Stroke in right dorsal anterior insular cortex Is related to myocardial injury
Corresponding Author
Thomas Krause MD
Charité–Universitätsmedizin Berlin, Center for Stroke Research Berlin, Berlin, Germany
Charité–Universitätsmedizin Berlin, Department of Neurology, Berlin, Germany
Address correspondence to Dr Thomas Krause, Center for Stroke Research Berlin, Department of Neurology, Charité–Universitätsmedizin Berlin, Hindenburgdamm 30, 12200 Berlin, Germany. E-mail: [email protected]Search for more papers by this authorKathrin Werner MD
Charité–Universitätsmedizin Berlin, Department of Neurology, Berlin, Germany
Search for more papers by this authorJochen B. Fiebach MD
Charité–Universitätsmedizin Berlin, Center for Stroke Research Berlin, Berlin, Germany
Search for more papers by this authorKersten Villringer MD
Charité–Universitätsmedizin Berlin, Center for Stroke Research Berlin, Berlin, Germany
Search for more papers by this authorSophie K. Piper PhD
Charité–Universitätsmedizin Berlin, Center for Stroke Research Berlin, Berlin, Germany
Search for more papers by this authorKarl Georg Haeusler MD
Charité–Universitätsmedizin Berlin, Center for Stroke Research Berlin, Berlin, Germany
Charité–Universitätsmedizin Berlin, Department of Neurology, Berlin, Germany
Search for more papers by this authorMatthias Endres MD
Charité–Universitätsmedizin Berlin, Center for Stroke Research Berlin, Berlin, Germany
Charité–Universitätsmedizin Berlin, Department of Neurology, Berlin, Germany
German Center for Cardiovascular Research (DZHK), Berlin, Germany
German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
Berlin Institute of Health (BIH), Berlin, Germany
Search for more papers by this authorJan F. Scheitz MD
Charité–Universitätsmedizin Berlin, Center for Stroke Research Berlin, Berlin, Germany
Charité–Universitätsmedizin Berlin, Department of Neurology, Berlin, Germany
Search for more papers by this authorChristian H. Nolte MD
Charité–Universitätsmedizin Berlin, Center for Stroke Research Berlin, Berlin, Germany
Charité–Universitätsmedizin Berlin, Department of Neurology, Berlin, Germany
Search for more papers by this authorCorresponding Author
Thomas Krause MD
Charité–Universitätsmedizin Berlin, Center for Stroke Research Berlin, Berlin, Germany
Charité–Universitätsmedizin Berlin, Department of Neurology, Berlin, Germany
Address correspondence to Dr Thomas Krause, Center for Stroke Research Berlin, Department of Neurology, Charité–Universitätsmedizin Berlin, Hindenburgdamm 30, 12200 Berlin, Germany. E-mail: [email protected]Search for more papers by this authorKathrin Werner MD
Charité–Universitätsmedizin Berlin, Department of Neurology, Berlin, Germany
Search for more papers by this authorJochen B. Fiebach MD
Charité–Universitätsmedizin Berlin, Center for Stroke Research Berlin, Berlin, Germany
Search for more papers by this authorKersten Villringer MD
Charité–Universitätsmedizin Berlin, Center for Stroke Research Berlin, Berlin, Germany
Search for more papers by this authorSophie K. Piper PhD
Charité–Universitätsmedizin Berlin, Center for Stroke Research Berlin, Berlin, Germany
Search for more papers by this authorKarl Georg Haeusler MD
Charité–Universitätsmedizin Berlin, Center for Stroke Research Berlin, Berlin, Germany
Charité–Universitätsmedizin Berlin, Department of Neurology, Berlin, Germany
Search for more papers by this authorMatthias Endres MD
Charité–Universitätsmedizin Berlin, Center for Stroke Research Berlin, Berlin, Germany
Charité–Universitätsmedizin Berlin, Department of Neurology, Berlin, Germany
German Center for Cardiovascular Research (DZHK), Berlin, Germany
German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
Berlin Institute of Health (BIH), Berlin, Germany
Search for more papers by this authorJan F. Scheitz MD
Charité–Universitätsmedizin Berlin, Center for Stroke Research Berlin, Berlin, Germany
Charité–Universitätsmedizin Berlin, Department of Neurology, Berlin, Germany
Search for more papers by this authorChristian H. Nolte MD
Charité–Universitätsmedizin Berlin, Center for Stroke Research Berlin, Berlin, Germany
Charité–Universitätsmedizin Berlin, Department of Neurology, Berlin, Germany
Search for more papers by this authorAbstract
Objective
Elevated levels of cardiac troponin, and especially their relative changes over time, indicate acute myocardial injury. They are also frequently observed after acute ischemic stroke (AIS), indicating poor functional outcome and increased mortality. However, recent evidence showed that, in most AIS patients, myocardial injury is not caused by coronary ischemia. Instead, stroke lesion location has been suggested to precipitate myocardial injury.
