Evidence of Phonon-Mediated Superconductivity in LaH10 at High Pressure
Corresponding Author
Artur P. Durajski
Institute of Physics, Czȩstochowa University of Technology, Ave. Armii Krajowej 19, Czȩstochowa, 42-200 Poland
E-mail: [email protected]; [email protected]
Search for more papers by this authorChongze Wang
Department of Physics, Research Institute for Natural Science, and HYU-HPSTAR-CIS High Pressure Research Center, Hanyang University, 222 Wangsimni-ro, Seongdong-Ku, Seoul, 04763 Republic of Korea
Search for more papers by this authorYinwei Li
Laboratory of Quantum Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116 China
Search for more papers by this authorRadosław Szczȩśniak
Institute of Physics, Czȩstochowa University of Technology, Ave. Armii Krajowej 19, Czȩstochowa, 42-200 Poland
Search for more papers by this authorCorresponding Author
Jun-Hyung Cho
Department of Physics, Research Institute for Natural Science, and HYU-HPSTAR-CIS High Pressure Research Center, Hanyang University, 222 Wangsimni-ro, Seongdong-Ku, Seoul, 04763 Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Artur P. Durajski
Institute of Physics, Czȩstochowa University of Technology, Ave. Armii Krajowej 19, Czȩstochowa, 42-200 Poland
E-mail: [email protected]; [email protected]
Search for more papers by this authorChongze Wang
Department of Physics, Research Institute for Natural Science, and HYU-HPSTAR-CIS High Pressure Research Center, Hanyang University, 222 Wangsimni-ro, Seongdong-Ku, Seoul, 04763 Republic of Korea
Search for more papers by this authorYinwei Li
Laboratory of Quantum Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116 China
Search for more papers by this authorRadosław Szczȩśniak
Institute of Physics, Czȩstochowa University of Technology, Ave. Armii Krajowej 19, Czȩstochowa, 42-200 Poland
Search for more papers by this authorCorresponding Author
Jun-Hyung Cho
Department of Physics, Research Institute for Natural Science, and HYU-HPSTAR-CIS High Pressure Research Center, Hanyang University, 222 Wangsimni-ro, Seongdong-Ku, Seoul, 04763 Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Motivated by the recent experimental discovery of the high-critical-temperature superconductor LaH10 (250–260 K at high pressures 170–190 GPa), the influence of H isotope substitution on the phonon spectra, electron–phonon interactions, and thermodynamic properties of superconducting LaHDx () at 250 GPa are studied. On the basis of first-principles calculations, it is found that all investigated systems are dynamically stable in a clathrate structure with space group Fmm and exhibit high superconducting critical temperatures ranging from 169 to 234 K. The dominant role of hydrogen in enhancing is examined by numerically solving the Eliashberg equations. The estimated critical temperature, superconducting energy gap, specific heat, and thermodynamic critical field demonstrate that the underlying mechanism of superconductivity in lanthanum hydride is conventional electron–phonon coupling, which manifests itself in terms of isotope effect.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1J. S. Tse, Natl. Sci. Rev. 2019, 7, 149.
- 2H. Wang, X. Li, G. Gao, Y. Li, Y. Ma, WIREs Comput. Mol. Sci. 2018, 8, e1330.
- 3A. G. Kvashnin, I. A. Kruglov, D. V. Semenok, A. R. Oganov, J. Phys. Chem. C 2018, 122, 4731.
- 4N. Zarifi, T. Bi, H. Liu, E. Zurek, J. Phys. Chem. C 2018, 122, 24262.
- 5N. W. Ashcroft, Phys. Rev. Lett. 1968, 21, 1748.
- 6T. Bi, N. Zarifi, T. Terpstra, E. Zurek, The Search for Superconductivity in High Pressure Hydrides, Elsevier, New York 2019.
10.1016/B978-0-12-409547-2.11435-0 Google Scholar
- 7J. M. McMahon, D. M. Ceperley, Phys. Rev. B 2011, 84, 144515.
- 8N. Kudryashov, A. Kutukov, E. Mazur, JETP Lett. 2016, 104, 460.
