Highly Efficient “On Water” Catalyst-Free Nucleophilic Addition Reactions Using Difluoroenoxysilanes: Dramatic Fluorine Effects†
Jin-Sheng Yu
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 3663N, Zhongshan Road, Shanghai 200062 (China)
Search for more papers by this authorYun-Lin Liu
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 3663N, Zhongshan Road, Shanghai 200062 (China)
Search for more papers by this authorJing Tang
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 3663N, Zhongshan Road, Shanghai 200062 (China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Xin Wang
College of Chemistry, Sichuan University, Chengdu, 610064 (China)
Xin Wang, College of Chemistry, Sichuan University, Chengdu, 610064 (China)
Jian Zhou, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 3663N, Zhongshan Road, Shanghai 200062 (China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Jian Zhou
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 3663N, Zhongshan Road, Shanghai 200062 (China)
State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071 (P. R. China)
Xin Wang, College of Chemistry, Sichuan University, Chengdu, 610064 (China)
Jian Zhou, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 3663N, Zhongshan Road, Shanghai 200062 (China)
Search for more papers by this authorJin-Sheng Yu
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 3663N, Zhongshan Road, Shanghai 200062 (China)
Search for more papers by this authorYun-Lin Liu
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 3663N, Zhongshan Road, Shanghai 200062 (China)
Search for more papers by this authorJing Tang
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 3663N, Zhongshan Road, Shanghai 200062 (China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Xin Wang
College of Chemistry, Sichuan University, Chengdu, 610064 (China)
Xin Wang, College of Chemistry, Sichuan University, Chengdu, 610064 (China)
Jian Zhou, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 3663N, Zhongshan Road, Shanghai 200062 (China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Jian Zhou
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 3663N, Zhongshan Road, Shanghai 200062 (China)
State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071 (P. R. China)
Xin Wang, College of Chemistry, Sichuan University, Chengdu, 610064 (China)
Jian Zhou, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 3663N, Zhongshan Road, Shanghai 200062 (China)
Search for more papers by this authorWe thank Prof. Dr. Shu-Hua Li of Nanjing University and Prof. Dr. Yu-Xue Li of Shanghai Institute of Organic Chemistry for their constructive suggestions. Financial support from NSFC (21172075, 21222204), 973 program (2011CB808600), the Ministry of Education (NCET-11-0147 and PCSIRT), and Program of SSCS (13XD1401600) is appreciated.
Abstract
A remarkable fluorine effect on “on water” reactions is reported. The CF⋅⋅⋅HO interactions between suitably fluorinated nucleophiles and the hydrogen-bond network at the phase boundary of oil droplets enable the formation of a unique microstructure to facilitate on water catalyst-free reactions, which are difficult to realize using nonfluorinated substrates. Accordingly, a highly efficient on water, catalyst-free reaction of difluoroenoxysilanes with aldehydes, activated ketones, and isatylidene malononitriles was developed, thus leading to the highly efficient synthesis of a variety of α,α-difluoro-β-hydroxy ketones and quaternary oxindoles.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201404432_sm_miscellaneous_information.pdf6 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. Narayan, J. Muldoon, M. G. Finn, V. V. Fokin, H. C. Kolb, K. B. Sharpless, Angew. Chem. 2005, 117, 3339–3343; Angew. Chem. Int. Ed. 2005, 44, 3275–3279;
