Nanoprobes and Quantum Dots: Employing Nanotechnology to Watch Biology
Shampa Chatterjee
University of Pennsylvania Medical Center, Philadelphia, PA, USA
Search for more papers by this authorShampa Chatterjee
University of Pennsylvania Medical Center, Philadelphia, PA, USA
Search for more papers by this authorDebasis Bagchi PhD, MACN, CNS, MAIChE
University of Houston College of Pharmacy, Houston, Texas, USA
Search for more papers by this authorManashi Bagchi PhD, FACN
NutriToday LLC, Boston, Massachusetts, USA
Search for more papers by this authorHiroyoshi Moriyama PhD, FACN
Showa Pharmaceutical University, Tokyo, Japan
Search for more papers by this authorFereidoon Shahidi PhD, FACS, FAOCS, FCIC, FCIFST, FIAFoST, FIFT, FRSC
Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
Search for more papers by this authorFereidoon Shahidi PhD, FACS, FAOCS, FCIC, FCIFST, FIAFoST, FIFT, FRSC
Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
Search for more papers by this authorSummary
This chapter contains sections titled:
-
Introduction
-
Nanomaterials, nanoprobes, and quantum dots
-
Nanoparticle design and application
-
Future perspectives
-
Imaging biological processes
-
Disadvantages of nanoprobes and quantum dots
-
References
References
- Bailon, P., Won, C.Y. 2009. PEG-modified biopharmaceuticals. Expert Opin Drug Deliv 6: 1–16.
- Bruchez, M., Moronne, M., Gin, P., Weiss, S., Alivisatos, A.P. 1998. Semiconductor nanocrystals as fluorescent biological labels. Science 281: 2013–16.
- Chan, W.C.W., Nie, S. 1998. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281: 2016–18.
- Chen, F., Gerion, D. 2004. Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett 4: 1827–32.
- Dahan, M., Laurence, T., Pinaud, F., Chemla, D.S., Alivisatos, A.P., Sauer, M., Weiss, S. 2001. Time-gated biological imaging by use of colloidal quantum dots. Opt Lett 26: 825–7.
- Dahan, M., Lévi, S., Luccardini, C., Rostaing, P., Riveau, B., Triller, A. 2003. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302: 442–5.
- Dameron, C.T., Reese, R.N., Mehra, R.K., Kortan, A.R., Carroll, P.J., Steigerwald, M.L., Brus, L.E., Winge, D.R. 1989. Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338: 596–7.
- Derfus, A.M., Chan, W.C.W., Bhatia, S.N. 2004. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4: 11–18.
- Diagaradjane, P., Orenstein-Cardona, J.M., Colon-Casasnovas, N.E., Deorukhkar, A., Shentu, S., Kuno, N., Schwartz, D.L., Gelovani, J.G., Krishnan, S. 2008. Imaging epidermal growth factor receptor expression in vivo: pharmacokinetic and biodistribution characterization of a bioconjugated quantum dot nanoprobe. Clin Cancer Res 14: 731–41.
- Dubertret, B., Skourides, P., Norris, D.J., Noireaux, V., Brivanlou, A.H., Libchaber, A. 2002. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298: 1759–62.
- Gao, X., Cui, Y., Levenson, R.M., Chung, L.W.K., Nie, S. 2004. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnol 22: 969–76.
- Goldman, E.R., Balighian, E.D., Mattoussi, H., Kuno, M.K., Mauro, J.M., Tran, P.T., Anderson, G.P. 2002. Avidin: a natural bridge for quantum dot–antibody conjugates. J Am Chem Soc 124: 6378–82.
- Jaiswal, J.K., Mattoussi, H., Mauro, J.M., Simon, S.M. 2003. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nature Biotechnol 21: 47–51.
- Kloepfer, J.A., Mielke, R.E., Wong, M.S., Nealson, K.H., Stucky, G., Nadeau, J.L. 2003. Quantum dots as strain-and metabolism-specific microbiological labels. Appl Environ Microbiol 69: 4205–13.
