Elemental and Isotopic Analyses in Forensic Sciences
Johanna Irrgeher
Chair of General and Analytical Chemistry, Montanuniversität Leoben, Leoben, Austria
Search for more papers by this authorDonata Bandoniene
Chair of General and Analytical Chemistry, Montanuniversität Leoben, Leoben, Austria
Search for more papers by this authorJohannes Draxler
University of Natural Resources and Life Sciences, Tulln, Austria
Search for more papers by this authorThomas Prohaska
Chair of General and Analytical Chemistry, Montanuniversität Leoben, Leoben, Austria
Search for more papers by this authorJohanna Irrgeher
Chair of General and Analytical Chemistry, Montanuniversität Leoben, Leoben, Austria
Search for more papers by this authorDonata Bandoniene
Chair of General and Analytical Chemistry, Montanuniversität Leoben, Leoben, Austria
Search for more papers by this authorJohannes Draxler
University of Natural Resources and Life Sciences, Tulln, Austria
Search for more papers by this authorThomas Prohaska
Chair of General and Analytical Chemistry, Montanuniversität Leoben, Leoben, Austria
Search for more papers by this authorAbstract
The focus of this work is a comprehensive overview of analytical techniques for elemental and isotopic analyses applied in forensic science (i.e. linking crime scene evidence to a crime by applying analytical techniques). The article provides a short description of the spectroscopic techniques and an overview of selected applications. In addition to general forensics, applications in nuclear forensics, environmental forensics, and food forensics are covered. Selected applications are linked to reviews and selected publications, which should allow for an overview of the current approaches in forensic analytical chemistry. This is an update article of its first version published in 2014 by Prohaska and Draxler.1
References
- 1 T. Prohaska, J. Draxler, ‘Elemental and Isotopic Analyses in Forensic Sciences’, Encycloped. Anal. Chem., 1–30 (2014).
- 2 O. Ribaux, A. Baylon, C. Roux, O. Delémont, E. Lock, C. Zingg, P. Margot, ‘Intelligence-Led Crime Scene Processing. Part I: Forensic Intelligence’, Forensic Sci. Int., 195(1–3), 10–16 (2010).
- 3 L.S. Castillo-Peinado, M.D. Luque de Castro, ‘An Overview on Forensic Analysis Devoted to Analytical Chemists’, Talanta, 167, 181–192 (2017).
- 4
J.F. Carter, L.A. Chesson, Food Forensics: Stable Isotopes as a Guide to Authenticity and Origin, CRC Press, Boca Raton, FL, 2017.
10.1201/9781315151649 Google Scholar
- 5 J. Mennell, I. Shaw, ‘The Future of Forensic and Crime Scene Science: Part I. A UK forensic Science User and Provider Perspective’, Forensic Sci. Int., 157(Supplement), S7–S12 (2006).
- 6 J. Mennell, ‘The Future of Forensic and Crime Scene Science: Part II. A UK Perspective on Forensic Science Education’, Forensic Sci. Int., 157(Supplement), S13–S20 (2006).
- 7 A. Kabir, H. Holness, K.G. Furton, J.R. Almirall, ‘Recent Advances in Micro-Sample Preparation with Forensic Applications’, TrAC Trends Anal. Chem., 45, 264–279 (2013).
- 8 C.J. Scadding, R.J. Watling, A.G. Thomas, ‘The Potential of Using Laser Ablation Inductively Coupled Plasma Time of Flight Mass Spectrometry (LA-ICP-TOF-MS) in the Forensic Analysis of Micro Debris’, Talanta, 67(2), 414–424 (2005).
- 9
G. Berden, R. Engeln, Cavity Ring-Down Spectroscopy: Techniques and Applications, John Wiley & Sons, Chichester, 2009.
10.1002/9781444308259 Google Scholar
- 10 M. Resano, E. García-Ruiz, M. Aramendía, M. Belarra, ‘Quo Vadis High-Resolution Continuum Source Atomic/Molecular Absorption Spectrometry?’, J. Anal. At. Spectrom., 34(1), 59–80 (2019).
- 11 R.E. Russo, A.A. Bol'shakov, X. Mao, C.P. McKay, D.L. Perry, O. Sorkhabi, ‘Laser Ablation Molecular Isotopic Spectrometry’, Spectrochim. Acta B At. Spectrosc., 66(2), 99–104 (2011).
- 12 N.J.G. Pearce, W.T. Perkins, J.A. Westgate, S.C. Wade, ‘Trace-Element Microanalysis by LA-ICP-MS: The Quest for Comprehensive Chemical Characterisation of Single, Sub-10 μm Volcanic Glass Shards’, Quat. Int., 246(1-2), 57–81 (2011).
