Fungal pigments
An overview
Marcela C. Pagano
Departamento de Física, ICEx, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Search for more papers by this authorPartha P. Dhar
Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
Search for more papers by this authorMarcela C. Pagano
Departamento de Física, ICEx, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Search for more papers by this authorPartha P. Dhar
Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
Search for more papers by this authorDr. Vijai Kumar Gupta
Molecular Glycobiotechnology Group, Discipline of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
Search for more papers by this authorProf. Robert L. Mach
Institute of Chemical Engineering and Technical Biosciences, Vienna University of Technology, Vienna, Austria
Search for more papers by this authorProf. S. Sreenivasaprasad
Department of Life Sciences and Institute of Biomedical and Environmental Science and Technology, University of Bedfordshire, Bedfordshire, UK
Search for more papers by this authorSummary
Attention in the potential of microorganisms for biotechnological processes focusing on the production of pigments and/or the understanding of their ecological functioning has grown rapidly. Most fungal species produce biologically important pigments. Melanin, carotenoids and lycopene can contribute to the survival of the fungi by protecting against damaging UV light, pathogenicity and environmental stresses. Fungal endophytes can also produce bio-compounds and pigments with potential for use in industry, agriculture and medicine. Recent reports on fungal pigments account for 47% of the published papers on fungi. This chapter points to the exploration of current information on fungal pigments and their production and functions. Thus, relevant fundamental findings reflecting the importance and ubiquity of pigment-producing fungi are emphasized. Accordingly, research pathways regarding the pigment production and their functioning are discussed.
References
- Addy, H.D., M.M. Piercey and R.S. Currah. 2005. Microfungal endophytes in roots. Can. J. Bot. 83: 1–13.
-
Alcalde, M. 2007. Laccases: biological functions, molecular structure and industrial applications. In Industrial Enzymes, eds. J Polaina and A.P. MacCabe Springer, Heidelberg, pp. 461–476.
10.1007/1-4020-5377-0_26 Google Scholar
- Aly, A.H., A. Debbab and P. Proksch. 2011. Fungal endophytes: unique plant inhabitants with great promises. Appl. Microbiol. Biotechnol. 90: 1829–1845.
- Anonymous 1964. ISCC-NBS color-name charts illustrated with centroid colors. The NBS/IBCC Color System— http://www.anthus.com/Colors.html (accessed 2 September 2014).
- Barrow, J.R. 2003. Atypical morphology of dark septate fungal root endophytes of Bouteloua in arid southwestern USA rangelands. Mycorrhiza 13: 239–247.
- Barrow, J.R. and R.E. Aaltonen. 2001. A method of evaluating internal colonization of Atriplex canescens (Pursh) Nutt. roots by dark septate fungi and how they are influenced by host physiological activity. Mycorrhiza 11: 199–205.
- Borges, K.B., W.D.S. Borges, R. Durán-Patrón, M.T. Pupo, P.S. Bonato and I.G. Collado. 2009. Stereoselective biotransformations using fungi as biocatalysts. Tetrahedron Asymmetry 20: 385–397.
- Brodowsky, S., W. Amelung, L. Haumaier, C. Abetz and W. Zech. 2005. Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Geoderma 128: 116–129.
- Calvo, A.M., R.A. Wilson, J.W. Bok and N.P. Keller. 2002. Relationship between secondary metabolism and fungal development. Microbiol. Mol. Biol. Rev. 66: 447–459.
- Chaudhry, M.S., Z. Batoo and A.G. Khan. 2005. Preliminary assessment of plant community structure and arbuscular mycorrhizas in rangeland habitats of Cholistan desert, Pakistan. Mycorrhiza 15: 606–611.
- Davey, M.L. and R.S. Currah. 2006. Interactions between mosses (Bryophyta) and fungi. Can. J. Bot. 84: 1509–1519.
- Dufossé, L., M. Fouillaud, Y. Caro, S.A.S. Mapari and N. Sutthiwong. 2014. Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr. Opin. Biotech. 26: 56–61.
- Eisenman, H.C. and A. Casadevall. 2012. Synthesis and assembly of fungal melanin. Appl. Microbiol. Biotechnol. 93: 931–940.
- Fernandes, G.W., Y. Oki, A. Sanchez-Azofeifa, G. Faccion and H.C. Amaro-Arruda. 2011. Hail impact on leaves and endophytes of the endemic threatened Coccoloba cereifera (Polygonaceae). Plant Ecol. 212: 1687–1697.
- Fernández, N., S. Fontenla and M.I. Messuti. 2012. Co-occurrence of arbuscular mycorrhizas and dark septate endophytes in pteridophytes from a Valdivian temperate rainforest in Patagonia, Argentina. In Mycorrhiza: Occurrence and Role in Natural and Restored Environments, ed. M.C Pagano. Nova Science Publishers, Hauppauge, NY, pp. 99–125.