- Kreuter, J., Shamenkov, D., Petrov, V., Ramge, P., Cychutek, K., Koch-Brandt, C., Alyautdin, R. 2002. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood–brain barrier. J Drug Target 10: 317–25.
- Lidke, D.S., Nagy, P., Heintzmann, R., Arndt-Jovin, D.J., Post, J.N., Grecco, H.E., Jares-Erijman, E.A., Jovin, T.M. 2004. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nature Biotechnol 22: 198–203.
- Lounis, B., Bechtel, H.A., Gerion, D., Alivisatos, A.P., Moerner, W.E. 2000. Photon antibunching in single CdSe/ZnS quantum dot fluorescence. Chem Phys Lett 329: 399–404.
- Lu, W., Xiong, C., Zhang, G., Huang, Q., Zhang, R., Zhang, J.Z., Li, C. 2009. Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres. Clin Cancer Res 15: 876–86.
- Mattheakis, L.C., Dias, J.M., Choi, Y.J., Gong, J., Bruchez, M.P., Liu, J., Wang, E. 2004. Optical coding of mammalian cells using semiconductor quantum dots. Anal Biochem 327: 200–8.
- McCarthy, J.R., Kelly, K.A., Sun, E.Y., Weissleder, R. 2007. Targeted delivery of multifunctional magnetic nanoparticles. Nanomedicine 2: 153–67.
- Melancon, M.P., Lu, W., Yang, Z., Zhang, R., Cheng, Z., Elliot, A.M., Stafford, J., Olson, T., Zhang, J.Z., Li, C. 2008. In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol Cancer Ther 7: 1730–9.
- Michalet, X., Pinaud, F., Lacoste, T.D., Dahan, M., Bruchez, M., et al. 2001. Properties of fluorescent semiconductor nanocrystals and their applications to biological labeling. Single Mol 2: 261–76.
- Mulder, W.J., Castermans, K., van Beijnum, J.R., Oude Egbrink, M.G., Chin, P.T., Fayad, Z.A., Lowik, C.W., Kaijzel, E.L., Que, I., Storm, G., Strijkers, G.J., Griffioen, A.W., Nicolay, K. 2009. Molecular imaging of tumor angiogenesis using a v b 3-integrin targeted multimodal quantum dots. Angiogenesis 12: 17–24.
- Murray, C.B., Norris, D.J., Bawendi, M.G. 1993. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc 115: 8706–15.
- Patolsky, F., Gill, R., Weizmann, Y., Mokari, T., Banin, U., Willner, I. 2003. Lighting-up the dynamics of telomerization and DNA replication by CdSe-ZnS quantum dots. J Am Chem Soc 125: 13918–9.
- Sato, N., Kobayashi, H., Hiraga, A., Saga, T., Togashi, K., Konishi, J., Brechbiel, M.W. 2001. Pharmacoki netics and enhancement patterns of macromolecular MR contrast agents with various sizes of polyamidoamine dendrimer cores. Magn Reson Med 46: 1169–73.
- Schipper, M.L., Iyer, G., Koh, A.L., Cheng, Z., Ebenstein, Y., Aharoni, A., Keren, S., Bentolila, L.A., Li, J., Rao, J., Chen, X., Banin, U., Wu, A.M., Sinclair, R., Weiss, S., Gambhir, S.S. 2009. Particle size, surface coating and PEGylation influence the biodistribution of quantum dots in living mice. Small 5: 126–34.
- Schmieder, A.H., Caruthers, S.D., Zhang, H., Williams, T.A., Robertson, J.D., Wickline, S.A., Lanza, G.M. 2008. Three-dimensional MR mapping of angiogenesis with alpha5beta1(alpha nu beta3)-targeted theranostic nanoparticles in the MDA-MB-435 xenograft mouse model. FASEB J 22: 4179–89.
- Torchilin, V.P. 2005. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4: 145–60.
- Wu, X.Y., Liu, H., Liu, J., Haley, K.N., Treadway, J.A., Larson, J.P., Ge, N., Peale, F., Bruchez, M.P. 2003. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotechnol 21: 41–6.
- Yu, S.B., Watson, A.D. 1999. Metal-based X-ray contrast media. Chem Rev 99: 2353–78.