Flower-Shaped Optical Vortex Array
Haihao Fan
School of Physics and Engineering, Henan University of Science and Technology, Luoyang, 471023 China
State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics of CAS, Xi'an, 710119 China
Search for more papers by this authorHao Zhang
School of Physics and Engineering, Henan University of Science and Technology, Luoyang, 471023 China
Search for more papers by this authorChenyuan Cai
Luoyang First Senior High School, Luoyang, 471023 China
Search for more papers by this authorMiaomiao Tang
School of Physics and Engineering, Henan University of Science and Technology, Luoyang, 471023 China
Search for more papers by this authorHehe Li
School of Physics and Engineering, Henan University of Science and Technology, Luoyang, 471023 China
Search for more papers by this authorJie Tang
State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics of CAS, Xi'an, 710119 China
Search for more papers by this authorCorresponding Author
Xinzhong Li
School of Physics and Engineering, Henan University of Science and Technology, Luoyang, 471023 China
State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics of CAS, Xi'an, 710119 China
E-mail: [email protected]
Search for more papers by this authorHaihao Fan
School of Physics and Engineering, Henan University of Science and Technology, Luoyang, 471023 China
State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics of CAS, Xi'an, 710119 China
Search for more papers by this authorHao Zhang
School of Physics and Engineering, Henan University of Science and Technology, Luoyang, 471023 China
Search for more papers by this authorChenyuan Cai
Luoyang First Senior High School, Luoyang, 471023 China
Search for more papers by this authorMiaomiao Tang
School of Physics and Engineering, Henan University of Science and Technology, Luoyang, 471023 China
Search for more papers by this authorHehe Li
School of Physics and Engineering, Henan University of Science and Technology, Luoyang, 471023 China
Search for more papers by this authorJie Tang
State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics of CAS, Xi'an, 710119 China
Search for more papers by this authorCorresponding Author
Xinzhong Li
School of Physics and Engineering, Henan University of Science and Technology, Luoyang, 471023 China
State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics of CAS, Xi'an, 710119 China
E-mail: [email protected]
Search for more papers by this authorAbstract
Herein, the generation of an optical vortex array dubbed the flower-shaped optical vortex array (FOVA) is proposed and experimentally demonstrated using a single optical path interference method. FOVA is generated by the superposition of even and odd Ince–Gaussian (IG) beams, which have the same degree m and different order p. The number of optical vortices (OVs) in the FOVA is determined based on the values of order p and degree m of the even and odd IG beams. Furthermore, the positive sign of the OVs in the array can be transformed to negative by adding a specific initial phase difference. The OVs vanish and then recover as the initial phase difference increases from 0 to 2π. Moreover, the gradient force and energy flow distribution of the FOVA are studied. The OVA with flower-shaped structure generated herein has potential significance in applications, such as microparticle manipulation and optical measurements.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
andp202000575-sup-0001-video.mp412.9 MB | Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman, Phys. Rev. A 1992, 45, 8185.
- 2Y. J. Shen, X. J. Wang, Z. W. Xie, C. J. Min, X. Fu, Q. Liu, X. C. Yuan, Light: Sci. Appl. 2019, 8, 90.
- 3Q. Zhao, M. Dong, Y. H. Bai, Y. J. Yang, Photonics Res. 2020, 8, 745.
- 4D. Deng, M. C. Lin, Y. Li, H. Zhao, Phys. Rev. A 2019, 12, 014048.
- 5J. T. Hu, Y. P. Tai, L. H. Zhu, Z. X. Long, M. M. Tang, H. H. Li, X. Z. Li, Y. J. Cai, Appl. Phys. Lett. 2020, 116, 201107.
- 6D. G. Grier, Nature 2003, 424, 810.
- 7Y. Q. Zhang, X. J. Dou, Y. M. Dai, X. Y. Wang, C. J. Min, X. C. Yuan, Photonics Res. 2018, 6, 66.
- 8H. P. Wang, L. Q. Tang, J. Ma, H. W. Hao, X. Y. Zheng, D. H. Song, Y. Hu, Y. G. Li, Z. Chen, APL Photonics 2020, 5, 016102.
- 9H. Zhang, X. Z. Li, H. X. Ma, M. M.Tang, H. H. Li, J. Tang, Y. J. Cai, Opt. Express 2019, 27, 22930.
- 10J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A. E. Willner, Nat. Photonics 2012, 6, 488.
- 11N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran, Science 2013, 340, 1545.
- 12K. Rottwitt, J. G. Koefoed, K. Ingerslev, P. Kristensen, APL Photonics 2019, 4, 030802.
- 13H. X. Ma, X. Z. Li, Y. P. Tai, H. H. Li, J. G. Wang, M. M. Tang, Y. S. Wang, J. Tang, Z. G. Nie, Opt. Lett. 2017, 42, 135.
- 14Y. J. Yang, Q. Zhao, L. L. Liu, Y. D. Liu, C. Rosales-Guzmán, C.-w. Qiu, Phys. Rev. Appl. 2019, 12, 064007.
- 15W. J. Long, J. T. Pan, X. Y. Guo, X. H. Liu, H. L. Lin, H. D. Zheng, J. H. Yu, H. Y. Guan, H. H. Lu, Y. C. Zhong, S. H. Fu, L. Zhang, W. G. Zhu, Z. Chen, Photonics Res. 2019, 7, 1273.
- 16A. Aleksanyan, N. Kravets, E. Brasselet, Phys. Rev. Lett. 2017, 118, 203902.
