Ternary Nets formed by Self-Assembly of Triangles, Squares, and Tetrahedra†
Zhenqiang Wang
Department of Chemistry, University of South Florida, 4202 E Fowler Ave (SCA 400), Tampa, FL 33620, USA, Fax: (+1) 813-974-3203
Search for more papers by this authorVictor Ch. Kravtsov Dr.
Department of Chemistry, University of South Florida, 4202 E Fowler Ave (SCA 400), Tampa, FL 33620, USA, Fax: (+1) 813-974-3203
Search for more papers by this authorMichael J. Zaworotko Prof. Dr.
Department of Chemistry, University of South Florida, 4202 E Fowler Ave (SCA 400), Tampa, FL 33620, USA, Fax: (+1) 813-974-3203
Search for more papers by this authorZhenqiang Wang
Department of Chemistry, University of South Florida, 4202 E Fowler Ave (SCA 400), Tampa, FL 33620, USA, Fax: (+1) 813-974-3203
Search for more papers by this authorVictor Ch. Kravtsov Dr.
Department of Chemistry, University of South Florida, 4202 E Fowler Ave (SCA 400), Tampa, FL 33620, USA, Fax: (+1) 813-974-3203
Search for more papers by this authorMichael J. Zaworotko Prof. Dr.
Department of Chemistry, University of South Florida, 4202 E Fowler Ave (SCA 400), Tampa, FL 33620, USA, Fax: (+1) 813-974-3203
Search for more papers by this authorWe gratefully acknowledge the financial support of the National Science Foundation (DMR 0101641).
Graphical Abstract
Ideale Ergänzung: Zwei Koordinationspolymere aus drei verschiedenen molekularen Baueinheiten, Dreiecke, Quadrate und Tetraeder, wurden hergestellt und charakterisiert. Die Formen, rot Dreiecke, grün Quadrate, gelb Tetraeder (siehe Bild), enthüllen, wie geeignete Kombinationen eckenverknüpfter Polygone oder Polyeder neuartige Topologien liefern, die sogar prototypisch für weit mehr organische und metall-organische Verbindungen sein könnten.
Supporting Information
Supporting information for this article is available on the WWW under http://www.wiley-vch.de/contents/jc_2001/2005/z500156_s.pdf or from the author.
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. F. Wells, Three-Dimensional Nets and Polyhedra, Wiley, New York, 1977;
- 1bA. F. Wells, Further Studies of Three-dimensional Nets, ACA Monograph, Washington, DC, 1979.
- 2G. R. Desiraju, Crystal Engineering: the Design of Organic Solids, Elsevier, Amsterdam, 1989.
- 3
- 3aB. Moulton, M. J. Zaworotko, Chem. Rev. 2001, 101, 1629–1658;
- 3bS. R. Batten, R. Robson, Angew. Chem. 1998, 110, 1558–1595;
10.1002/(SICI)1521-3757(19980605)110:11<1558::AID-ANGE1558>3.0.CO;2-7 Google ScholarAngew. Chem. Int. Ed. 1998, 37, 1460–1494;10.1002/(SICI)1521-3773(19980619)37:11<1460::AID-ANIE1460>3.0.CO;2-Z CAS PubMed Web of Science® Google Scholar
- 3cM. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O'Keeffe, O. M. Yaghi, Acc. Chem. Res. 2001, 34, 319–330;
- 3dA. Erxleben, Coord. Chem. Rev. 2003, 246, 203–228;
- 3eS. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. 2004, 116, 2388–2430; Angew. Chem. Int. Ed. 2004, 43, 2334–2375;
- 3fC. Janiak, Dalton Trans. 2003, 2781–2804.
- 4M. Oh, G. B. Carpenter, D. A. Sweigart, Acc. Chem. Res. 2004, 37, 1–11.
- 5K. T. Holman, A. M. Pivovar, M. D. Ward, Science 2001, 294, 1907–1911.