Methods
Voxel-based lesion-symptom mapping (VLSM) was used in 299 patients who had a magnetic resonance imaging–confirmed acute ischemic stroke within the anterior circulation and a high-sensitivity cardiac troponin T (hs-cTnT) acquired on the day of admission. Of these, 228 had a second troponin measurement during the acute phase. The absolute hs-cTnT levels above the 99th percentile of a healthy reference population (≥14ng/l) as well as their relative temporal changes were used as continuous variables of interest in the VLSM model, including a multiple regression analysis adjusted for confounding variables.
Results
The anterior insular cortex of the right hemisphere, in particular its dorsal subregion, was significantly associated with the relative temporal changes of hs-cTnT (p < 0.01, corrected for multiple comparisons). In contrast, the baseline hs-cTnT levels on admission were not related to lesion location anywhere within the anterior circulation.
Interpretation
Our results amplify recent evidence from functional neuroimaging, which suggests a prominent role of dorsal anterior insular cortex in the parasympathetic control of cardiac and autonomic function. Acute vascular damage of this insular subregion might lead to autonomic dysbalance and an upregulation of sympathetic function, thereby resulting in myocardial injury. Ann Neurol 2017;81:502–511
References
- 1 Newby LK, Goldmann BU, Ohman EM. Troponin: an important prognostic marker and risk-stratification tool in non-ST-segment elevation acute coronary syndromes. J Am Coll Cardiol 2003; 41(4 Suppl S): 31S–36S.
- 2 White HD, Thygesen K, Alpert JS, Jaffe AS. Clinical implications of the Third Universal Definition of Myocardial Infarction. Heart 2014; 100: 424–432.
- 3 Wu AH, Jaffe AS. The clinical need for high-sensitivity cardiac troponin assays for acute coronary syndromes and the role for serial testing. Am Heart J 2008; 155: 208–214.
- 4 Jauch EC, Saver JL, Adams HP, Jr., et al. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2013; 44: 870–947.
- 5 Kerr G, Ray G, Wu O, et al. Elevated troponin after stroke: a systematic review. Cerebrovasc Dis 2009; 28: 220–226.
- 6 Scheitz JF, Mochmann HC, Erdur H, et al. Prognostic relevance of cardiac troponin T levels and their dynamic changes measured with a high-sensitivity assay in acute ischaemic stroke: analyses from the TRELAS cohort. Int J Cardiol 2014; 177: 886–893.
- 7 Faiz KW, Thommessen B, Einvik G, et al. Determinants of high sensitivity cardiac troponin T elevation in acute ischemic stroke. BMC Neurol 2014; 14: 96.
- 8 Peddada K, Cruz-Flores S, Goldstein LB, et al. Ischemic stroke with troponin elevation: patient characteristics, resource utilization, and in-hospital outcomes. Cerebrovasc Dis 2016; 42: 213–223.
- 9 Jensen JK, Kristensen SR, Bak S, et al. Frequency and significance of troponin T elevation in acute ischemic stroke. Am J Cardiol 2007; 99: 108–112.
- 10 Scheitz JF, Nolte CH, Laufs U, Endres M. Application and interpretation of high-sensitivity cardiac troponin assays in patients with acute ischemic stroke. Stroke 2015; 46: 1132–1140.
- 11 Mochmann HC, Scheitz JF, Petzold GC, et al. Coronary angiographic findings in acute ischemic stroke patients with elevated cardiac troponin: The Troponin Elevation in Acute Ischemic Stroke (TRELAS) Study. Circulation 2016; 133: 1264–1271.
