Microwave-to-Optical Conversion and Amplification in Cavity Optomagnonics System
Ye-Ting Yan
School of Physics, Dalian University of Technology, Dalian, 116024 P. R. China
Search for more papers by this authorDa-Wei Wang
School of Physics, Dalian University of Technology, Dalian, 116024 P. R. China
Search for more papers by this authorJunya Yang
School of Physics, Dalian University of Technology, Dalian, 116024 P. R. China
Search for more papers by this authorCorresponding Author
Ling Zhou
School of Physics, Dalian University of Technology, Dalian, 116024 P. R. China
E-mail: [email protected]
Search for more papers by this authorYe-Ting Yan
School of Physics, Dalian University of Technology, Dalian, 116024 P. R. China
Search for more papers by this authorDa-Wei Wang
School of Physics, Dalian University of Technology, Dalian, 116024 P. R. China
Search for more papers by this authorJunya Yang
School of Physics, Dalian University of Technology, Dalian, 116024 P. R. China
Search for more papers by this authorCorresponding Author
Ling Zhou
School of Physics, Dalian University of Technology, Dalian, 116024 P. R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
A scheme to construct microwave-to-optical conversion and amplification using a hybrid cavity optomagnonics system is presented. A yttrium iron garnet (YIG) sphere with nonlinearity couples to optical transverse-electric (TE) and transverse-magnetic (TM) whispering gallery modes and a microwave mode. It is shown that the TM classical mode can control the quantum signals input from the microwave mode transmission into the optical TE mode. Due to the nonlinearity of the YIG sphere as well as effective magnon-optical nondegenerate parametric amplification form interaction, the microwave quantum signals can be amplified and transmitted into the optical TE mode. The current system can function well as a quantum transistor, which is important for constructing a quantum circuit using a cavity optomagnonics system.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1D. E. Chang, A. S. Sørensen, E. A. Demler, M. D. Lukin, Nat. Phys 2007, 3, 807.
- 2W. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, V. Vuletić, Science 2013, 341, 768.
- 3A. Reiserer, N. Kalb, G. Rempe, S. Ritter, Nature 2014, 508, 237.
- 4H. Kim, R. Bose, T. C. Shen, G. S. Solomon, E. Waks, Nat. Photonics 2013, 7, 373.
- 5D. Tiarks, S. Baur, K. Schneider, S. Dürr, G. Rempe, Phys. Rev. Lett. 2014, 113, 053602.
- 6H. Gorniaczyk, C. Tresp, J. Schmidt, H. Fedder, S. Hofferberth, Phys. Rev. Lett. 2014, 113, 053601.
- 7B. Chen, C. Jiang, J.-J. Li, K.-D. Zhu, Phys. Rev. A 2011, 84, 055802.
- 8L. Neumeier, M. Leib, M. J. Hartmann, Phys. Rev. Lett. 2013, 111, 063601.
- 9M. T. Manzoni, F. Reiter, J. M. Taylor, A. S. Sørensen, Phys. Rev. B 2014, 89, 180502(R).
10.1103/PhysRevB.89.180502 Google Scholar
- 10O. Kyriienko, A. S. Sørensen, Phys. Rev. Lett. 2016, 117, 140503.
- 11L.-G. Si, H. Xiong, M. S. Zubairy, Y. Wu, Phys. Rev. A 2017, 95, 033803.
- 12X. Z. Zhang, L. Tian, Y. Li, Phys. Rev. A 2018, 97, 043818.
- 13B. Xiong, X. Li, S.-L. Chao, L. Zhou, EPL 2018, 122, 64002.
10.1209/0295-5075/122/64002 Google Scholar
- 14Z. Shen, G.-T. Xu, M. Zhang, Y.-L. Zhang, Y. Wang, C.-Z. Chai, C.-L. Zou, G.-C. Guo, C.-H. Dong, Phys. Rev. Lett. 2022, 129, 243601.
- 15Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, C.-H. Dong, Nat. Photonics 2016, 10, 657.
- 16Z. Shen, Y.-L. Zhang, Y. Chen, Y.-F. Xiao, C.-L. Zou, G.-C. Guo, C.-H. Dong, Phys. Rev. Lett. 2023, 130, 013601.
- 17L. Du, M.-R. Cai, J.-H. Wu, Z. Wang, Y. Li, Phys. Rev. A 2021, 103, 053701.
- 18Z. Wang, L. Du, Y. Li, Y. X. Liu, Phys. Rev. A 2019, 100, 053809.
- 19G. Li, X. Xiao, Y. Li, X. Wang, Phys. Rev. A 2018, 97, 023801.
- 20R. Peng, W.-Z. Zhang, S. Chao, C. Zhao, Z. Yang, J. Yang, L. Zhou, Opt. Express 2022, 30, 21649.
- 21C. Zhao, R. Peng, Z. Yang, S. Chao, C. Li, Z. Wang, L. Zhou, Phys. Rev. A 2022, 105, 023709.
- 22X. Zhang, C.-L. Zou, N. Zhu, F. Marquardt, L. Jiang, H. X. Tang, Nat. Commun. 2015, 6, 8914.
- 23H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifenstein, A. Marx, R. Gross, S. T. B. Goennenwein, Phys. Rev. Lett. 2013, 111, 127003.
- 24X. Zhang, C.-L. Zou, L. Jiang, H. X. Tang, Phys. Rev. Lett. 2014, 113, 156401.
- 25M. Goryachev, W. G. Farr, D. L. Creedon, Y. Fan, M. Kostylev, M. E. Tobar, Phys. Rev. Appl. 2014, 2, 054002.