- 6
- 6aB. Moulton, J. Lu, R. Hajndl, S. Hariharan, M. J. Zaworotko, Angew. Chem. 2002, 114, 2945–2948;
10.1002/1521-3757(20020802)114:15<2945::AID-ANGE2945>3.0.CO;2-4 Google ScholarAngew. Chem. Int. Ed. 2002, 41, 2821–2824;10.1002/1521-3773(20020802)41:15<2821::AID-ANIE2821>3.0.CO;2-Y CAS PubMed Web of Science® Google Scholar
- 6bS. R. Batten, K. S. Murray, Coord. Chem. Rev. 2003, 246, 103–130;
- 6cH. Imai, K. Inoue, K. Kikuchi, Y. Yoshida, M. Ito, T. Sunahara, S. Onaka, Angew. Chem. 2004, 116, 5736–5739; Angew. Chem. Int. Ed. 2004, 43, 5618–5621.
- 7
- 7aM. L. Tong, X. M. Chen, B. H. Ye, L. N. Ji, Angew. Chem. 1999, 111, 2376–2379;
10.1002/(SICI)1521-3757(19990802)111:15<2376::AID-ANGE2376>3.0.CO;2-I Web of Science® Google ScholarAngew. Chem. Int. Ed. 1999, 38, 2237–2240;10.1002/(SICI)1521-3773(19990802)38:15<2237::AID-ANIE2237>3.0.CO;2-9 CAS PubMed Web of Science® Google Scholar
- 7bM. C. Brandys, R. J. Puddephatt, J. Am. Chem. Soc. 2001, 123, 4839–4840;
- 7cB. Zhao, X. Y. Chen, P. Cheng, D. Z. Liao, S. P. Yan, Z. H. Jiang, J. Am. Chem. Soc. 2004, 126, 15 394–15 395.
- 8
- 8aD. N. Dybtsev, H. Chun, S. H. Yoon, D. Kim, K. Kim, J. Am. Chem. Soc. 2004, 126, 32–33;
- 8bL. Pan, M. B. Sander, X. Huang, J. Li, M. Smith, E. Bittner, B. Bockrath, J. K. Johnson, J. Am. Chem. Soc. 2004, 126, 1308–1309;
- 8cX. Zhao, B. Xiao, A. J. Fletcher, K. M. Thomas, D. Bradshaw, M. J. Rosseinsky, Science 2004, 306, 1012–1015.
- 9Representative examples:
- 9aB. F. Abrahams, S. R. Batten, H. Hamit, B. F. Hoskins, R. Robson, Chem. Commun. 1996, 1313–1314;
- 9bO. M. Yaghi, C. E. Davis, G. M. Li, H. L. Li, J. Am. Chem. Soc. 1997, 119, 2861–2868;
- 9cB. F. Abrahams, P. A. Jackson, R. Robson, Angew. Chem. 1998, 110, 2801–2804;
10.1002/(SICI)1521-3757(19981002)110:19<2801::AID-ANGE2801>3.0.CO;2-K Google ScholarAngew. Chem. Int. Ed. 1998, 37, 2656–2659;10.1002/(SICI)1521-3773(19981016)37:19<2656::AID-ANIE2656>3.0.CO;2-M CAS PubMed Web of Science® Google Scholar
- 9dC. J. Kepert, M. J. Rosseinsky, Chem. Commun. 1998, 31–32;
- 9eC. J. Kepert, T. J. Prior, M. J. Rosseinsky, J. Am. Chem. Soc. 2000, 122, 5158–5168;
- 9fT. J. Prior, M. J. Rosseinsky, Inorg. Chem. 2003, 42, 1564–1575;
- 9gD. Bradshaw, T. J. Prior, E. J. Cussen, J. B. Claridge, M. J. Rosseinsky, J. Am. Chem. Soc. 2004, 126, 6106–6114.
