Fine-tuning the Local Symmetry to Attain Record Blocking Temperature and Magnetic Remanence in a Single-Ion Magnet†
Dr. Liviu Ungur
Theory of Nanomaterials Group and INPAC-Institute of Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven, Celestijenlaan 200F, 3001 Leuven (Belgium)
Search for more papers by this authorJennifer J. Le Roy
Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5 (Canada)
Search for more papers by this authorDr. Ilia Korobkov
Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5 (Canada)
Search for more papers by this authorCorresponding Author
Prof. Muralee Murugesu
Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5 (Canada)
Muralee Murugesu, Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5 (Canada)
Liviu F. Chibotaru, Theory of Nanomaterials Group and INPAC-Institute of Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven, Celestijenlaan 200F, 3001 Leuven (Belgium)
Search for more papers by this authorCorresponding Author
Prof. Liviu F. Chibotaru
Theory of Nanomaterials Group and INPAC-Institute of Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven, Celestijenlaan 200F, 3001 Leuven (Belgium)
Muralee Murugesu, Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5 (Canada)
Liviu F. Chibotaru, Theory of Nanomaterials Group and INPAC-Institute of Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven, Celestijenlaan 200F, 3001 Leuven (Belgium)
Search for more papers by this authorDr. Liviu Ungur
Theory of Nanomaterials Group and INPAC-Institute of Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven, Celestijenlaan 200F, 3001 Leuven (Belgium)
Search for more papers by this authorJennifer J. Le Roy
Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5 (Canada)
Search for more papers by this authorDr. Ilia Korobkov
Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5 (Canada)
Search for more papers by this authorCorresponding Author
Prof. Muralee Murugesu
Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5 (Canada)
Muralee Murugesu, Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5 (Canada)
Liviu F. Chibotaru, Theory of Nanomaterials Group and INPAC-Institute of Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven, Celestijenlaan 200F, 3001 Leuven (Belgium)
Search for more papers by this authorCorresponding Author
Prof. Liviu F. Chibotaru
Theory of Nanomaterials Group and INPAC-Institute of Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven, Celestijenlaan 200F, 3001 Leuven (Belgium)
Muralee Murugesu, Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5 (Canada)
Liviu F. Chibotaru, Theory of Nanomaterials Group and INPAC-Institute of Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven, Celestijenlaan 200F, 3001 Leuven (Belgium)
Search for more papers by this authorL.U. is a post-doc of the Flemish Science Foundation (FWO-Vlaanderen) and also acknowledges the support from the INPAC and Methusalem programs of the KU Leuven. M.M. thanks the University of Ottawa, NSERC, CFI, ORF, and ERA.
Abstract
Remanence and coercivity are the basic characteristics of permanent magnets. They are also tightly correlated with the existence of long relaxation times of magnetization in a number of molecular complexes, called accordingly single-molecule magnets (SMMs). Up to now, hysteresis loops with large coercive fields have only been observed in polynuclear metal complexes and metal-radical SMMs. On the contrary, mononuclear complexes, called single-ion magnets (SIM), have shown hysteresis loops of butterfly/phonon bottleneck type, with negligible coercivity, and therefore with much shorter relaxation times of magnetization. A mononuclear ErIII complex is presented with hysteresis loops having large coercive fields, achieving 7000 Oe at T=1.8 K and field variation as slow as 1 h for the entire cycle. The coercivity persists up to about 5 K, while the hysteresis loops persist to 12 K. Our finding shows that SIMs can be as efficient as polynuclear SMMs, thus opening new perspectives for their applications.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201310451_sm_miscellaneous_information.pdf958.3 KB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. Gatteschi, R. Sessoli, J. Villain, Molecular Nanomagnets, Oxford University Press, New York, 2006.
- 2R. Sessoli, D. Gatteschi, A. Caneschi, M. A. Novak, Nature 1993, 365, 141–143.
- 3L. Bogani, W. Wernsdorfer, Nat. Mater. 2008, 7, 179–186.
- 4M. N. Leuenberger, D. Loss, Nature 2001, 410, 789–793.
- 5S. Ferlay, T. Mallah, R. Ouahes, P. Veillet, M. Verdaguer, Nature 1995, 378, 701–703.
- 6K. Fegy, D. Luneau, T. Ohm, C. Paulsen, P. Rey, Angew. Chem. 1998, 110, 1331–1335;
10.1002/(SICI)1521-3757(19980504)110:9<1331::AID-ANGE1331>3.0.CO;2-M Google ScholarAngew. Chem. Int. Ed. 1998, 37, 1270–1273.10.1002/(SICI)1521-3773(19980518)37:9<1270::AID-ANIE1270>3.0.CO;2-6 CAS Web of Science® Google Scholar
- 7H. Miyasaka, K. Nakata, L. Lecren, C. Coulon, Y. Nakazawa, T. Fujisaki, K. Sugiura, M. Yamashita, R. Clerac, J. Am. Chem. Soc. 2006, 128, 3770–3783.
- 8R. Clérac, H. Miyasaka, M. Yamashita, C. Coulon, J. Am. Chem. Soc. 2002, 124, 12837–12844.
- 9H. Miyasaka, M. Julve, M. Yamashita, R. Clerac, Inorg. Chem. 2009, 48, 3420–3437.
- 10J. R. Friedman, M. P. Sarachik, J. Tejada, R. Ziolo, Phys. Rev. Lett. 1996, 76, 3830.
- 11L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, B. Barbara, Nature 1996, 383, 145–147.
- 12W. Wernsdorfer, T. Ohm, C. Sangregorio, R. Sessoli, D. Mailly, C. Paulsen, Phys. Rev. Lett. 1999, 82, 3903.