- 12 Oppenheimer S. Cerebrogenic cardiac arrhythmias: cortical lateralization and clinical significance. Clin Auton Res 2006; 16: 6–11.
- 13 Sander D, Winbeck K, Klingelhofer J, et al. Prognostic relevance of pathological sympathetic activation after acute thromboembolic stroke. Neurology 2001; 57: 833–838.
- 14 Soros P, Hachinski V. Cardiovascular and neurological causes of sudden death after ischaemic stroke. Lancet Neurol 2012; 11: 179–188.
- 15 Ay H, Koroshetz WJ, Benner T, et al. Neuroanatomic correlates of stroke-related myocardial injury. Neurology 2006; 66: 1325–1329.
- 16 Christensen H, Johannesen HH, Christensen AF, et al. Serum cardiac troponin I in acute stroke is related to serum cortisol and TNF-alpha. Cerebrovasc Dis 2004; 18: 194–199.
- 17 Song HS, Back JH, Jin DK, et al. Cardiac troponin T elevation after stroke: relationships between elevated serum troponin T, stroke location, and prognosis. J Clin Neurol 2008; 4: 75–83.
- 18 Barber M, Morton JJ, Macfarlane PW, et al. Elevated troponin levels are associated with sympathoadrenal activation in acute ischaemic stroke. Cerebrovasc Dis 2007; 23: 260–266.
- 19 Scheitz JF, Endres M, Mochmann HC, et al. Frequency, determinants and outcome of elevated troponin in acute ischemic stroke patients. Int J Cardiol 2012; 157: 239–242.
- 20 Beissner F, Meissner K, Bar KJ, Napadow V. The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. J Neurosci 2013; 33: 10503–10511.
- 21 Craig AD. How do you feel—now?. The anterior insula and human awareness. Nat Rev Neurosci 2009; 10: 59–70.
- 22 Ruiz Vargas E, Sörös P, Shoemaker JK, Hachinski V. Human cerebral circuitry related to cardiac control: a neuroimaging meta-analysis. Ann Neurol 2016; 79: 709–716.
- 23 Bates E, Wilson SM, Saygin AP, et al. Voxel-based lesion-symptom mapping. Nat Neurosci 2003; 6: 448–450.
- 24 Henseler I, Regenbrecht F, Obrig H. Lesion correlates of patholinguistic profiles in chronic aphasia: comparisons of syndrome-, modality- and symptom-level assessment. Brain 2014; 137: 918–930.
- 25 Karnath HO, Rennig J, Johannsen L, Rorden C. The anatomy underlying acute versus chronic spatial neglect: a longitudinal study. Brain 2011; 134: 903–912.
- 26 Seifert F, Kallmunzer B, Gutjahr I, et al. Neuroanatomical correlates of severe cardiac arrhythmias in acute ischemic stroke. J Neurol 2015; 262: 1182–1190.
- 27 Winder K, Seifert F, Ohnemus T, et al. Neuroanatomic correlates of poststroke hyperglycemia. Ann Neurol 2015; 77: 262–268.
- 28 Scheitz JF, Mochmann HC, Nolte CH, et al. Troponin elevation in acute ischemic stroke (TRELAS)--protocol of a prospective observational trial. BMC Neurol 2011; 11: 98.
- 29 Thygesen K, Alpert JS, Jaffe AS, et al. Third universal definition of myocardial infarction. Eur Heart J 2012; 33: 2551–2567.
- 30 Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009; 150: 604–612.
- 31 Hotter B, Pittl S, Ebinger M, et al. Prospective study on the mismatch concept in acute stroke patients within the first 24 h after symptom onset—1000Plus study. BMC Neurol 2009; 9: 60.
- 32 Rorden C, Bonilha L, Fridriksson J, et al. Age-specific CT and MRI templates for spatial normalization. Neuroimage 2012; 61: 957–965.
- 33 Ashburner J, Friston KJ. Unified segmentation. Neuroimage 2005; 26: 839–851.
- 34 Brett M, Leff AP, Rorden C, Ashburner J. Spatial normalization of brain images with focal lesions using cost function masking. Neuroimage 2001; 14: 486–500.
