platinum(II) Complex Forms Emissive Intercalating Adducts with Double-Stranded DNA and RNA: Differential Emissions and Anticancer Activities†
Taotao Zou
State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (China)
These authors contributed equally to this work.
Search for more papers by this authorDr. Jia Liu
State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (China)
These authors contributed equally to this work.
Search for more papers by this authorDr. Ching Tung Lum
State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (China)
Search for more papers by this authorDr. Chensheng Ma
State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (China)
Current address: School of Chemistry and Chemical Engineering, Shenzhen University (China)
Search for more papers by this authorRuth Chau-Ting Chan
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)
Search for more papers by this authorDr. Chun-Nam Lok
State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (China)
Search for more papers by this authorDr. Wai-Ming Kwok
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Chi-Ming Che
State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (China)
HKU Shenzhen Institute of Research and Innovation, Shenzhen 518053 (China)
State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (China)Search for more papers by this authorTaotao Zou
State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (China)
These authors contributed equally to this work.
Search for more papers by this authorDr. Jia Liu
State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (China)
These authors contributed equally to this work.
Search for more papers by this authorDr. Ching Tung Lum
State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (China)
Search for more papers by this authorDr. Chensheng Ma
State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (China)
Current address: School of Chemistry and Chemical Engineering, Shenzhen University (China)
Search for more papers by this authorRuth Chau-Ting Chan
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)
Search for more papers by this authorDr. Chun-Nam Lok
State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (China)
Search for more papers by this authorDr. Wai-Ming Kwok
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Chi-Ming Che
State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (China)
HKU Shenzhen Institute of Research and Innovation, Shenzhen 518053 (China)
State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (China)Search for more papers by this authorThis work was supported by the University Grants Committee of the HKSAR of China (Area of Excellence Scheme AoE/P-03/08), the National Key Basic Research Program of China (2013CB834802), the Hong Kong Research Grant Council (HKU 700812P), and Special Equipment Grant of UGC (SEG_HKU02) for MS analysis. We thank Drs. C.-H. Leung, D.-L. Ma, R. W.-Y. Sun for constructive input, and Prof. Anderson Wong for help on radioisotope experiments.
Abstract
Luminescent metallo-intercalators are potent biosensors of nucleic acid structure and anticancer agents targeting DNAs. There are few examples of luminescent metallo-intercalators which can simultaneously act as emission probes of nucleic acid structure and display promising anticancer activities. Herein, we describe a luminescent platinum(II) complex, [Pt(C^N^N)(C≡NtBu)]ClO4 (1 a, HC^N^N= 6-phenyl-2,2′-bipyridyl), that intercalates between the nucleobases of nucleic acids, accompanied by an increase in emission intensity and/or a significant change in the maximum emission wavelength. The changes in emission properties measured with double-stranded RNA (dsRNA) are different from those with dsDNA used in the binding reactions. Complex 1 a exhibited potent anticancer activity towards cancer cells in vitro and inhibited tumor growth in a mouse model. The stabilization of the topoisomerase I–DNA complex with resulting DNA damage by 1 a is suggested to contribute to its anticancer activity.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201405384_sm_miscellaneous_information.pdf1.4 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aK. E. Erkkila, D. T. Odom, J. K. Barton, Chem. Rev. 1999, 99, 2777–2796;
- 1bD. Wang, S. J. Lippard, Nat. Rev. Drug Discovery 2005, 4, 307–320;
- 1cM. R. Gill, J. Garcia-Lara, S. J. Foster, C. Smythe, G. Battaglia, J. A. Thomas, Nat. Chem. 2009, 1, 662–667;
- 1dF. R. Keene, J. A. Smith, J. G. Collins, Coord. Chem. Rev. 2009, 253, 2021–2035;
- 1eA. M. Pizarro, A. Habtemariam, P. J. Sadler, Top. Organomet. Chem. 2010, 32, 21–56;
- 1fH.-K. Liu, P. J. Sadler, Acc. Chem. Res. 2011, 44, 349–359;
- 1gP. Wang, C.-H. Leung, D.-L. Ma, R. W.-Y. Sun, S.-C. Yan, Q.-S. Chen, C.-M. Che, Angew. Chem. 2011, 123, 2602–2606; Angew. Chem. Int. Ed. 2011, 50, 2554–2558;
- 1hJ. Suryadi, U. Bierbach, Chem. Eur. J. 2012, 18, 12926–12934;
- 1iA. C. Komor, J. K. Barton, Chem. Commun. 2013, 49, 3617–3630;
- 1jG. Barone, A. Terenzi, A. Lauria, A. M. Almerico, J. M. Leal, N. Busto, B. García, Coord. Chem. Rev. 2013, 257, 2848–2862;
- 1kD.-L. Ma, H.-Z. He, K.-H. Leung, D. S.-H. Chan, C.-H. Leung, Angew. Chem. 2013, 125, 7820–7837; Angew. Chem. Int. Ed. 2013, 52, 7666–7682.