- W. Gams, G.J.M. Verkley and P.W. Crous (eds). 2007. CBS Course of Mycology, Centraalbureau voor Schimmelcultures, Utrecht.
- Glaser, B. and K.H. Knorr. 2008. Isotopic evidence for condensed aromatics from non-pyrogenic sources in soils – implications for current methods for quantifying soil black carbon. Rapid Commun. Mass Spectrom. 22: 935–942.
- Gunasekaran, S. and R. Poorniammal. 2008. Optimization of fermentation conditions for red pigment production from Penicillium sp. under submerged cultivation. Afr. J. Biotechnol. 7: 1894–1898.
- Hanson, J.R. 2008. The Chemistry of Fungi, RSC Publishing, Cambridge, p. 222.
- Harki, E., Talou, T. and Dargen, R. 1997. Purification, characterisation and analysis of melanin extracted from Tuber melanosporum Vitt. Food Chem. 58: 69–73.
- Haselwandter, K. and D.J. Read. 1982. The significance of a root-fungus association in two Carex species of high-alpine plant communities. Oecologia 53: 352–354.
- Heintzen, C. 2012. Plant and fungal photopigments. WIREs Membr. Transpl. Signal. 1: 411–432.
-
Isaac, S. 1994. Mycology answers. Many fungi are brightly coloured; does pigmentation provide any advantage to those species? Mycologist 8 (4): 178–179.
10.1016/S0269-915X(09)80191-2 Google Scholar
-
Jogawat, A., S. Saha, M. Bakshi, V. Dayaman, M. Kumar, M. Dua, A. Varma, R. Oelmüller, N. Tuteja and A.K. Johri. 2013.
Piriformospora indica rescues growth diminution of rice seedlings during high salt stress. Plant Signal. Behav. 8: e26891-1-6.
10.4161/psb.26891 Google Scholar
- Kelly, K.L. 1964. Inter-society Color Council National Bureau of Standards Color Name Charts Illustrated with Centroid Colors. US Government Printing Office, Washington, DC.
- Kunwar, A., B. Adhikary, S. Jayakumar, A. Barik, S. Chattopadhyay, S. Raghukumar and K.I. Priyadarsini. 2012. Melanin, a promising radioprotector: mechanisms of actions in a mice model. Toxicol. Appl. Pharmacol. 264: 202–211.
- Kuyper, T.W. and R.G.M. Goede, 2005. Interaction between higher plants and soil-dwelling organisms. In Vegetation Ecology, ed. E. der Maarel Blackwell, pp. 286–308.
- Langfelder, K., M. Streibel, B. Jahn, G. Haase and A.A. Brakhage. 2003. Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fung. Genet. Biol. 38: 143–158.
- Likar, M. and M. Regvar. 2013. Isolates of dark septate endophytes reduce metal uptake and improve physiology of Salix caprea L. Plant Soil 370: 593–604.
- Likar, M., U. Bukovnik, I. Kreft, N.K. Chrungoo and M. Regvar. 2008. Mycorrhizal status and diversity of fungal endophytes in roots of common buckwheat (Fagopyrum esculentum) and tartary buckwheat (F. tataricum). Mycorrhiza 18: 309–315.
- Lin, J.K. and S.Y. Lin-Shiau. 2001. Mechanisms of cancer chemoprevention by curcumin. Proc Natl. Sci. Counc. Repub. China B 25: 59–66.
- Liu X., M. Dong, X. Chen, M. Jiang, X. Lv and J. Zhou. 2008. Antimicrobial activity of an endophytic Xylaria sp.YX-28 and identification of its antimicrobial compound 7-amino-4-methylcoumarin. Appl. Microbiol. Biotechnol. 78: 241–247.
- Lopes, F.C., D.M. Tichota, J.Q. Pereira, J. Segalin, A.O. Rios and A. Brandelli. 2013. Pigment production by filamentous fungi on agro-industrial byproducts: an eco-friendly alternative. Appl. Biochem. Biotechnol. 171: 616–625.
- Mapari, S.A., K.F. Nielsen, T.O. Larsen, J.C. Frisvad, A.S. Meyer and U. Thrane. 2005. Exploring fungal biodiversity for the production of water-soluble pigments as potential natural food colorants. Curr. Opin. Biotechnol. 16: 231–8.
- Marins, J.F., R. Carrenho and S.M. Thomaz. 2010. Occurrence and coexistence of arbuscular mycorrhizal fungi and dark septate fungi in aquatic macrophytes in a tropical river–floodplain system. Aqua. Bot. 91: 13–19.
- Méndez, A., C. Pérez, J.C. Montañéz, G. Martínez and C.N. Aguilar. 2011. Red pigment production by Penicillium purpurogenum GH2 is influenced by pH and temperature. J. Zhejiang Univ. Sci. B (Biomed. Biotechnol.) 12: 961–968.