- 1bU. M. Lindström, F. Andersson, Angew. Chem. 2006, 118, 562–565;
10.1002/ange.200502882 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 548–551;
- 1cM. C. Pirrung, Chem. Eur. J. 2006, 12, 1312–1317;
- 1dI. Vilotijevic, T. F. Jamison, Science 2007, 317, 1189–1192;
- 1eK. Aplander, R. Ding, U. M. Lindström, J. Wennerberg, S. Schultz, Angew. Chem. 2007, 119, 4627–4630;
10.1002/ange.200700560 Google ScholarAngew. Chem. Int. Ed. 2007, 46, 4543–4546;
- 1fB. K. Price, J. M. Tour, J. Am. Chem. Soc. 2006, 128, 12899–12904;
- 1gA. El-Batta, C. Jiang, W. Zhao, R. Anness, A. L. Cooksy, M. Bergdahl, J. Org. Chem. 2007, 72, 5244–5259;
- 1hD. González-Cruz, D. Tejedor, P. de Armas, F. García-Tellado, Chem. Eur. J. 2007, 13, 4823–4832;
- 1iY. Jung, R. A. Marcus, J. Am. Chem. Soc. 2007, 129, 5492–5502;
- 1jV. Krasovskaya, A. Krasovskiy, A. Bhattacharjya, B. H. Lipshutz, Chem. Commun. 2011, 47, 5717–5719;
- 1kN. Shapiro, A, Vigalok, Angew. Chem. 2008, 120, 2891–2894;
10.1002/ange.200705347 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 2849–2852;
- 1lP. G. Cozzi, L. Zoli, Angew. Chem. 2008, 120, 4230–4234;
10.1002/ange.200800622 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 4162–4166;
- 1mX.-P. Fu, L. Liu, D. Wang, Y.-J. Chen, C.-J. Li, Green Chem. 2011, 13, 549–553;
- 1nA. Sartori, L. Dell’Amico, C. Curti, L. Battistini, G. Pelosi, G. Rassu, G. Casiraghi, F. Zanardi, Adv. Synth. Catal. 2011, 353, 3278–3284;
- 1oS. Mellouli, L. Bousekkine, A. B. Theberge, W. T. S. Huck, Angew. Chem. 2012, 124, 8105–8108;
10.1002/ange.201200575 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 7981–7984;
- 1pM. Sengoden, T. Punniyamurthy, Angew. Chem. 2013, 125, 600–603;
10.1002/ange.201207746 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 572–575; key earlier work:
- 1qD. C. Rideout, R. Breslow, J. Am. Chem. Soc. 1980, 102, 7816–7817;
- 1rM. C. Pirrung, K. Das Sarma, J. Am. Chem. Soc. 2004, 126, 444–445; for reviews, see:
- 1sM. B. Gawande, V. D. B. Bonifácio, R. Luque, P. S. Branco, R. S. Varma, Chem. Soc. Rev. 2013, 42, 5522–5551;
- 1tC.-J. Li, B. M. Trost, Proc. Natl. Acad. Sci. USA 2008, 105, 13197–13202.
- 2For reviews, see:
- 2aM. Schlosser, Angew. Chem. 1998, 110, 1538–1556;
10.1002/(SICI)1521-3757(19980605)110:11<1538::AID-ANGE1538>3.0.CO;2-B Google ScholarAngew. Chem. Int. Ed. 1998, 37, 1496–1513;10.1002/(SICI)1521-3773(19980619)37:11<1496::AID-ANIE1496>3.0.CO;2-U CAS PubMed Web of Science® Google Scholar
- 2bB. E. Smart, J. Fluorine Chem. 2001, 109, 3–11;
- 2cK. Mikami, Y. Itoh, M. Yamanaka, Chem. Rev. 2004, 104, 1–16;
- 2dD. O’Hagan, Chem. Soc. Rev. 2008, 37, 308–319;
- 2eL. Hunter, Beilstein J. Org. Chem. 2010, DOI: .
- 3For some metal-catalyzed reactions using fluorinated substrates in aqueous medium without studying fluorine effects, see:
- 3aB. Morandi, E. M. Carreira, Angew. Chem. 2010, 122, 950–953;
10.1002/ange.200905573 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 938–941;
- 3bM. Hu, C. Ni, J. Hu, J. Am. Chem. Soc. 2012, 134, 15257–15260. Chiba and co-workers observed that a fluorous micellar system in water could accelerate Diels–Alder reactions, see:
- 3cK. Nishimoto, Y. Okada, S. Kim, K. Chiba, Electrochim. Acta 2011, 56, 10626–10631.
- 4For reviews, see:
- 4aL. Shimoni, J. P. Glusker, Struct. Chem. 1994, 5, 383–397;
- 4bJ. A. K. Koward, V. J. Hoy, D. O’Hagan, G. T. Smith, Tetrahedron 1996, 52, 712613–712622;
- 4cJ. D. Dunitz, R. Taylor, Chem. Eur. J. 1997, 3, 89–98;
- 4dH.-J. Schneider, Chem. Sci. 2011, 3, 1381; for examples of CF⋅⋅⋅HX interactions, see:
- 4eX. Zhao, X.-Z. Wang, X.-K. Jiang, Y.-Q. Chen, Z.-T. Li, G.-J. Chen, J. Am. Chem. Soc. 2003, 125, 15128–15139;
- 4fY.-H. Liu, L. Zhang, X.-N. Xu, Z.-M. Li, D.-W. Zhang, X. Zhao, Z.-T. Li, Org. Chem. Front. 2014, 1, 494–500.