- 10Representative examples:
- 10aS. S. Turner, D. Collison, F. E. Mabbs, M. Halliwell, J. Chem. Soc. Dalton Trans. 1997, 1117–1118;
- 10bM. Eddaoudi, J. Kim, M. O'Keeffe, O. M. Yaghi, J. Am. Chem. Soc. 2002, 124, 376–377;
- 10cA. B. Burdukov, G. I. Roschupkina, Y. V. Gatilov, S. A. Gromilov, V. A. Reznikov, J. Supramol. Chem. 2002, 2, 359–363;
- 10dB. L. Chen, F. R. Fronczek, A. W. Maverick, Chem. Commun. 2003, 2166–2167;
- 10eX. H. Bu, M. L. Tong, H. C. Chang, S. Kitagawa, S. R. Batten, Angew. Chem. 2004, 116, 194–197; Angew. Chem. Int. Ed. 2004, 43, 192–195.
- 11Recent representative examples:
- 11aM. Sasa, K. Tanaka, X. H. Bu, M. Shiro, M. Shionoya, J. Am. Chem. Soc. 2001, 123, 10 750–10 751;
- 11bO. R. Evans, R. G. Xiong, Z. Wang, G. K. Wong, W. Lin, Angew. Chem. 1999, 111, 557–559;
Angew. Chem. Int. Ed. 1999, 38, 536–538;
10.1002/(SICI)1521-3773(19990215)38:4<536::AID-ANIE536>3.0.CO;2-3 CAS PubMed Web of Science® Google Scholar
- 11cY. H. Liu, H. C. Wu, H. M. Lin, W. H. Hou, K. L. Lu, Chem. Commun. 2003, 60–61;
- 11dM. Oh, G. B. Carpenter, D. A. Sweigart. Angew. Chem. 2001, 113, 3291–3294;
10.1002/1521-3757(20010903)113:17<3291::AID-ANGE3291>3.0.CO;2-J Google ScholarAngew. Chem. Int. Ed. 2001, 40, 3191–3194;
- 11eB. F. Abrahams, M. G. Haywood, R. Robson, D. A. Slizys, Angew. Chem. 2003, 115, 1144–1147;
10.1002/ange.200390263 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 1112–1115;
- 11fK. Liang, H. Zheng, Y. Song, M. F. Lappert, Y. Li, X. Xin, Z. Huang, J. Chen, S. Lu, Angew. Chem. 2004, 116, 5900–5903; Angew. Chem. Int. Ed. 2004, 43, 5776–5779.
- 12Recent representative examples:
- 12aH. L. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi, Nature 1999, 402, 276–279;
- 12bM. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keefe, O. M. Yaghi, Science 2002, 295, 469–472;
- 12cJ. X. Chen, Z. C. Liu, T. Yu, Z. X. Chen, J. Y. Sun, L. H. Weng, B. Tu, D. Y. Zhao, Chem. Lett. 2003, 32, 474–475.
- 13
- 13aJ. Lu, A. Mondal, B. Moulton, M. Zaworotko, Angew. Chem. 2001, 113, 2171–2174;
Angew. Chem. Int. Ed. 2001, 40, 2113–2116;
10.1002/1521-3773(20010601)40:11<2113::AID-ANIE2113>3.0.CO;2-3 CAS PubMed Web of Science® Google Scholar
- 13bS. A. Bourne, J. Lu, A. Mondal, B. Moulton, M. J. Zaworotko, Angew. Chem. 2001, 113, 2169–2171;
10.1002/1521-3757(20010601)113:11<2169::AID-ANGE2169>3.0.CO;2-6 Google ScholarAngew. Chem. Int. Ed. 2001, 40, 2111–2113;10.1002/1521-3773(20010601)40:11<2111::AID-ANIE2111>3.0.CO;2-F CAS PubMed Web of Science® Google Scholar
- 13cG. J. McManus, Z. Wang, M. J. Zaworotko, Cryst. Growth Des. 2004, 4, 11–13;
- 13dM. O'Keeffe, M. Eddaoudi, H. Li, T. M. Reineke, O. M. Yaghi, J. Solid State Chem. 2000, 152, 3–20;
- 13eM. Eddaoudi, J. Kim, D. Vodak, A. Sudik, J. Wachter, M. O'Keeffe, O. M. Yaghi, Proc. Natl. Acad. Sci. USA 2002, 99, 4900–4904;
- 13fH. Chun, D. Kim, D. N. Dybtsev, K. Kim, Angew. Chem. 2004, 116, 989–992;
10.1002/ange.200353139 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 971–974.