- 13 T. Prohaska, J. Irrgeher, A. ZItek, N. Jakubowski, Sector Field Mass Spectrometry for Elemental and Isotopic Analysis, Royal Society of Chemistry, Cambridge, 2015.
- 14 L.K. Fifield, ‘Applications of Accelerator Mass Spectrometry: Advances and Innovation’, Nucl. Instrum. Methods Phys. Res., Sect. B, 223–224, 401–411 (2004).
- 15 G. Eby, Instrumental Neutron Activation Analysis (INAA) and Forensic Applications, Geological Society, London , Special Publications, 121–131, Vol. 384, 2013.
- 16 J.D. Winefordner, T.J. Vickers, ‘Atomic Fluorescence Spectrometry as Means of Chemical Analysis’, Anal. Chem., 36(1), 161 (1964).
- 17 W. Schrenk, Analytical Atomic Spectroscopy, Springer Science & Business Media, Plenum Press, New York and London, 2012.
- 18 B.M. Tissue, Atomic-Fluorescence Spectrometry (AFS), 2013. http://www.files.chem.vt.edu/chem-ed/spec/atomic/afs.html (accessed 20 May 2013).
- 19 R. Wietecha, P. Koscielniak, T. Lech, T. Kielar, ‘Simple Method for Simultaneous Determination of Selenium and Arsenic in Human Hair by Means of Atomic Fluorescence Spectrometry with Hydride Generation Technique’, Microchim. Acta, 149(1-2), 137–144 (2005).
- 20 L. Beaudin, S.C. Johannessen, R.W. Macdonald, ‘Coupling Laser Ablation and Atomic Fluorescence Spectrophotometry: An Example Using Mercury Analysis of Small Sections of Fish Scales’, Anal. Chem., 82(21), 8785–8788 (2010).
- 21 Z. Šlejkovec, J.T. Van Elteren, V.S. Šelih, M. Šala, W.T. Corns, ‘Microanalysis of Arsenic in Solid Samples by Laser Ablation-Atomic Fluorescence Spectrometry’, J. Anal. At. Spectrom., 32(2), 299–304 (2017).
- 22 Z. Zou, Y. Deng, J. Hu, X. Jiang, X. Hou, ‘Recent Trends in Atomic Fluorescence Spectrometry Towards Miniaturized Instrumentation – A Review’, Anal. Chim. Acta, 1019, 25–37 (2018).
- 23 G. Vittiglio, S. Bichlmeier, P. Klinger, J. Heckel, W. Fuzhong, L. Vincze, K. Janssens, P. Engström, A. Rindby, K. Dietrich, D. Jembrih-Simbürger, M. Schreiner, D. Denis, A. Lakdar, A. Lamotte, ‘A Compact μ-XRF Spectrometer for (In Situ) Analyses of Cultural Heritage and Forensic Materials’, Nucl. Instrum. Methods Phys. Res., Sect. B, 213, 693–698 (2004).
- 24 E.R. Schenk, J.R. Almirall, ‘Elemental Analysis of Glass by Laser Ablation Inductively Coupled Plasma Optical Emission Spectrometry (LA-ICP-OES)’, Forensic Sci. Int., 217(1–3), 222–228 (2012).
- 25 A. Galli, L. Bonizzoni, ‘True Versus Forged in the Cultural Heritage Materials: The Role of PXRF Analysis’, X-Ray Spectrom., 43(1), 22–28 (2014).
- 26 R.V. Grieken, A.A. Markowikz, Handbook of X-Ray Spectrometry, Marcel Dekker, New York, NY, 1993.
- 27 S. Majumdar, J.R. Peralta-Videa, H. Castillo-Michel, J. Hong, C.M. Rico, J.L. Gardea-Torresdey, ‘Applications of Synchrotron μ-XRF to Study the Distribution of Biologically Important Elements in Different Environmental Matrices: A Review’, Anal. Chim. Acta, 755, 1–16 (2012).
- 28 T. Nakanishi, Y. Nishiwaki, N. Miyamoto, O. Shimoda, S. Watanabe, S. Muratsu, M. Takatsu, Y. Terada, Y. Suzuki, M. Kasamatsu, S. Suzuki, ‘Lower Limits of Detection of Synchrotron Radiation High-Energy X-Ray Fluorescence Spectrometry and Its Possibility for the Forensic Application for Discrimination of Glass Fragments’, Forensic Sci. Int., 175(2–3), 227–234 (2008).
