Hydrogen from Formic Acid through Its Selective Disproportionation over Sodium Germanate—A Non-Transition-Metal Catalysis System†
Corresponding Author
Dr. Ruth I. J. Amos
School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia)
CSIRO Energy Transformed Cluster on Biofuels and Research School of Chemistry, Australian National University, Canberra, ACT 0200 (Australia)
ARC Centre of Excellence for Free Radical Chemistry and Biotechnology (Australia)
School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia)Search for more papers by this authorDr. Falk Heinroth
School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia)
Search for more papers by this authorCorresponding Author
Dr. Bun Chan
School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia)
ARC Centre of Excellence for Free Radical Chemistry and Biotechnology (Australia)
School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia)Search for more papers by this authorSisi Zheng
School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006 (Australia)
Search for more papers by this authorProf. Brian S. Haynes
School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006 (Australia)
Search for more papers by this authorProf. Christopher J. Easton
CSIRO Energy Transformed Cluster on Biofuels and Research School of Chemistry, Australian National University, Canberra, ACT 0200 (Australia)
ARC Centre of Excellence for Free Radical Chemistry and Biotechnology (Australia)
Search for more papers by this authorCorresponding Author
Prof. Anthony F. Masters
School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia)
School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia)Search for more papers by this authorCorresponding Author
Prof. Leo Radom
School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia)
ARC Centre of Excellence for Free Radical Chemistry and Biotechnology (Australia)
School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia)Search for more papers by this authorCorresponding Author
Prof. Thomas Maschmeyer
School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia)
School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia)Search for more papers by this authorCorresponding Author
Dr. Ruth I. J. Amos
School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia)
CSIRO Energy Transformed Cluster on Biofuels and Research School of Chemistry, Australian National University, Canberra, ACT 0200 (Australia)
ARC Centre of Excellence for Free Radical Chemistry and Biotechnology (Australia)
School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia)Search for more papers by this authorDr. Falk Heinroth
School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia)
Search for more papers by this authorCorresponding Author
Dr. Bun Chan
School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia)
ARC Centre of Excellence for Free Radical Chemistry and Biotechnology (Australia)
School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia)Search for more papers by this authorSisi Zheng
School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006 (Australia)
Search for more papers by this authorProf. Brian S. Haynes
School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006 (Australia)
Search for more papers by this authorProf. Christopher J. Easton
CSIRO Energy Transformed Cluster on Biofuels and Research School of Chemistry, Australian National University, Canberra, ACT 0200 (Australia)
ARC Centre of Excellence for Free Radical Chemistry and Biotechnology (Australia)
Search for more papers by this authorCorresponding Author
Prof. Anthony F. Masters
School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia)
School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia)Search for more papers by this authorCorresponding Author
Prof. Leo Radom
School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia)
ARC Centre of Excellence for Free Radical Chemistry and Biotechnology (Australia)
School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia)Search for more papers by this authorCorresponding Author
Prof. Thomas Maschmeyer
School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia)
School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia)Search for more papers by this authorWe gratefully acknowledge funding (to C.J.E., T.M., A.M., and L.R.) from the Australian Research Council (ARC), funding (to R.I.J.A. and C.J.E) from the CSIRO, and generous grants of computer time (to L.R.) from the National Computational Infrastructure (NCI) National Facility and Intersect Australia Ltd.
Abstract
A robust catalyst for the selective dehydrogenation of formic acid to liberate hydrogen gas has been designed computationally, and also successfully demonstrated experimentally. This is the first such catalyst not based on transition metals, and it exhibits very encouraging performance. It represents an important step towards the use of renewable formic acid as a hydrogen-storage and transport vector in fuel and energy applications.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201405360_sm_miscellaneous_information.pdf3.2 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1K. E. Martin, J. P. Kopasz, K. W. McMurphy in Fuel Cell Chemistry and Operation, Vol. 1040 (Eds.: ), American Chemical Society, 2010, pp. 1–13.
10.1021/bk-2010-1040.ch001 Google Scholar
- 2
- 2aA. Alissandratos, H.-K. Kim, H. Matthews, J. E. Hennessy, A. Philbrook, C. J. Easton, Appl. Environ. Microbiol. 2013, 79, 741–744;
- 2bK. Schuchmann, V. Müller, Science 2013, 342, 1382–1385.