- 14B. Chen, M. Eddaoudi, S. T. Hyde, M. O'Keeffe, O. M. Yaghi, Science 2001, 291, 1021–1023.
- 15S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen, I. D. Williams, Science 1999, 283, 1148–1150.
- 16B. F. Abrahams, S. R. Batten, H. Hamit, B. F. Hoskins, R. Robson, Angew. Chem. 1996, 108, 1794–1796;
10.1002/ange.19961081515 Google ScholarAngew. Chem. Int. Ed. Engl. 1996, 35, 1690–1692.
- 17D. N. Dybtsev, H. Chun, K. Kim, Chem. Commun. 2004, 1594–1595.
- 18Crystal data for USF-3: Mr=2201.89, orthorhombic, Pmmn, a=19.2471(17), b=19.9798(18), c=12.6644(11) Å, V=4870.1(7) Å3, Z=2, ρcalcd=1.502 g cm−3, 2θmax=50.08° (−22≤h≤22, −23≤k≤20, −15≤l≤10), T=100 K, 25 527 measured reflections, R1=0.0796 and wR2=0.2388 for 2959 reflections (I>2σ(I)), and R1=0.1225, wR2=0.2669 for 4570 independent reflections (all data) and 350 parameters, GOF=1.013. Crystal data for USF-4: Mr=2170.27, monoclinic, P21/n, a=14.5949(14), b=12.5583(12), c=25.741(3) Å, β=100.093(2)°, V=4644.9(8) Å3, Z=2, ρcalcd=1.552 g cm−3, 2θmax=54.00° (−18≤h≤13, −14≤k≤16, −29≤l≤32), T=100 K, 21 791 measured reflections, R1=0.0644 and wR2=0.1296 for 6924 reflections (I>2σ(I)), and R1=0.1007, wR2=0.1418 for 10 044 independent reflections (all data) and 649 parameters, GOF=1.003. Data were collected on a Bruker SMART-APEX CCD diffractometer using MoKα radiation (λ=0.71073 Å), operating in the Ω and ϕ scan mode. All crystal data were corrected for Lorentz and polarization effects, and the SADABS program was used for absorption correction. The structures were solved by direct methods and the structure solutions and refinements were based on |F2|. All non-hydrogen atoms were refined with anisotropic displacement parameters, whereas hydrogen atoms were placed in calculated positions and given isotropic U values 20 % higher than the atom to which they are bonded. All crystallographic calculations were conducted with the SHELXTL software suite. CCDC-260729 (USF-3) and CCDC-260730 (USF-4) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- 19F. H. Allen, Acta Crystallogr. Sect. B 2002, 58, 380–388.
- 20A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7–13.
- 21R. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, T. C. Kobayashi, S. Horike, M. Takata, J. Am. Chem. Soc. 2004, 126, 14 063–14 070.
- 22Vertex symbols for the four (3,4)-connected binary nets discussed herein: Pt3O4 net (85⋅85⋅85)4(82⋅82⋅84⋅84⋅84⋅84)3; twisted boracite net (6⋅6⋅6)4(62⋅62⋅82⋅82⋅122⋅122)3; boracite net (6⋅6⋅6)4(62⋅62⋅8⋅8⋅8⋅8)3; cubic C3N4 net (85⋅85⋅85)4(83⋅83⋅83⋅83⋅84⋅84)3.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.