- 17X. D. Qiu, F. S. Li, W. H. Zhang, Z. H. Zhu, L. X. Chen, Optica 2018, 5, 208.
- 18Y. Q. Zhang, Z. K. Wu, C. Z. Yuan, X. Yao, K. Q. Lu, M. Belić, Y. P. Zhang, Opt. Lett. 2012, 37, 4507.
- 19Y. X. Qian, Y. L. Shi, W. M. Jin, F. R. Hu, Z. J. Ren, Opt. Express 2019, 27, 18085.
- 20J. Y. Shen, Z. Y. Wang, X. Fu, D. Naidoo, A. Forbes, Phys. Rev. A 2020, 102, 031501.
- 21X. Z. Li, H. Zhang, Opt. Express 2020, 28, 13775.
- 22J. J. Yu, C. H. Zhou, Y. C. Lu, J. Wu, L. W. Zhu, W. Jia, Opt. Lett. 2015, 40, 2513.
- 23S. Y. Fu, T. L. Wang, C. Q. Gao, J. Opt. Soc. Am. A 2016, 33, 1836.
- 24D. Deng, Y. Li, Y. H. Han, X. Y. Su, J. F. Ye, J. M. Gao, Q. Q. Sun, S. L. Qu, Opt. Express 2016, 24, 28270.
- 25X. D. Qiu, F. S. Li, H. G. Liu, X. F. Chen, L. X. Chen, Photonics Res. 2018, 6, 641.
- 26X. Z. Li, H. X. Ma, H. Zhang, Y. P. Tai, H. H. Li, M. M. Tang, J. G. Wang, J. Tang, Y. J. Cai, Opt. Express 2018, 26, 22965.
- 27Y. K. Wang, H. X. Ma, L. H. Zhu, Y. P. Tai, X. Z. Li, Appl. Phys. Lett. 2020, 116, 011101.
- 28E. Brasselet, Phys. Rev. Lett. 2012, 108, 087801.
- 29Y. Izdebskaya, E. Brasselet, V. Shvedov, A. Desyatnikov, W. Krolikowski, Y. Kivshar, Opt. Express 2009, 17, 18196.
- 30S.-C. Chu, C.-S. Yang, K. Otsuka, Opt. Express 2008, 16, 19934.
- 31K. Otsuka, S.-C. Chu, Opt. Lett. 2009, 34, 10.
- 32Y. J. Shen, Z. S. Wan, X. Fu, Q. Liu, M. L. Gong, J. Opt. Soc. Am. B 2018, 35, 2940.
- 33Y. C. Lin, T. H. Lu, K. F. Huang, Y. F. Chen, Opt. Express 2011, 19, 10293.
- 34L. Li, C. L. Chang, X. Z. Yuan, C. J. Yuan, S. T. Feng, S. P. Nie, J. P. Ding, Opt. Express 2018, 26, 9798.
- 35K. O'Holleran, M. J. Padgett, M. R. Dennis, Opt. Express 2006, 14, 3039.
- 36S. Franke-Arnold, J. Leach, M. J. Padgett, V. E. Lembessis, D. Ellinas, A. J. Wright, J. M. Girkin, P. Öhberg, A. S. Arnold, Opt. Express 2007, 15, 8619.
- 37S. J. Huang, Z. Miao, C. He, F. F. Pang, Y. C. Li, T. Y. Wang, Opt. Laser. Eng 2016, 78, 132.
- 38T. H. Lu, T. D. Huang, G. Y. Chiou, Opt. Express 2018, 26, 31464.
- 39T. H. Lu, T. D. Huang, J. G. Wang, L. W. Wang, R. R. Alfano, Sci. Rep. 2016, 6, 39657.
- 40R. Vasilyeu, A. Dudley, N. Khilo, A. Forbes, Opt. Express 2009, 17, 23389.
- 41A. Dudley, A. Forbes, J. Opt. Soc. Am. A 2012, 29, 567.
- 42H. X. Ma, X. Z. Li, Y. P. Tai, H. H. Li, J. G. Wang, M. M. Tang, J. Tang, Y. S. Wang, Z. G. Nie, Ann. Phys. 2017, 529, 1700285.
- 43H. X. Ma, X. Z. Li, H. Zhang, J. Tang, Z. G. Nie, H. H. Li, M. M. Tang, J. G. Wang, Y. P. Tai, Y. S. Wang, IEEE Photonics Technol. Lett. 2018, 30, 813.
- 44A. Arnold, Opt. Lett. 2012, 37, 2505.
- 45M. A. Bandres, J. C. Gutiérrez-Vega, Opt. Lett. 2004, 29, 144.
- 46J. Lei, A. Hu, Y. Wang, P. Chen, Appl. Phys. B 2014, 117, 1129.
- 47M. A. Bandres, J. C. Gutiérrez-Vega, J. Opt. Soc. Am. A 2004, 21, 873.
- 48J. B. Bentley, J. A. Davis, M. A. Bandres, J. C. Gutiérrez-Vega, Opt. Lett. 2006, 31, 649.
- 49Y. Ohtake, T. Ando, N. Fukuchi, N. Matsumoto, H. Ito, T. Hara, Opt. Lett. 2007, 32, 1411.
- 50A. Bekshaev, K. Y. Bliokh, M. Soskin, J. Optics 2011, 13, 053001.
- 51T. Ando, Y. Ohtake, N. Matsumoto, T. Inoue, N. Fukuchi, Opt. Lett. 2009, 34, 34.
- 52E. Otte, C. Denz, Opt. Lett. 2018, 43, 5821.