CIC inactivating mutations identify aggressive subset of 1p19q codeleted gliomas
Vincent Gleize PhD
Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, UM 75, U 1127, UMR 7225, ICM, Paris, France
Search for more papers by this authorAgusti Alentorn MD, PhD
Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, UM 75, U 1127, UMR 7225, ICM, Paris, France
AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Neurologie 2, Paris, France
Search for more papers by this authorLéa Connen de Kérillis MSc
Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, UM 75, U 1127, UMR 7225, ICM, Paris, France
Search for more papers by this authorMarianne Labussière PhD
Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, UM 75, U 1127, UMR 7225, ICM, Paris, France
Search for more papers by this authorAravidan A Nadaradjane BSc
Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, UM 75, U 1127, UMR 7225, ICM, Paris, France
Search for more papers by this authorEmeline Mundwiller MSC
Institut du Cerveau et de la Moelle Epinière, Plateforme de Génotypage et Séquençage, Paris, France
Search for more papers by this authorChris Ottolenghi MD, PhD
Biochimie Métabolique, Université Paris Descartes et Inserm U1124, Paris, France
Search for more papers by this authorStephanie Mangesius MSc
Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, UM 75, U 1127, UMR 7225, ICM, Paris, France
Search for more papers by this authorFrançois Ducray MD, PhD
Hôpital Neurologique, Service de Neurologie B, Lyon, France
Search for more papers by this authoron behalf of the POLA network
Search for more papers by this authorKarima Mokhtari MD
Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, UM 75, U 1127, UMR 7225, ICM, Paris, France
AP-HP, Onconeurothèque, Paris, France
AP-HP, Groupe Hospitalier Pitié Salpêtrière, Laboratoire de Neuropathologie R Escourolle, Paris, France
Search for more papers by this authorChiara Villa MD
AP-HP, Groupe Hospitalier Pitié Salpêtrière, Laboratoire de Neuropathologie R Escourolle, Paris, France
Search for more papers by this authorCorresponding Author
Marc Sanson MD, PhD
Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, UM 75, U 1127, UMR 7225, ICM, Paris, France
AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Neurologie 2, Paris, France
AP-HP, Onconeurothèque, Paris, France
Address correspondance to Dr Marc Sanson, Service de Neurologie 2, Groupe Hospitalier Pitié-Salpêtrière, 75651, Paris cedex 13, France. E-mail: [email protected]Search for more papers by this authorVincent Gleize PhD
Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, UM 75, U 1127, UMR 7225, ICM, Paris, France
Search for more papers by this authorAgusti Alentorn MD, PhD
Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, UM 75, U 1127, UMR 7225, ICM, Paris, France
AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Neurologie 2, Paris, France
Search for more papers by this authorLéa Connen de Kérillis MSc
Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, UM 75, U 1127, UMR 7225, ICM, Paris, France
Search for more papers by this authorMarianne Labussière PhD
Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, UM 75, U 1127, UMR 7225, ICM, Paris, France
Search for more papers by this authorAravidan A Nadaradjane BSc
Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, UM 75, U 1127, UMR 7225, ICM, Paris, France
Search for more papers by this authorEmeline Mundwiller MSC
Institut du Cerveau et de la Moelle Epinière, Plateforme de Génotypage et Séquençage, Paris, France
Search for more papers by this authorChris Ottolenghi MD, PhD
Biochimie Métabolique, Université Paris Descartes et Inserm U1124, Paris, France
Search for more papers by this authorStephanie Mangesius MSc
Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, UM 75, U 1127, UMR 7225, ICM, Paris, France
Search for more papers by this authorFrançois Ducray MD, PhD
Hôpital Neurologique, Service de Neurologie B, Lyon, France
Search for more papers by this authoron behalf of the POLA network
Search for more papers by this authorKarima Mokhtari MD
Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, UM 75, U 1127, UMR 7225, ICM, Paris, France
AP-HP, Onconeurothèque, Paris, France
AP-HP, Groupe Hospitalier Pitié Salpêtrière, Laboratoire de Neuropathologie R Escourolle, Paris, France
Search for more papers by this authorChiara Villa MD
AP-HP, Groupe Hospitalier Pitié Salpêtrière, Laboratoire de Neuropathologie R Escourolle, Paris, France
Search for more papers by this authorCorresponding Author
Marc Sanson MD, PhD
Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, UM 75, U 1127, UMR 7225, ICM, Paris, France
AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Neurologie 2, Paris, France
AP-HP, Onconeurothèque, Paris, France
Address correspondance to Dr Marc Sanson, Service de Neurologie 2, Groupe Hospitalier Pitié-Salpêtrière, 75651, Paris cedex 13, France. E-mail: [email protected]Search for more papers by this authorAbstract
Objective
CIC gene is frequently mutated in oligodendroglial tumors with 1p19q codeletion. However, clinical and biological impact remain poorly understood.