- 35 Andersen SM, Rapcsak SZ, Beeson PM. Cost function masking during normalization of brains with focal lesions: still a necessity? Neuroimage 2010; 53: 78–84.
- 36 Rorden C, Karnath HO, Bonilha L. Improving lesion-symptom mapping. J Cogn Neurosci 2007; 19: 1081–1088.
- 37 Medina J, Kimberg DY, Chatterjee A, Coslett HB. Inappropriate usage of the Brunner-Munzel test in recent voxel-based lesion-symptom mapping studies. Neuropsychologia 2010; 48: 341–343.
- 38 Saper CB. The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Annu Rev Neurosci 2002; 25: 433–469.
- 39 De Raedt S, De Vos A, De Keyser J. Autonomic dysfunction in acute ischemic stroke: an underexplored therapeutic area? J Neurol Sci 2015; 348: 24–34.
- 40 Oppenheimer S, Cechetto D. The insular cortex and the regulation of cardiac function. Compr Physiol 2016; 6: 1081–1133.
- 41 Lacuey N, Zonjy B, Theerannaew W, et al. Left-insular damage, autonomic instability, and sudden unexpected death in epilepsy. Epilepsy Behav 2016; 55: 170–173.
- 42 Christensen H, Boysen G, Christensen AF, Johannesen HH. Insular lesions, ECG abnormalities, and outcome in acute stroke. J Neurol Neurosurg Psychiatry 2005; 76: 269–271.
- 43 Meyer S, Strittmatter M, Fischer C, et al. Lateralization in autonomic dysfunction in ischemic stroke involving the insular cortex. Neuroreport 2004; 15: 357–361.
- 44 Sander D, Klingelhofer J. Changes of circadian blood pressure patterns and cardiovascular parameters indicate lateralization of sympathetic activation following hemispheric brain infarction. J Neurol 1995; 242: 313–318.
- 45 Tokgozoglu SL, Batur MK, Topcuoglu MA, et al. Effects of stroke localization on cardiac autonomic balance and sudden death. Stroke 1999; 30: 1307–1311.
- 46 Abboud H, Berroir S, Labreuche J, et al. Insular involvement in brain infarction increases risk for cardiac arrhythmia and death. Ann Neurol 2006; 59: 691–699.
- 47 Laowattana S, Zeger SL, Lima JA, et al. Left insular stroke is associated with adverse cardiac outcome. Neurology 2006; 66: 477–483; discussion, 463.
- 48 Scheitz JF, Erdur H, Haeusler KG, et al. Insular cortex lesions, cardiac troponin, and detection of previously unknown atrial fibrillation in acute ischemic stroke: insights from the troponin elevation in acute ischemic stroke study. Stroke 2015; 46: 1196–1201.
- 49 Deen B, Pitskel NB, Pelphrey KA. Three systems of insular functional connectivity identified with cluster analysis. Cereb Cortex 2011; 21: 1498–1506.
- 50 Matsunaga M, Isowa T, Kimura K, et al. Associations among positive mood, brain, and cardiovascular activities in an affectively positive situation. Brain Res 2009; 31: 93–103.
- 51 Nagai M, Hoshide S, Kario K. The insular cortex and cardiovascular system: a new insight into the brain-heart axis. J Am Soc Hypertens 2010; 4: 174–182.
- 52 Palma JA, Benarroch EE. Neural control of the heart: recent concepts and clinical correlations. Neurology 2014; 83: 261–271.
- 53 Sousa-Pinto B, Ferreira-Pinto MJ, Santos M, Leite-Moreira AF. Central nervous system circuits modified in heart failure: pathophysiology and therapeutic implications. Heart Fail Rev 2014; 19: 759–779.
- 54
King AB,
Menon RS,
Hachinski V,
Cechetto DF. Human forebrain activation by visceral stimuli. J Comp Neurol 1999; 413: 572–582.
10.1002/(SICI)1096-9861(19991101)413:4<572::AID-CNE6>3.0.CO;2-S CAS PubMed Web of Science® Google Scholar
- 55 Haeusler KG, Grittner U, Fiebach JB, et al. HEart and BRain interfaces in Acute ischemic Stroke (HEBRAS)—rationale and design of a prospective oberservational cohort study. BMC Neurol 2015; 15: 213.