- 5For recent reviews, see:
- 5aC. del Pozo, S. Fustero, H. Liu, Chem. Rev. 2014, 114, 2432–2506;
- 5bJ.-A. Ma, S. Li, Org. Chem. Front. 2014, 1, 712–715;
- 5cC.-P. Zhang, Q.-Y. Chen, Y. Guo, J.-C. Xiao, Y.-C. Gu, Chem. Soc. Rev. 2012, 41, 4536–4559;
- 5dF. Tur, J. Mansilla, V. J. Lillo, J. M. Saá, Synthesis 2010, 1909–1923;
- 5eC. Czekelius, C. C. Tzschucke, Synthesis 2010, 543–566.
- 6
- 6aY.-L. Liu, T.-D. Shi, F. Zhou, X.-L. Zhao, X. Wang, J. Zhou, Org. Lett. 2011, 13, 3826–3829;
- 6bY.-L. Liu, X.-P. Zeng, J. Zhou, Chem. Asian J. 2012, 7, 1759–1763;
- 6cY.-L. Liu, X. Wang, Y.-L. Zhao, F. Zhu, X.-P. Zeng, L. Chen, C.-H. Wang, X.-L. Zhao, J. Zhou, Angew. Chem. 2013, 125, 13980; Angew. Chem. Int. Ed. 2013, 52, 13735;
- 6dY.-L. Liu, J. Zhou, Chem. Commun. 2012, 48, 1919–1921;
- 6eY.-L. Liu, J. Zhou, Acta Chim. Sin. 2012, 70, 1451–1456;
- 6fL. Chen, T.-D. Shi, Chem. Asian J. 2013, 8, 556–559;
- 6gY.-L. Liu, F.-M. Liao, Y.-F. Niu, X.-L. Zhao, J. Zhou, Org. Chem. Front. 2014, DOI: .
- 7For preparation, see:
- 7aH. Amii, T. Kobayashi, Y. Hatamoto, K. Uneyama, Chem. Commun. 1999, 1323–1324; for selected applications, see:
- 7bF. Chorki, F. Grellepois, B. Crousse, M. Ourévitch, D. Bonnet-Delpon, J.-P. Bégué, J. Org. Chem. 2001, 66, 7858–7863;
- 7cK. Uneyama, H. Tanaka, S. Kobayashi, M. Shioyama, H. Amii, Org. Lett. 2004, 6, 2733–2736;
- 7dY. Guo, J. M. Shreeve, Chem. Commun. 2007, 3583–3585;
- 7eL. Chu, X. Zhang, F.-L. Qing, Org. Lett. 2009, 11, 2197–2200;
- 7fZ. Yuan, L. Mei, Y. Wei, M. Shi, P. V. Kattamuri, P. McDowell, G. Li, Org. Biomol. Chem. 2012, 10, 2509–2513;
- 7gW. Kashikura, K. Mori, T. Akiyama, Org. Lett. 2011, 13, 1860–1863.
- 8For Mukaiyama aldol reaction using 1, see Ref. [7a] and:
- 8aO. Lefebvre, T. Brigaud, C. Portella, J. Org. Chem. 2001, 66, 1941–1946;
- 8bZ.-L. Yuan, Y. Wei, M. Shi, Tetrahedron 2010, 66, 7361–7366; for other synthetic methods:
- 8cC. Han, E. H. Kim, D. A. Colby, J. Am. Chem. Soc. 2011, 133, 5802–5805;
- 8dP. V. Ramachandran, A. Tafelska-Kaczmarek, K. Sakavuyi, A. Chatterjee, Org. Lett. 2011, 13, 1302–1305.