- 29 A.A. Dias, M. Carvalho, M.L. Carvalho, S. Pessanha, ‘Quantitative Evaluation of Ante-Mortem Lead in Human Remains of the 18th Century by Triaxial Geometry and Bench Top Micro X-Ray Fluorescence Spectrometry’, J. Anal. At. Spectrom., 30(12), 2488–2495 (2015).
- 30 D. Rendle, ‘X-Ray Diffraction in Forensic Science’, The Rigaku J., 20(1), 12 (2003).
- 31 L.V. Prandel, V.D.F. Melo, A.M. Brinatti, S.D.C. Saab, F.A.S. Salvador, ‘X-ray Diffraction and Rietveld Refinement in Deferrified Clays for Forensic Science’, J. Forensic Sci., 63(1), 251–257 (2018).
- 32 G. Cavallo, F. Fontana, F. Gonzato, A. Guerreschi, M.P. Riccardi, G. Sardelli, R. Zorzin, ‘Sourcing and Processing of Ochre During the Late Upper Palaeolithic at Tagliente Rock-Shelter (NE Italy) Based on Conventional X-Ray Powder Diffraction Analysis’, Archaeol. Anthropol. Sci., 9(5), 763–775 (2017).
- 33 E.T. Bergslien, M. Bush, P.J. Bush, ‘Identification of Cremains Using X-Ray Diffraction Spectroscopy and a Comparison to Trace Element Analysis’, Forensic Sci. Int., 175(2–3), 218–226 (2008).
- 34 D.A. Cremers, R.A. Multari, A.K. Knight, ‘ Laser-Induced Breakdown Spectroscopy’, in Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, Wiley, New York, NY, 1–28, 2006.
- 35 J.R. Almirall, S. Umpierrez, W. Castro, I. Gornushkin, J. Winefordner, Forensic Elemental Analysis of Materials by Laser Induced Breakdown Spectroscopy (LIBS), Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense IV, International Society for Optics and Photonics, 657–666, 2005.
- 36
C. Rinke-Kneapler, M. Sigman, ‘ Applications of Laser Spectroscopy in Forensic Science’, in Laser Spectroscopy for Sensing, Elsevier, Woodhead Publishing, Sawston, 461–495, 2014.
10.1533/9780857098733.3.461 Google Scholar
- 37
R.R. Hark, L.J. East, ‘ Forensic Applications of LIBS’, in Laser-Induced Breakdown Spectroscopy, Springer, Berlin, 377–420, 2014.
10.1007/978-3-642-45085-3_14 Google Scholar
- 38 C.M. Bridge, J. Powell, K.L. Steele, M.E. Sigman, ‘Forensic Comparative Glass Analysis by Laser-Induced Breakdown Spectroscopy’, Spectrochim. Acta – Part B At. Spectrosc., 62(12), 1419–1425 (2007).
- 39 C.M. Bridge, J. Powell, K.L. Steele, M. Williams, J.M. MacInnis, M.E. Sigman, ‘Characterization of Automobile Float Glass with Laser-Induced Breakdown Spectroscopy and Laser Ablation Inductively Coupled Plasma Mass Spectrometry’, Appl. Spectrosc., 60(10), 1181–1187 (2006).
- 40 E. McIntee, E. Viglino, S. Kumor, C. Rinke, L. Ni, M.E. Sigman, ‘Non-Parametric Permutation Test for the Discrimination of Float Glass Samples Based on LIBS Spectra’, J. Chemom., 24(6), 312–319 (2010).
- 41 M.M. El-Deftar, N. Speers, S. Eggins, S. Foster, J. Robertson, C. Lennard, ‘Assessment and Forensic Application of Laser-Induced Breakdown Spectroscopy (LIBS) for the Discrimination of Australian Window Glass’, Forensic Sci. Int., 241, 46–54 (2014).
- 42 C. Lennard, M.M. El-Deftar, J. Robertson, ‘Forensic Application of Laser-Induced Breakdown Spectroscopy for the Discrimination of Questioned Documents’, Forensic Sci. Int., 254, 68–79 (2015).
- 43 K. Subedi, T. Trejos, J. Almirall, ‘Forensic Analysis of Printing Inks Using Tandem Laser Induced Breakdown Spectroscopy and Laser Ablation Inductively Coupled Plasma Mass Spectrometry’, Spectrochim. Acta B At. Spectrosc., 103–104, 76–83 (2015).
- 44 M. Hoehse, A. Paul, I. Gornushkin, U. Panne, ‘Multivariate Classification of Pigments and Inks Using Combined Raman Spectroscopy and LIBS’, Anal. Bioanal. Chem., 402(4), 1443–1450 (2012).