- Miller, K.I., C. Qing, D. M.-Y. Sze, B.D. Roufogalis and B.A. Neilan. 2012. Culturable endophytes of medicinal plants and the genetic basis for their bioactivity. Microb. Ecol. 64: 431–449.
- M.C. Pagano (ed.) 2012. Mycorrhiza: Occurrence and Role in Natural and Restored Environments, Nova Science Publishers, Hauppauge, NY, p. 327.
- Pagano, M.C. and P.P. Dhar. 2013. Arbuscular mycorrhizal fungi association and bioactive compound in plants. In Biology of Bioactive Compounds, eds. V.K. Gupta, A. O'Donovan, A. Pandey and M. Lohani Wiley-Blackwell (in press).
- Pagano, M.C., F.M. Lugo, M. Araújo, E. Ferrero and D. Steinaker. 2012. Native species for restoration and conservation of biodiversity in South America. In Native Species: Identification, Conservation and Restoration, eds. L. Marín and D Kovač. Nova Science Publishers, New York, pp. 1–55.
- Pimentel, M.R., G. Molina, A.P. Dionísio, M.R. Maróstica Jr. and G.M. Pastore. 2011. The Use of endophytes to obtain bioactive compounds and their application in biotransformation process. Biotech. Res. Int., p.11.
- Rivera-Hoyos, C.M., E.D. Morales-Alvarez, R.A. Poutou-Pinales, A.M. Pedroza-Rodriguez, R. Rodriguez-Vazquez and J.M. Delgado-Boada. 2013. Fungal laccases. Fung. Biol. Rev. p. 16.
- Robinson, S.C. 2012. Developing fungal pigments for ‘painting’ vascular plants. Appl. Microbiol. Biotechnol. 93: 1389–1394.
- Robinson, S.C., D. Tudor, G. MacDonald, Y. Mansourian and P.A. Cooper. 2013. Repurposing mountain pine beetle blue wood for art through additional fungal colonization. Int. Biodeterior. Biodegrad. 85: 372–374.
- Simanjuntak, P., T.K. Prana, D. Wulandari, A. Dharmawan, E. Sumitro and M.R. Hendriyanto. 2010. Chemical studies on a curcumin analogue produced by endophytic fungal transformation. Asian J. Appl. Sci. 3: 60–66.
- Smith, S.E. and D.J. Read. 2008. Mycorrhizal Symbiosis, Elsevier, New York. p. 815.
- Stierle, A., G. Strobel and D. Stierle. 1993. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260: 214–216.
- Strobel, G.A. 2003. Endophytes as sources of bioactive products. Microb. Infect. 5: 535–544.
- Strobel, G. and B. Daisy. 2003. Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev. 67: 491–502.
- Strobel, G., B. Daisy, U. Castillo and J. Harper. 2004. Natural products from endophytic microorganisms, J. Nat. Prod. 67: 257–268.
- Sun, J., F. Xia, L. Cui, J. Liang, Z. Wang and Y. Wei. 2013. Characteristics of foliar fungal endophyte assemblages and host effective components in Salvia miltiorrhiza Bunge. Appl. Microbiol. Biotechnol. 98: 3143–3155.
- Suryanarayanan, T.S., J.P. Ravishankar, G. Venkatesan and T.S. Murali. 2004. Characterization of the melanin pigment of a cosmopolitan fungal endophyte. Mycol. Res. 108: 974–978.
- Tan, R.X. and W.X. Zou. 2001. Endophytes: a rich source of functional metabolites. Nat. Prod. Rep. 18: 448–459.
- Urcelay, C. 2012. Co-occurrence of three fungal root symbionts in Gaultheria poeppiggi DC in Central Argentina. Mycorrhiza 12: 89–92.
- Urcelay, C., J. Acho and R. Joffre. 2011. Fungal root symbionts and their relationship with fine root proportion in native plants from the Bolivian Andean highlands above 3,700 m elevation. Mycorrhiza 21: 323–330.
- Vandenkoornhuyse, P., S.L. Baldauf, C. Leyval, J. Straczek and J.P.W. Young. 2002. Extensive fungal diversity in plant roots. Science 295: 2051.
- Velíšek, J. and K. Cejpek. 2011. Pigments of higher fungi: a review. Czech J. Food Sci. 29 (2): 87–102.
-
Wiedner, K. and B. Glaser. 2013. Biochar-Fungi Interactions in soil. In Biochar and Soil Biota, eds. N. Ladygina and F. Rineau CRC Press, Taylor & Francis group, Boca Raton, FL, pp. 69–99.
10.1201/b14585-4 Google Scholar
- Zheng, S.-J. and M. Dicke. 2008. Ecological genomics of plant-insect interactions: from gene to community. Plant Physiol. 146: 812–817.
- Zhou, Z. and J. Liu. 2010. Pigments of fungi (macromycetes). Nat. Prod. Rep. 27: 1531–1570.