- 9For reviews, see:
- 9aJ. Hu, W. Zhang, F. Wang, Chem. Commun. 2009, 7465–7478;
- 9bM. J. Tozer, T. F. Herpin, Tetrahedron 1996, 52, 8619–8683;
- 9cN. Shibata, S. Mizuta, H. Kawai, Tetrahedron: Asymmetry 2008, 19, 2633–2644; for recent examples, see:
- 9dC. Ni, J. Liu, L. Zhang, J. Hu, Angew. Chem. 2007, 119, 800–803; Angew. Chem. Int. Ed. 2007, 46, 786–789;
- 9eY. Fujiwara, J. A. Dixon, R. A. Rodriguez, R. D. Baxter, D. D. Dixon, M. R. Collins, D. G. Blackmond, P. S. Baran, J. Am. Chem. Soc. 2012, 134, 1494–1497;
- 9fP. S. Fier, J. F. Hartwig, J. Am. Chem. Soc. 2012, 134, 5524–5527;
- 9gP. S. Fier, J. F. Hartwig, Angew. Chem. 2013, 125, 2146–2149;
10.1002/ange.201209250 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 2092–2095;
- 9hN. Shibata, K. Fukushi, T, Furukawa, S. Suzuki, E. Tokunaga, D. Cahard, Org. Lett. 2012, 14, 5366–5369;
- 9iG. K. S. Prakash, C. Ni, F. Wang, Z. Zhang, R. Haiges, G. A. Olah, Angew. Chem. 2013, 125, 11035–11039;
10.1002/ange.201304395 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 10835–10839;
- 9jQ. Liu, Y. Wu, P. Chen, G. Liu, Org. Lett. 2013, 15, 6210–6213.
- 10For a review, see: C. Pesenti, F. Viani, ChemBioChem 2004, 5, 590–613.
- 11For a recent review, see:
- 11aT. Kitanosono, S. Kobayashi, Adv. Synth. Catal. 2013, 355, 3095–3118; for selected examples, see:
- 11bS. Ishikawa, T. Hamada, K. Manabe, S. Kobayashi, J. Am. Chem. Soc. 2004, 126, 12236–12237;
- 11cA. Lubineau, J. Org. Chem. 1986, 51, 2142–2144;
- 11dT.-P. Loh, L.-C. Feng, L.-L. Wei, Tetrahedron 2000, 56, 7309–7312;
- 11eA. Lubineau, E. Meyer, Tetrahedron 1988, 44, 6065–6070;
- 11fJ. Alam, T. H. Keller, T.-P. Loh, J. Am. Chem. Soc. 2010, 132, 9546–9548.
- 12Z. Zhang, P. R. Schreiner, Chem. Soc. Rev. 2009, 38, 1187–1198.
- 13The heterogeneity of the reaction was obvious, as shown below.
- 14For the pioneer work on surfactant-type catalysis, see:
- 14aS. Kobayashi, K. Manabe, Acc. Chem. Res. 2002, 35, 209–217;
- 14bK. Manabe, X.-M. Sun, S. Kobayashi, J. Am. Chem. Soc. 2001, 123, 10101–10102.
- 15For a comprehensive review, see: F. Zhou, Y.-L. Liu, J. Zhou, Adv. Synth. Catal. 2010, 352, 1381–1407.
- 16We thank one reviewer for suggesting the examination of 1) whether the aldol reaction using the nonfluorinated silyl enol ether 9 is reversible, which would lead to its inefficienct reaction, and 2) whether an electronegative atom such as chorine on the silyl enol ethers might afford the same results as fluorine. For detailed control experiments to confirm the fact that the aldol adduct 11 or its O-TMS analogue is reluctant to undergo retroaldol reaction, please see the Supporting Information.
- 17For hydrogen-bond donor catalysis, see:
- 17aJ. Seayad, B. List, Org. Biomol. Chem. 2005, 3, 719–724;
- 17bA. G. Doyle, E. N. Jacobsen, Chem. Rev. 2007, 107, 5713–5743; for Mukaiyama-aldol reaction catalyzed by H-bonding donors:
- 17cW. Zhuang, T. B. Poulsen, K. A. Jørgensen, Org. Biomol. Chem. 2005, 3, 3284–3289;
- 17dV. B. Gondi, M. Gravel, V. H. Rawal, Org. Lett. 2005, 7, 5657–5660.
- 18For a recent review on cinchona alkaloid derivatives, see: E. M. O. Yeboah, S. O. Yeboah, G. S. Singh, Tetrahedron 2011, 67, 1725–1762.
- 19Increasing the amount of (QD)2PYR to 30 mol %, the organic phase became a gumlike precipitate which could not be stirred.
- 20For a review, see:
- 20aY.-L. Liu, J.-S. Yu, J. Zhou, Asian J. Org. Chem. 2013, 2, 194–206. During revision and resubmission process of this manuscript, Wolf et al. reported a chiral Lewis acid catalyzed version:
- 20bP. Zhang, C. Wolf, Angew. Chem. 2013, 125, 8023–8027; Angew. Chem. Int. Ed. 2013, 52, 7869–7873.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.