- 3K. Tedsree, T. Li, S. Jones, C. W. A. Chan, K. M. K. Yu, P. A. J. Bagot, E. A. Marquis, G. D. W. Smith, S. C. E. Tsang, Nat. Nanotechnol. 2011, 6, 302–307.
- 4S. Enthaler, ChemSusChem 2008, 1, 801–804.
- 5S. Enthaler, J. von Langermann, T. Schmidt, Energy Environ. Sci. 2010, 3, 1207–1217.
- 6A. Alissandratos, H. K. Kim, C. J. Easton, Bioresour. Technol. 2014, 164, 7–11.
- 7W. L. Nelson, C. J. Engelder, J. Phys. Chem. 1926, 30, 470–475.
- 8N. Yoshida, K. Miyataka, S. Kishimoto, J. Catal. 1984, 88, 237–239.
- 9L. K. Freidlin, A. M. Levit, Zh. Obshch. Khim. 1951, 21, 1255–1264.
- 10M. Ai, J. Catal. 1977, 50, 291–300.
- 11K. Kamiya, M. Tatsumi, J. Matsuoka, H. Nasu, Phys. Chem. Glasses 1998, 39, 9–16.
- 12Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215–241.
- 13M. J. Frisch, et al. Gaussian, Inc., Wallingford CT, 2009.
- 14E. M. Flanigen, J. M. Bennett, R. W. Grose, J. P. Cohen, R. L. Patton, R. M. Kirchner, J. V. Smith, Nature 1978, 271, 512–516.
- 15H. Kosslick, V. A. Tuan, R. Fricke, C. Peuker, Ber. Bunsen-Ges. 1992, 96, 1761–1765.
- 16See for example:
- 16aJ. Van der Mynsbrugge, J. De Ridder, K. Hemelsoet, M. Waroquier, V. Van Speybroeck, Chem. Eur. J. 2013, 19, 11568–11576;
- 16bV. Van Speybroeck, J. Van der Mynsbrugge, M. Vandichel, K. Hemelsoet, D. Lesthaeghe, A. Ghysels, G. B. Marin, M. Waroquier, J. Am. Chem. Soc. 2011, 133, 888–899.
- 17B. Chan, L. Radom, J. Am. Chem. Soc. 2008, 130, 9790–9799.
- 18The MFI crystal structure was obtained from the Inorganic Crystal Structure Database (ICSD) and was originally published in D. H. Olsen, G. T. Kokotailo, S. L. Lawton, W. M. Meier, Nature 1978, 271, 512–516.
- 19J. Sauer, A. Bleiber, Catal. Today 1988, 3, 485–492.
- 20J. Sauer, W. Schirmer, Stud. Surf. Sci. Catal. 1988, 37, 323–332.
- 21T. Kobayashi, J. A. DiVerdi, G. E. Maciel, J. Phys. Chem. C 2008, 112, 4315–4326.
- 22See for example:
- 22aS. Dapprich, I. Komiromi, K. S. Buyn, K. Morokuma, M. J. Frisch, THEOCHEM 1999, 461–462, 1;
- 22bT. Vreven, K. S. Byun, I. Komaromi, S. Dapprich, J. A. Montgomery, Jr., K. Morokuma, M. J. Frisch, J. Chem. Theory Comput. 2006, 2, 815–826.
- 23A. P. Scott, L. Radom, J. Phys. Chem. 1996, 100, 16502–16513.
- 24S. Senger, L. Radom, J. Am. Chem. Soc. 2000, 122, 2613–2620.
- 25A. A. Bolzan, C. Fong, B. J. Kennedy, C. J. Howard, Acta Crystallogr. Sect. B 1997, 53, 373–380.
- 26S. P. B. Kremer, C. E. A. Kirschhock, A. Aerts, K. Villani, J. A. Martens, O. I. Lebedev, T. G. Van, Adv. Mater. 2003, 15, 1705–1707.
- 27A. Ghosh, V. N. Garcia, S. F. Mitchell, S. Stevenson, D. F. Shantz, J. Phys. Chem. C 2009, 113, 12252–12259.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.