- 2
- 2aC. Metcalfe, J. A. Thomas, Chem. Soc. Rev. 2003, 32, 215–224;
- 2bS.-W. Lai, C.-M. Che, Transition Metal and Rare Earth Compounds, Vol. 241 (Ed.: ), Springer, Berlin, 2004, pp. 27–63;
- 2cC. Rajput, R. Rutkaite, L. Swanson, I. Haq, J. A. Thomas, Chem. Eur. J. 2006, 12, 4611–4619;
- 2dD.-L. Ma, C.-M. Che, S.-C. Yan, J. Am. Chem. Soc. 2009, 131, 1835–1846;
- 2eA. Okamoto, Chem. Soc. Rev. 2011, 40, 5815–5828;
- 2fM. R. Gill, J. A. Thomas, Chem. Soc. Rev. 2012, 41, 3179–3192;
- 2gA. Granzhan, N. Kotera, M.-P. Teulade-Fichou, Chem. Soc. Rev. 2014, 43, 3630–3665.
- 3
- 3aC. S. Chow, K. M. Hartmann, S. L. Rawlings, P. W. Huber, J. K. Barton, Biochemistry 1992, 31, 3534–3542;
- 3bH. R. Neenhold, T. M. Rana, Biochemistry 1995, 34, 6303–6309;
- 3cE. Kikuta, S. Aoki, E. Kimura, J. Am. Chem. Soc. 2001, 123, 7911–7912;
- 3dC. B. Carlson, O. M. Stephens, P. A. Beal, Biopolymers 2003, 70, 86–102;
- 3eB. Tian, P. C. Bevilacqua, A. Diegelman-Parente, M. B. Mathews, Nat. Rev. Mol. Cell Biol. 2004, 5, 1013–1023;
- 3fH. Xu, Y. Liang, P. Zhang, F. Du, B.-R. Zhou, J. Wu, J.-H. Liu, Z.-G. Liu, L.-N. Ji, J. Biol. Inorg. Chem. 2005, 10, 529–538;
- 3gC. B. Spillane, J. A. Smith, D. P. Buck, J. G. Collins, F. R. Keene, Dalton Trans. 2007, 5290–5296;
- 3hJ. R. Thomas, P. J. Hergenrother, Chem. Rev. 2008, 108, 1171–1224;
- 3iD. P. Buck, C. B. Spillane, J. G. Collins, F. R. Keene, Mol. BioSyst. 2008, 4, 851–854;
- 3jS. Phongtongpasuk, S. Paulus, J. Schnabl, R. K. O. Sigel, B. Spingler, M. J. Hannon, E. Freisinger, Angew. Chem. 2013, 125, 11727–11730;
10.1002/ange.201305079 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 11513–11516;
- 3kF. Li, E. J. Harry, A. L. Bottomley, M. D. Edstein, G. W. Birrell, C. E. Woodward, F. R. Keene, J. G. Collins, Chem. Sci. 2014, 5, 685–693.
- 4B. Shirinfar, N. Ahmed, Y. S. Park, G.-S. Cho, I. S. Youn, J.-K. Han, H. G. Nam, K. S. Kim, J. Am. Chem. Soc. 2012, 134, 135, 90–93.
- 5
- 5aC. E. Crespo-Hernández, B. Cohen, P. M. Hare, B. Kohler, Chem. Rev. 2004, 104, 1977–2020;
- 5bC. T. Middleton, K. de La Harpe, C. Su, Y. K. Law, C. E. Crespo-Hernández, B. Kohler, Annu. Rev. Phys. Chem. 2009, 60, 217–239;
- 5cI. Vayá, T. Gustavsson, F.-A. Miannay, T. Douki, D. Markovitsi, J. Am. Chem. Soc. 2010, 132, 11834–11835.
- 6
- 6aH.-A. Wagenknecht in Charge Transfer in DNA: From Mechanism to Application (Ed.: ), Wiley-VCH, Weinheim, 2006, pp. 1–26;
- 6bJ. K. Barton, E. D. Olmon, P. A. Sontz, Coord. Chem. Rev. 2011, 255, 619–634.
- 7
- 7aK. Yamana, R. Iwase, S. Furutani, H. Tsuchida, H. Zako, T. Yamaoka, A. Murakami, Nucleic Acids Res. 1999, 27, 2387–2392;
- 7bY. Saito, K. Kugenuma, M. Tanaka, A. Suzuki, I. Saito, Bioorg. Med. Chem. Lett. 2012, 22, 3723–3726.
