Oscillator Laser Model
Corresponding Author
Igor E. Protsenko
Division of Quantum Radiophysics, P.N.Lebedev Physical Institute of the RAS, Moscow, 119991 Russia
E-mail: [email protected]
Search for more papers by this authorAlexander V. Uskov
Division of Quantum Radiophysics, P.N.Lebedev Physical Institute of the RAS, Moscow, 119991 Russia
Search for more papers by this authorCorresponding Author
Igor E. Protsenko
Division of Quantum Radiophysics, P.N.Lebedev Physical Institute of the RAS, Moscow, 119991 Russia
E-mail: [email protected]
Search for more papers by this authorAlexander V. Uskov
Division of Quantum Radiophysics, P.N.Lebedev Physical Institute of the RAS, Moscow, 119991 Russia
Search for more papers by this authorAbstract
A laser model is formulated in terms of quantum harmonic oscillators. Emitters in the low lasing states are usual harmonic oscillators, and emitters in the upper states are inverted harmonic oscillators. Diffusion coefficients, consistent with the model and necessary for solving quantum nonlinear laser equations analytically, are found. Photon number fluctuations of the lasing mode and fluctuations of the population of the lasing states are calculated. Collective Rabi splitting peaks are predicted in the intensity fluctuation spectra of the superradiant lasers. Population fluctuation mechanisms in superradiant lasers and lasers without superradiance are discussed and compared with each other.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
References
- 1S. Noda, K. Kitamura, T. Okino, D. Yasuda, Y. Tanaka, IEEE J. Sel. Top. Quantum Electron. 2017, 23, 4900107.
10.1109/JSTQE.2017.2696883 Google Scholar
- 2S. Noda, Science 2006, 314, 260.
- 3I. Prieto, J. M. Llorens, L. E. Muñoz-Camúñez, A. G. Taboada, J. Canet-Ferrer, J. M. Ripalda, C. Robles, G. Muñoz-Matutano, J. P. Martínez-Pastor, P. A. Postigo, Optica 2015, 2, 66.
- 4M. Takiguchi, H. Taniyama, H. Sumikura, M. D. Birowosuto, E. Kuramochi, A. Shinya, T. Sato, K. Takeda, S. Matsuo, M. Notomi, Opt. Express 2016, 24, 3441.
- 5Y. Ota, M. Kakuda, K. Watanabe, S. Iwamoto, Y. Arakawa, Opt. Express 2017, 25, 19981.
- 6K. Nozaki, S. Kita, T. Baba, Opt. Express 2007, 15, 7506.
- 7Y. Yu, W. Xue, E. Semenova, K. Yvind, J. Mork, Nat. Photonics 2017, 11, 81.
- 8Y. Li, L. Wang, L. Li, L. Tong, Appl. Phys. B 2019, 125, 192.
- 9M. Lermer, N. Gregersen, M. Lorke, E. Schild, P. Gold, J. Mørk, C. Schneider, A. Forchel, S. Reitzenstein, S. Höfling, M. Kamp, Appl. Phys. Lett. 2013, 102, 052114.
- 10S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, S. Reitzenstein, Light Sci. Appl. 2017, 6, e17030.
- 11J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, T. W. Odom, Nano Lett. 2012, 12, 5769.
- 12M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, Y. Fainman, Nature 2012, 482, EP.
- 13Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, S. Noda, Nat. Photonics 2010, 4, 447.
- 14W. Zhou, S. Liu, X. Ge, D. Zhao, H. Yang, C. Reuterskiöld-Hedlund, M. Hammar, IEEE J. Sel. Top. Quantum Electron. 2019, 25, 4900211.
- 15G. Crosnier, D. Sanchez, S. Bouchoule, P. Monnier, G. Beaudoin, I. Sagnes, R. Raj, F. Raineri, Nature Photonics 2017, 11, 297.
- 16Y. Sun, S. Combrié, A. De Rossi, F. Bretenaker, Phys. Rev. A 2020, 102, 043503.
- 17Y. Sun, S. Combrié, F. Bretenaker, A. De Rossi, Phys. Rev. Lett. 2019, 123, 233901.
- 18Y. I. Khanin, Fundamentals of Laser Dynamics, Cambridge International Science Publishing, Cambridge 2005.
- 19A. A. Belyanin, V. V. Kocharovsky, V. V. Kocharovsky, J. Opt. B: Quantum Semiclassical Opt. 1998, 10, L13.
- 20V. V. Temnov, Phys. Rev. A 2005, 71, 053818.
- 21M. A. Norcia, J. K. Thompson, Phys. Rev. X 2016, 6, 011025.
- 22S. A. Schäffer, B. T. R. Christensen, M. R. Henriksen, J. W. Thomsen, Phys. Rev. A 2017, 96, 013847.
- 23D. Meiser, M. J. Holland, Phys. Rev. A 2010, 81, 033847.