- 9E. Maksimov, D. Savrasov, Solid State Commun. 2001, 119, 569.
- 10R. Szczesniak, M. Jarosik, Solid State Commun. 2009, 149, 2053.
- 11R. P. Dias, I. F. Silvera, Science 2017, 355, 715.
- 12P. Ball, Nature Mater. 2017, 16, 288.
- 13D. Castelvecchi, Nature 2017, 542, 17.
- 14A. F. Goncharov, V. V. Struzhkin, Science 2017, 357, eaam9736.
- 15N. W. Ashcroft, Phys. Rev. Lett. 2004, 92, 187002.
- 16X. Feng, J. Zhang, G. Gao, H. Liu, H. Wang, RSC Adv. 2015, 5, 59292.
- 17H. Wang, J. S. Tse, K. Tanaka, T. Iitaka, Y. Ma, Proc. Natl. Acad. Sci., USA 2012, 109, 6463.
- 18Y. Li, G. Gao, Y. Xie, Y. Ma, T. Cui, G. Zou, Proc. Natl. Acad. Sci., USA 2010, 107, 15708.
- 19B. Liu, W. Cui, J. Shi, L. Zhu, J. Chen, S. Lin, R. Su, J. Ma, K. Yang, M. Xu, J. Hao, A. P. Durajski, J. Qi, Y. Li, Y. Li, Phys. Rev. B 2018, 98, 174101.
- 20Y. Li, J. Hao, H. Liu, Y. Li, Y. Ma, J. Chem. Phys. 2014, 140, 174712.
- 21D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, T. Cui, Sci. Rep. 2014, 4, 6968.
- 22H. Liu, I. I. Naumov, R. Hoffmann, N. W. Ashcroft, R. J. Hemley, Proc. Natl. Acad. Sci., USA 2017, 114, 6990.
- 23J. A. Flores-Livas, L. Boeri, A. Sanna, G. Profeta, R. Arita, M. Eremets, Phys. Rep. 2020, 856, 1.
- 24A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, S. I. Shylin, Nature 2015, 525, 73.
- 25M. Einaga, M. Sakata, T. Ishikawa, K. Shimizu, M. I. Eremets, A. P. Drozdov, I. A. Troyan, N. Hirao, Y. Ohishi, Nat. Phys. 2016, 12, 835.
- 26I. Troyan, A. Gavriliuk, R. Ruffer, A. Chumakov, A. Mironovich, I. Lyubutin, D. Perekalin, A. P. Drozdov, M. I. Eremets, Science 2016, 351, 1303.
- 27H. Nakao, M. Einaga, M. Sakata, M. Kitagaki, K. Shimizu, S. Kawaguchi, N. Hirao, Y. Ohishi, J. Phys. Soc. Jpn. 2019, 88, 123701.
- 28S. Mozaffari, D. Sun, V. S. Minkov, A. P. Drozdov, D. Knyazev, J. B. Betts, M. Einaga, K. Shimizu, M. I. Eremets, L. Balicas, F. F. Balakirev, Nat. Commun. 2019, 10, 2522.
- 29P. P. Kong, V. S. Minkov, M. A. Kuzovnikov, S. P. Besedin, A. P. Drozdov, S. Mozaffari, L. Balicas, F. Balakirev, V. B. Prakapenka, E. Greenberg, D. A. Knyazev, M. I. Eremets, arXiv:1909.10482, 2020.
- 30A. P. Drozdov, P. P. Kong, V. S. Minkov, S. P. Besedin, M. A. Kuzovnikov, S. Mozaffari, L. Balicas, F. F. Balakirev, D. E. Graf, V. B. Prakapenka, E. Greenberg, D. A. Knyazev, M. Tkacz, M. I. Eremets, Nature 2019, 569, 528.
- 31M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini, Y. Meng, V. V. Struzhkin, R. J. Hemley, Phys. Rev. Lett. 2019, 122, 027001.
- 32Z. M. Geballe, H. Liu, A. K. Mishra, M. Ahart, M. Somayazulu, Y. Meng, M. Baldini, R. J. Hemley, Angew. Chem., Int. Ed. 2018, 57, 688.