- 8aD. R. McMillin, F. Liu, K. A. Meadows, T. K. Aldridge, B. P. Hudson, Coord. Chem. Rev. 1994, 132, 105–112;
- 8bA. Horváth, K. L. Stevenson, Coord. Chem. Rev. 1996, 153, 57–82;
- 8cC. N. Pettijohn, E. B. Jochnowitz, B. Chuong, J. K. Nagle, A. Vogler, Coord. Chem. Rev. 1998, 171, 85–92;
- 8dD. R. McMillin, K. M. McNett, Chem. Rev. 1998, 98, 1201–1220;
- 8eP. Lugo-Ponce, D. R. McMillin, Coord. Chem. Rev. 2000, 208, 169–191;
- 8fD. K. Crites Tears, D. R. McMillin, Coord. Chem. Rev. 2001, 211, 195–205;
- 8gD. R. McMillin, J. J. Moore, Coord. Chem. Rev. 2002, 229, 113–121;
- 8hD. R. McMillin, A. H. Shelton, S. A. Bejune, P. E. Fanwick, R. K. Wall, Coord. Chem. Rev. 2005, 249, 1451–1459;
- 8iS. D. Cummings, Coord. Chem. Rev. 2009, 253, 1495–1516;
- 8jR. McGuire Jr., M. C. McGuire, D. R. McMillin, Coord. Chem. Rev. 2010, 254, 2574–2583.
- 9C.-M. Che, M. Yang, K.-H. Wong, H.-L. Chan, W. Lam, Chem. Eur. J. 1999, 5, 3350–3356.
10.1002/(SICI)1521-3765(19991105)5:11<3350::AID-CHEM3350>3.0.CO;2-J CAS Web of Science® Google Scholar
- 10
- 10aJ. Fohrer, M. Hennig, T. Carlomagno, J. Mol. Biol. 2006, 356, 280–287;
- 10bM. Cusumano, M. L. Di Pietro, A. Giannetto, P. A. Vainiglia, Inorg. Chem. 2007, 46, 7148–7153.
- 11
- 11aP. Wang, C.-H. Leung, D.-L. Ma, W. Lu, C.-M. Che, Chem. Asian J. 2010, 5, 2271–2280;
- 11bJ. Liu, C.-H. Leung, A. L.-F. Chow, R. W.-Y. Sun, S.-C. Yan, C.-M. Che, Chem. Commun. 2011, 47, 719–721.
- 12
- 12aE. Labourier, J.-F. Riou, M. Prudhomme, C. Carrasco, C. Bailly, J. Tazi, Cancer Res. 1999, 59, 52–55;
- 12bW. A. Denny, B. C. Baguley, Curr. Top. Med. Chem. 2003, 3, 339–353;
- 12cB. Montaner, W. Castillo-Ávila, M. Martinell, R. Öllinger, J. Aymami, E. Giralt, R. Pérez-Tomás, Toxicol. Sci. 2005, 85, 870–879;
- 12dY. Pommier, Chem. Rev. 2009, 109, 2894–2902.
- 13J. Liu, R. W.-Y. Sun, C.-H. Leung, C.-N. Lok, C.-M. Che, Chem. Commun. 2012, 48, 230–232.
- 14G. Cohen, H. Eisenberg, Biopolymers 1969, 8, 45–55.
- 15K. Sandström, S. Wärmländer, M. Leijon, A. Gräslund, Biochem. Biophys. Res. Commun. 2003, 304, 55–59.
- 16S.-W. Lai, M. C.-W. Chan, K.-K. Cheung, C.-M. Che, Organometallics 1999, 18, 3327–3336.
- 17B. P. Hudson, J. Sou, D. J. Berger, D. R. McMillin, J. Am. Chem. Soc. 1992, 114, 8997–9002.
- 18M. L. Clark, R. L. Green, O. E. Johnson, P. E. Fanwick, D. R. McMillin, Inorg. Chem. 2008, 47, 9410–9418.
- 19Q. A. Khan, M. A. Elban, S. M. Hecht, J. Am. Chem. Soc. 2008, 130, 12888–12889.
- 20S.-Y. Park, C.-H. Leung, Y.-C. Cheng, Mol. Pharmacol. 2008, 73, 1829–1837.
- 21S. Shuman in DNA Topoisomerase Protocols, Vol. 95 (Eds.: ), Humana, Totowa, 2001, pp. 65–74.
- 22S. D. Desai, T.-K. Li, A. Rodriguez-Bauman, E. H. Rubin, L. F. Liu, Cancer Res. 2001, 61, 5926–5932.
- 23S. Antony, G. Kohlhagen, K. Agama, M. Jayaraman, S. Cao, F. A. Durrani, Y. M. Rustum, M. Cushman, Y. Pommier, Mol. Pharmacol. 2005, 67, 523–530.
- 24T.-K. Li, P. J. Houghton, S. D. Desai, P. Daroui, A. A. Liu, E. S. Hars, A. L. Ruchelman, E. J. LaVoie, L. F. Liu, Cancer Res. 2003, 63, 8400–8407.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.