Methods
We sequenced the CIC gene on 127 oligodendroglial tumors (109 with the 1p19q codeletion) and analyzed patients' outcome. We compared magnetic resonance imaging, transcriptomic profile, and CIC protein expression of CIC wild-type (WT) and mutant gliomas. We compared the level of expression of CIC target genes on Hs683-IDH1R132H cells transfected with lentivirus encoding mutant and WT CIC.
Results
We found 63 mutations affecting 60 of 127 patients, virtually all 1p19q codeleted and IDH mutated (59 of 60). In the 1p19q codeleted gliomas, CIC mutations were associated with a poorer outcome by uni- (p = 0.001) and multivariate analysis (p < 0.016). CIC mutation prognostic impact was validated on the TCGA cohort. CIC mutant grade II codeleted gliomas spontaneously grew faster than WTs. Transcriptomic analysis revealed an enrichment of proliferative pathways and oligodendrocyte precursor cell gene expression profile in CIC mutant gliomas, with upregulation of normally CIC repressed genes ETV1, ETV4, ETV5, and CCND1. Various missense mutations resulted in CIC protein expression loss. Moreover, a truncating CIC mutation resulted in a defect of nuclear targeting of CIC protein to the nucleus in a human glioma cell line expressing IDH1R132H and overexpression of CCND1 and other new target genes of CIC, such as DUSP4 and SPRED1.
Interpretation
CIC mutations result in protein inactivation with upregulation of CIC target genes, activation of proliferative pathways, inhibition of differentiation, and poorer outcome in patients with a 1p19q codeleted glioma. Ann Neurol 2015;78:355–374
References
- 1Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007; 114: 97–109.
- 2Erdem-Eraslan L, Gravendeel LA, de Rooi J, et al. Intrinsic molecular subtypes of glioma are prognostic and predict benefit from adjuvant procarbazine, lomustine, and vincristine chemotherapy in combination with other prognostic factors in anaplastic oligodendroglial brain tumors: a report from EORTC study 26951. J Clin Oncol 2013; 31: 328–336.
- 3Cairncross JG, Ueki K, Zlatescu MC, et al. Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 1998; 90: 1473–1479.
- 4Sanson M, Marie Y, Paris S, et al. Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J Clin Oncol. 2009; 27: 4150–4154.
- 5Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009; 360: 765–773.
- 6Labussière M, Idbaih A, Wang XW, et al. All the 1p19q codeleted gliomas are mutated on IDH1 or IDH2. Neurology 2010; 74: 1886–1890.
- 7Bettegowda C, Agrawal N, Jiao Y, et al. Mutations in CIC and FUBP1 contribute to human oligodendroglioma. Science 2011; 333: 1453–1455.
- 8Yip S, Butterfield YS, Morozova O, et al. Concurrent CIC mutations, IDH mutations, and 1p/19q loss distinguish oligodendrogliomas from other cancers. J Pathol 2012; 226: 7–16.
- 9Jiménez G, Shvartsman SY, Paroush Z. The Capicua repressor—a general sensor of RTK signaling in development and disease. J Cell Sci 2012; 125: 1383–1391.
- 10Fryer JD, Yu P, Kang H, et al. Exercise and genetic rescue of SCA1 via the transcriptional repressor Capicua. Science 2011; 334: 690–693.
- 11Idbaih A, Marie Y, Lucchesi C, et al. BAC array CGH distinguishes mutually exclusive alterations that define clinicogenetic subtypes of gliomas. Int J Cancer 2008; 122: 1778–1786.
- 12Gleize V, Boisselier B, Marie Y, et al. The renal v-ATPase a4 subunit is expressed in specific subtypes of human gliomas. Glia 2012; 60: 1004–1012.
- 13Irizarry RA, Hobbs B, Collin F, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003; 4: 249–264.
- 14Smyth GK, Michaud J, Scott HS. Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 2005; 21: 2067–2075.
- 15Subramanian A, Kuehn H, Gould J, et al. GSEA-P: a desktop application for gene set enrichment analysis. Bioinformatics 2007; 23: 3251–3253.
- 16Huang dW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44–57.
- 17Duran M, Kamerling JP, Bakker HD, et al. L-2-Hydroxyglutaric aciduria: an inborn error of metabolism? J Inherit Metab Dis 1980; 3: 109–112.
- 18Biasini M, Bienert S, Waterhouse A, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 2014; 42: W252–W258.
- 19Russell RB, Barton GJ. Multiple protein sequence alignment from tertiary structure comparison: assignment of global and residue confidence levels. Proteins 1992; 14: 309–323.