- 26J. Bourhill, N. Kostylev, M. Goryachev, D. L. Creedon, M. E. Tobar, Phys. Rev. B 2016, 93, 144420.
- 27N. Kostylev, M. Goryachev, M. E. Tobar, Appl. Phys. Lett. 2016, 108, 3534.
10.1063/1.4941730 Google Scholar
- 28J. A. Haigh, A. Nunnenkamp, A. J. Ramsay, A. J. Ferguson, Phys. Rev. Lett. 2016, 117, 133602.
- 29X. Zhang, C.-L. Zou, L. Jiang, H. X. Tang, Sci. Adv. 2016, 2, e1501286.
- 30Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, K. Usami, Y. Nakamura, Science 2015, 349, 405.
- 31Dany, Lachance-Quirion, Yutaka, Tabuchi, Seiichiro, Ishino, Atsushi, Noguchi, Toyofumi, Ishikawa, Sci. Adv. 2017, 3, e1603150.
- 32K. Wang, Y.-P. Gao, R. Jiao, C. Wang, Front. Phys. 2022, 17, 42201.
10.1007/s11467-022-1165-2 Google Scholar
- 33J. Li, S.-Y. Zhu, G. S. Agarwal, Phys. Rev. A 2019, 99, 021801(R).
- 34Y.-B. Hou, X.-L. Hei, X.-F. Pan, J.-K. Xie, Y.-L. Ren, S.-L. Ma, F.-L. Li, P.-B. Li, Phys. Rev. A 2024, 110, 013711.
- 35H. Tan, Phys. Rev. Res. 2019, 1, 033161.
- 36Z. Zhang, M. O. Scully, G. S. Agarwal, Phys. Rev. Res. 2019, 1, 023021.
- 37J.-M. Li, S.-M. Fei, Front. Phys. 2023, 18, 41301.
10.1007/s11467-022-1253-3 Google Scholar
- 38J. Yang, C. Zhao, D.-W. Wang, R. Peng, L. Zhou, Phys. Rev. Appl. 2024, 21, 044056.
- 39J.-k. Xie, S.-l. Ma, F.-l. Li, Phys. Rev. A 2020, 101, 042331.
- 40Z.-X. Liu, H. Xiong, Y. Wu, Phys. Rev. B 2019, 100, 134421.
- 41C. Zhao, X. Li, S. Chao, R. Peng, C. Li, L. Zhou, Phys. Rev. A 2020, 101, 063838.
- 42Y.-T. Yan, C. Zhao, D.-W. Wang, J. Yang, L. Zhou, Phys. Rev. A 2024, 109, 023710.
- 43W. Zhang, S. Liu, S. Zhang, H.-F. Wang, Phys. Rev. A 2024, 109, 043712.
- 44M. Setodeh Kheirabady, E. Ghasemian, M. Tavassoly, Ann. Phys. 2023, 535, 2300024.
- 45M. Amazioug, D. Dutykh, B. Teklu, M. Asjad, Ann. Phys. 2024, 536, 2300357.
10.1002/andp.202300357 Google Scholar
- 46C. Zhao, Z. Yang, R. Peng, J. Yang, C. Li, L. Zhou, Phys. Rev. Appl. 2022, 18, 044074.
- 47R. Hisatomi, A. Osada, Y. Tabuchi, T. Ishikawa, A. Noguchi, R. Yamazaki, K. Usami, Y. Nakamura, Phys. Rev. B 2016, 93, 174427.
- 48A. Osada, R. Hisatomi, A. Noguchi, Y. Tabuchi, R. Yamazaki, K. Usami, M. Sadgrove, R. Yalla, M. Nomura, Y. Nakamura, Phys. Rev. Lett. 2016, 116, 223601.
- 49N. Zhu, X. Zhang, X. Han, C.-L. Zou, C. Zhong, C.-H. Wang, L. Jiang, H. X. Tang, Optica 2020, 7, 1291.
- 50X. Zhang, N. Zhu, C.-L. Zou, H. X. Tang, Phys. Rev. Lett. 2016, 117, 123605.
- 51Y.-P. Wang, G.-Q. Zhang, D. Zhang, X.-Q. Luo, W. Xiong, S.-P. Wang, T.-F. Li, C.-M. Hu, J. Q. You, Phys. Rev. B 2016, 94, 224410.
- 52Y.-P. Wang, G.-Q. Zhang, D. Zhang, T.-F. Li, C.-M. Hu, J. Q. You, Phys. Rev. Lett. 2018, 120, 057202.
- 53C.-Z. Du, D.-W. Wang, C.-S. Zhao, J. Yang, L. Zhou, Opt. Express 2023, 31, 28308.
- 54E. X. DeJesus, C. Kaufman, Phys. Rev. A 1987, 35, 5288.
- 55X.-W. Xu, Y. Li, Phys. Rev. A 2015, 91, 053854.
- 56Q. Cai, J. Liao, B. Shen, G. Guo, Q. Zhou, Phys. Rev. A 2021, 103, 052419.
- 57H. Xie, Z.-G. Shi, L.-W. He, X. Chen, C.-G. Liao, X.-M. Lin, Phys. Rev. A 2022, 105, 023701.
- 58F.-X. Sun, S.-S. Zheng, Y. Xiao, Q. Gong, Q. He, K. Xia, Phys. Rev. Lett. 2021, 127, 087203.
- 59T. Liu, X. Zhang, H. X. Tang, M. E. Flatté, Phys. Rev. B 2016, 94, 060405(R).