- 24K. Debnath, Y. Zhang, K. Mølmer, Phys. Rev. A 2018, 98, 063837.
- 25J. G. Bohnet, Z. Chen, J. M. Weiner, D. Meiser, M. J. Holland, J. K. Thompson, Nature 2012, 484, 78.
- 26F. Jahnke, C. Gies, M. Aßmann, M. Bayer, H. A. M. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, S. Höfling, Nat. Commun. 2016, 7, 11540.
- 27D. Bhatti, J. von Zanthier, G. S. Agarwal, Sci. Rep. 2015, 5, 17335.
- 28Y. Zhou, F.-l. Li, B. Bai, H. Chen, J. Liu, Z. Xu, H. Zheng, Phys. Rev. A 2017, 95, 053809.
- 29I. E. Protsenko, A. V. Uskov, E. C. André, J. Mørk, M. Wubs, New J. Phys. 2021, 23, 063010.
- 30I. E. Protsenko, A. V. Uskov, Phys. Rev. A 2022, 105, 053713.
- 31R. J. Glauber, F. Haake, Phys. Rev. A 1976, 13, 357.
- 32I. Protsenko, P. Domokos, V. Lefèvre-Seguin, J. Hare, J. M. Raimond, L. Davidovich, Phys. Rev. A 1999, 59, 1667.
- 33E. C. André, I. E. Protsenko, A. V. Uskov, J. Mørk, M. Wubs, Opt. Lett. 2019, 44, 1415.
- 34C.-P. Hertel, I. V. Schulz, Atoms, Molecules and Optical Physics 2, Springer, Berlin, Heidelberg 2015.
10.1007/978-3-642-54313-5 Google Scholar
- 35M. S. Scully, M. O. Zubairy, Quantum Optics, Cambridge University Press, Cambridge 1997.
10.1017/CBO9780511813993 Google Scholar
- 36S. P. Burtsev, I. R. Gabitov, Phys. Rev. A 1994, 49, 2065.
- 37G. Demeter, Comput. Phys. Commun. 2013, 184, 1203.
- 38R. J. Glauber, Frontiers in Quantum Optics (Eds: S. Sarkar, E. R. Pike), Hilger, Boston, MA 1986.
- 39S. Stenholm, Phys. Scr. 1986, T12, 56.
- 40J.-M. Courty, S. Reynaud, Phys. Rev. A 1992, 46, 2766.
- 41M. J. Collett, C. W. Gardiner, Phys. Rev. A 1984, 30, 1386.
- 42K. Eberl, M. K. Zundel, Quantum-Dot Lasers, McGraw-Hill Education, New York, NY 2000.
- 43L. Davidovich, Rev. Mod. Phys. 1996, 68, 127.
- 44M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics, Addison-Wesley, London 1974.
- 45C. Gies, J. Wiersig, M. Lorke, F. Jahnke, Phys. Rev. A 2007, 75, 013803.
- 46M. Travagnin, L. A. Lugiato, Phys. Rev. A 2000, 62, 043813.
- 47I. E. Protsenko, L. A. Lugiato, J. Opt. B: Quantum Semiclassical Opt. 1996, 8, 1067.
- 48P. L. Kelley, B. Lax, P. E. Tannenwald, Physics of Quantum Electronics, McGraw-Hill, Inc., New York, NY 1966.
- 49L. A. Coldren, S. W. Corzine, M. L. Masanovic, Diode Lasers and Photonic Integrated Circuits, 2nd ed., Wiley, Hoboken, NJ 2012.
10.1002/9781118148167 Google Scholar
- 50J. Mørk, G. L. Lippi, Appl. Phys. Lett. 2018, 112, 141103.
- 51U. Bockelmann, T. Egeler, Phys. Rev. B 1992, 46, 15574.
- 52M. I. Kolobov, L. Davidovich, E. Giacobino, C. Fabre, Phys. Rev. A 1993, 47, 1431.
- 53M. A. Carroll, G. D'Alessandro, G. L. Lippi, G.-L. Oppo, F. Papoff, Phys. Rev. Lett. 2021, 126, 063902.
- 54A. A. Andronov, A. A. Vitt, S. E. Khaikin, Theory of Oscillators, Adiwes International Series in Physics, Pergamon Press, Oxford 1966.
- 55L. D. Landau, E. M. Lifshitz, Mechanics: Course of Theoretical Physics, 3rd ed., Vol. 1, Butterworth-Heinemann, Oxford 1976.
- 56N. V. Tkachenko, in Optical Spectroscopy (Ed: N. V. Tkachenko), Elsevier Science, Amsterdam 2006, pp. 15–38.
10.1016/B978-044452126-2/50026-5 Google Scholar
- 57R. P. Ozerov, A. A. Vorobyev, in Physics for Chemists (Eds: R. P. Ozerov, A. A. Vorobyev), Elsevier, Amsterdam 2007, pp. 105–167.
10.1016/B978-044452830-8/50004-0 Google Scholar