- 33Y. Ma, NPG Asia Mater. 2016, 8, e236.
- 34E. Snider, N. Dasenbrock-Gammon, R. McBride, M. Debessai, H. Vindana, K. Vencatasamy, K. V. Lawler, A. Salamat, R. P. Dias, Nature 586, 373.
- 35M. I. Eremets, A. P. Drozdov, Phys.-Uspekhi 2016, 59, 1154.
- 36W. Sano, T. Koretsune, T. Tadano, R. Akashi, R. Arita, Phys. Rev. B 2016, 93, 094525.
- 37E. F. Talantsev, Mater. Res. Express 2019, 6, 106002.
- 38E. F. Talantsev, Results Phys. 2020, 16, 102993.
- 39Y. J. Uemura, J. Phys. Condens. Matter 2004, 16, S4515.
- 40J. Bardeen, L. N. Cooper, J. R. Schrieffer, Phys. Rev. 1957, 106, 162.
- 41J. Bardeen, L. N. Cooper, J. R. Schrieffer, Phys. Rev. 1957, 108, 1175.
- 42G. M. Eliashberg, J. Exp. Theor. Phys. 1960, 11, 696.
- 43B. Serin, C. A. Reynolds, L. B. Nesbitt, Phys. Rev. 1950, 78, 813.
- 44P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, et al., J. Phys. Condens. Matter 2009, 21, 395502.
- 45P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. D. Corso, S. de Gironcoli, P. Delugas, R. A. D. DiStasio Jr., A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, et al., J. Phys. Condens. Matter 2017, 29, 465901.
- 46S. R. Billeter, A. Curioni, W. Andreoni, Comput. Mater. Sci. 2003, 27, 437.
- 47S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys. 2001, 73, 515.
- 48Z. Deressa, P. Singh, J. Supercond. Nov. Magn. 2019, 32, 3739.
- 49F. Marsiglio, M. Schossmann, J. P. Carbotte, Phys. Rev. B 1988, 37, 4965.
- 50F. Marsiglio, Ann. Phys. 2020, 168102.
- 51A. P. Durajski, R. Szczesniak, Y. Li, C. Wang, J.-H. Cho, Phys. Rev. B 2020, 101, 214501.
- 52T. Wang, T. Nomoto, Y. Nomura, H. Shinaoka, J. Otsuki, T. Koretsune, R. Arita, Phys. Rev. B 2020, 102, 134503.
- 53R. Szczesniak, Acta Phys. Pol. A 2006, 109, 179.
- 54A. P. Durajski, R. Szczesniak, J. Chem. Phys. 2018, 149, 074101.
- 55B. Wiendlocha, R. Szczesniak, A. P. Durajski, M. Muras, Phys. Rev. B 2016, 94, 134517.
- 56A. P. Durajski, R. Szczesniak, L. Pietronero, Ann. Phys. 2016, 528, 358.
- 57C. Wang, S. Yi, J.-H. Cho, Phys. Rev. B 2020, 101, 104506.
- 58I. A. Kruglov, D. V. Semenok, H. Song, R. Szczesniak, I. A. Wrona, R. Akashi, M. M. Davari Esfahani, D. Duan, T. Cui, A. G. Kvashnin, A. R. Oganov, Phys. Rev. B 2020, 101, 024508.
- 59L. Liu, C. Wang, S. Yi, K. W. Kim, J. Kim, J.-H. Cho, Phys. Rev. B 2019, 99, 140501(R).
- 60I. Errea, F. Belli, L. Monacelli, A. Sanna, T. Koretsune, T. Tadano, R. Bianco, M. Calandra, R. Arita, F. Mauri, J. A. Flores-Livas, Nature 2020, 578, 66.
- 61C. Wang, S. Yi, J.-H. Cho, Phys. Rev. B 2019, 100, 060502(R).
- 62M. Krzyzosiak, R. Gonczarek, A. Gonczarek, L. Jacak, Sci. Rep. 2019, 9, 2181.
- 63F. Marsiglio, J. P. Carbotte, Electron–Phonon Superconductivity, Springer, Berlin 2008, pp. 73–162.