- 13D. N. Woodruff, R. E. P. Winpenny, R. A. Layfield, Chem. Rev. 2013, 113, 5110–5148.
- 14R. Sessoli, A. K. Powell, Coord. Chem. Rev. 2009, 253, 2328–2341.
- 15J. D. Rinehart, M. Fang, W. J. Evans, J. R. Long, Nat. Chem. 2011, 3, 538–542.
- 16N. Ishikawa, M. Sugita, T. Ishikawa, S. Koshihara, Y. Kaizu, J. Am. Chem. Soc. 2003, 125, 8694–8695.
- 17S. Takamatsu, T. Ishikawa, S. Koshihara, N. Ishikawa, Inorg. Chem. 2007, 46, 7250–7252.
- 18M. A. AlDamen, S. Cardona-Serra, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, C. Martí-Gastaldo, F. Luis, O. Montero, Inorg. Chem. 2009, 48, 3467–3479.
- 19S.-D. Jiang, S.-S. Liu, L.-N. Zhou, B.-W. Wang, Z.-M. Wang, S. Gao, Inorg. Chem. 2012, 51, 3079–3087.
- 20S.-D. Jiang, B.-W. Wang, H.-L. Sun, Z.-M. Wang, S. Gao, J. Am. Chem. Soc. 2011, 133, 4730–4733.
- 21G. Cucinotta, M. Perfetti, J. Luzon, M. Etienne, P.-E. Car, A. Caneschi, G. Calvez, K. Bernot, R. Sessoli, Angew. Chem. 2012, 124, 1638–1642;
10.1002/ange.201107453 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 1606–1610.
- 22M. A. Antunes, L. C. J. Pereira, I. C. Santos, M. Mazzanti, J. Marçalo, M. Almeida, Inorg. Chem. 2011, 50, 9915–9917.
- 23N. Magnani, C. Apostolidis, A. Morgenstern, E. Colineau, J.-C. Griveau, H. Bolvin, O. Walter, R. Caciuffo, Angew. Chem. 2011, 123, 1734–1736; Angew. Chem. Int. Ed. 2011, 50, 1696–1698.
- 24J. M. Zadrozny, D. J. Xiao, M. Atanasov, G. J. Long, F. Grandjean, F. Neese, J. R. Long, Nat. Chem. 2013, 5, 577–581.
- 25A. Bhunia, M. T. Gamer, L. Ungur, L. F. Chibotaru, A. K. Powell, Y. Lan, P. W. Roesky, F. Menges, C. Riehn, G. Niedner-Schatteburg, Inorg. Chem. 2012, 51, 9589–9597.
- 26L. Ungur, L. F. Chibotaru, Phys. Chem. Chem. Phys. 2011, 13, 20086–20090.
- 27R. J. Blagg, L. Ungur, F. Tuna, J. Speak, P. Comar, D. Collison, W. Wernsdorfer, E. J. L. McInnes, L. F. Chibotaru, R. E. P. Winpenny, Nat. Chem. 2013, 5, 673–678.
- 28H. L. C. Feltham, Y. Lan, F. Klöwer, L. Ungur, L. F. Chibotaru, A. K. Powell, S. Brooker, Chem. Eur. J. 2011, 17, 4362–4365.
- 29N. Ishikawa, M. Sugita, T. Ishikawa, S. Koshihara, Y. Kaizu, J. Phys. Chem. B 2004, 108, 11265–11271.
- 30J. J. Le Roy, M. Jeletic, S. I. Gorelsky, I. Korobkov, L. Ungur, L. F. Chibotaru, M. Murugesu, J. Am. Chem. Soc. 2013, 135, 3502–3510.
- 31M. Jeletic, P.-H. Lin, J. J. Le Roy, I. Korobkov, S. I. Gorelsky, M. Murugesu, J. Am. Chem. Soc. 2011, 133, 19286–19289.
- 32F. Aquilante, L. De Vico, N. Ferre, G. Ghigo, P. A. Malmqvist, P. Neogrady, T. B. Pedersen, M. Pitonak, M. Reiher, B. O. Roos, L. Serrano-Andres, M. Urban, V. Veryazov, R. Lindh, J. Comput. Chem. 2010, 31, 224–247; http://www.molcas.org.
- 33D. A. Garanin, E. M. Chudnovsky, Phys. Rev. B 1997, 56, 11102–11118.
- 34M. N. Leuenberger, D. Loss, Phys. Rev. B 2000, 61, 1286.
- 35L. Ungur, M. Thewissen, J. P. Costes, W. Wernsdorfer, L. F. Chibotaru, Inorg. Chem. 2013, 52, 6328–6337.
- 36A. Abragam, B. Bleaney, EPR of Transition Ions, Oxford University Press, Oxford, 1970, Table 20.
- 37K. Katoh, H. Isshiki, T. Komeda, M. Yamashita, Chem. Asian J. 2012, 7, 1154–1169.
- 38S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, D. M. Treger, Science 2001, 294, 1488–1495.
- 39R. Vincent, S. Klyatskaya, M. Ruben, W. Wernsdorfer, F. Balestro, Nature 2012, 488, 357–360.
- 40M. Mannini, F. Pineider, P. Sainctavit, C. Danieli, E. Otero, C. Sciancalepore, A. M. Talarico, M. A. Arrio, A. Cornia, D. Gatteschi, R. Sessoli, Nat. Mater. 2009, 8, 194–197.
- 41Note added in proof (March 15, 2014): After submitting this article we learned that another publication containing the experimental investigation of similar Er compound has recently appeared: K. R. Meihaus, J. R. Long, J. Am. Chem. Soc. 2013, 135, 17952–17957.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.