- 20Figarella-Branger D, Mokhtari K, Colin C, et al.; POLA Network. Prognostic relevance of histomolecular classification of diffuse adult high-grade gliomas with necrosis. Brain Pathol 2014 Nov 18. doi: 10.1111/bpa.12227. [Epub ahead of print].
10.1111/bpa.12227 Google Scholar
- 21Mandonnet E, Delattre JY, Tanguy ML, et al. Continuous growth of mean tumor diameter in a subset of grade II gliomas. Ann Neurol 2003; 53: 524–528.
- 22Goze C, Blonski M, Le Maistre G, et al. Imaging growth and isocitrate dehydrogenase 1 mutation are independent predictors for diffuse low-grade gliomas. Neuro Oncol 2014; 16: 1100–1109.
- 23Dougherty JD, Fomchenko EI, Akuffo AA, et al. Candidate pathways for promoting differentiation or quiescence of oligodendrocyte progenitor-like cells in glioma. Cancer Res 2012; 72: 4856–4868.
- 24Dissanayake K, Toth R, Blakey J, et al. ERK/p90(RSK)/14-3-3 signalling has an impact on expression of PEA3 Ets transcription factors via the transcriptional repressor capicúa. Biochem J 2011; 433: 515–525.
- 25Crespo-Barreto J, Fryer JD, Shaw CA, et al. Partial loss of ataxin-1 function contributes to transcriptional dysregulation in spinocerebellar ataxia type 1 pathogenesis. PLoS Genet 2010; 6: e1001021.
- 26Chittaranjan S, Chan S, Yang C, et al. Mutations in CIC and IDH1 cooperatively regulate 2-hydroxyglutarate levels and cell clonogenicity. Oncotarget 2014; 5: 7960–7979.
- 27Cairncross G, Wang M, Shaw E, et al. Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol 2013; 31: 337–343.
- 28Olar A, Wani KM, Alfaro-Munoz KD, et al. IDH mutation status and role of WHO grade and mitotic index in overall survival in grade II-III diffuse gliomas. Acta Neuropathol 2015; 129: 585–596.
- 29Chan AK, Pang JC, Chung NY, et al. Loss of CIC and FUBP1 expressions are potential markers of shorter time to recurrence in oligodendroglial tumors. Mod Pathol 2014; 27: 332–342.
- 30Jiao Y, Killela PJ, Reitman ZJ et al. Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas. Oncotarget. 2012; 3: 709–722.
- 31Persson AI, Petritsch C, Swartling FJ, et al. Non-stem cell origin for oligodendroglioma. Cancer Cell 2010; 18: 669–682.
- 32Sugiarto S, Persson AI, Munoz EG, et al. Asymmetry-defective oligodendrocyte progenitors are glioma precursors. Cancer Cell 2011; 20: 328–340.
- 33Johnson BE, Mazor T, Hong C, et al. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 2014; 343: 189–193.
- 34Lee Y, Fryer JD, Kang H, et al. ATXN1 protein family and CIC regulate extracellular matrix remodeling and lung alveolarization. Dev Cell 2011; 21: 746–757.
- 35Ortensi B, Osti D, Pellegatta S, et al. Rai is a new regulator of neural progenitor migration and glioblastoma invasion. Stem Cells 2012; 30: 817–832.
- 36Keyse SM. Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer Metastasis Rev 2008; 27: 253–261.
- 37Brems H, Pasmant E, Van Minkelen R, et al. Review and update of SPRED1 mutations causing Legius syndrome. Hum Mutat 2012; 33: 1538–1546.
- 38Li Z, Zhang L, Ma Z, et al. ETV1 induces epithelial to mesenchymal transition in human gastric cancer cells through the upregulation of Snail expression. Oncol Rep 2013; 30: 2859–2863.
- 39de Launoit Y, Baert JL, Chotteau-Lelievre A, et al. The Ets transcription factors of the PEA3 group: transcriptional regulators in metastasis. Biochim Biophys Acta 2006; 1766: 79–87.
- 40Oh S, Shin S, Janknecht R. ETV1, 4 and 5: an oncogenic subfamily of ETS transcription factors. Biochim Biophys Acta 2012; 1826: 1–12.
- 41Casimiro MC, Velasco-Velazquez M, Aguirre-Alvarado C, Pestell RG. Overview of cyclins D1 function in cancer and the CDK inhibitor landscape: past and present. Expert Opin Investig Drugs 2014; 23: 295–304.
- 42Brunak S, Engelbrecht J, Knudsen S. Prediction of human mRNA donor and acceptor sites from the DNA sequence. J Mol Biol 1991; 220: 49–65.