- 45 B. Woods, K.P. Kirkbride, C. Lennard, J. Robertson, ‘Soil Examination for a Forensic Trace Evidence Laboratory – Part 2: Elemental Analysis’, Forensic Sci. Int., 245, 195–201 (2014).
- 46 M. Tofanelli, L. Pardini, M. Borrini, F. Bartoli, A. Bacci, A. D'Ulivo, E. Pitzalis, M.C. Mascherpa, S. Legnaioli, G. Lorenzetti, ‘Spectroscopic Analysis of Bones for Forensic Studies’, Spectrochim. Acta B At. Spectrosc., 99, 70–75 (2014).
- 47 J.L. Gottfried, F.C. De Lucia Jr., C.A. Munson, A.W. Miziolek, ‘Strategies for Residue Explosives Detection Using Laser-Induced Breakdown Spectroscopy’, J. Anal. At. Spectrom., 23(2), 205–216 (2008).
- 48 A. Tarifa, J.R. Almirall, ‘Fast Detection and Characterization of Organic and Inorganic Gunshot Residues on the Hands of Suspects by CMV-GC–MS and LIBS’, Sci. Justice, 55(3), 168–175 (2015).
- 49 P. Pease, ‘Fused Glass Sample Preparation for Quantitative Laser-Induced Breakdown Spectroscopy of Geologic Materials’, Spectrochim. Acta Part B: At. Spectrosc., 83–84, 37–49 (2013).
- 50 J. Rakovský, P. Čermák, O. Musset, P. Veis, ‘A Review of the Development of Portable Laser Induced Breakdown Spectroscopy and Its Applications’, Spectrochim. Acta – Part B At. Spectrosc., 101, 269–287 (2014).
- 51 J.-H. Yang, J.J. Yoh, ‘Forensic Discrimination of Latent Fingerprints Using Laser-Induced Breakdown Spectroscopy (LIBS) and Chemometric Approaches’, Appl. Spectrosc., 72(7), 1047–1056 (2018).
- 52 D.W. Hahn, N. Omenetto, ‘Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields’, Appl. Spectrosc., 66(4), 347–419 (2012).
- 53 R.R. Greenberg, P. Bode, E.A.D.N. Fernandes, ‘Neutron Activation Analysis: A Primary Method of Measurement’, Spectrochim. Acta B At. Spectrosc., 66(3–4), 193–241 (2011).
- 54 R. Acharya, P.K. Pujari, ‘Potential of Conventional and Internal Monostandard NAA and PGNAA and PIGE in Forensic Sciences: An Overview’, Forensic Chem. (2018).
- 55 V.P. Guinn, M.A. Purcell, ‘A Very Rapid Instrumental Neutron Activation Analysis Method for the Forensic Comparasion of Bullet-Lead Specimens’, J. Radioanal. Chem., 39(1-2), 85–91 (1977).
- 56 N. Scheid, S. Becker, M. Dücking, G. Hampel, J. Volker Kratz, P. Watzke, P. Weis, S. Zauner, ‘Forensic Investigation of Brick Stones Using Instrumental Neutron Activation Analysis (INAA), Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) and X-Ray Fluorescence Analysis (XRF)’, Appl. Radiat. Isot., 67(12), 2128–2132 (2009).
- 57 K.P. Grogan, D.J. O'Kelly, ‘Analytical Applications of Delayed and Instrumental Neutron Activation Analysis’, J. Radioanal. Nucl. Chem., 299(1), 543–549 (2014).
- 58 S.J. Haswell, Atomic Absorption Spectrometry, Elsevier, Amsterdam, 1991.
- 59
R. García, A. Báez, ‘ Atomic Absorption Spectrometry (AAS)’, in Atomic Absorption Spectroscopy, IntechOpen, Rijeka, 2012.
10.5772/25925 Google Scholar
- 60 R. Levenson, More Modern Chemical Techniques, Royal Society Of Chemistry, London, 2001.
- 61 E.I. Brima, P.I. Haris, R.O. Jenkins, D.A. Polya, A.G. Gault, C.F. Harrington, ‘Understanding Arsenic Metabolism Through a Comparative Study of Arsenic Levels in the Urine, Hair and Fingernails of Healthy Volunteers from Three Unexposed Ethnic Groups in the United Kingdom’, Toxicol. Appl. Pharmacol., 216(1), 122–130 (2006).
- 62 J. Štupar, F. Dolinšek, ‘Determination of Chromium, Manganese, Lead and Cadmium in Biological Samples Including Hair Using Direct Electrothermal Atomic Absorption Spectrometry’, Spectrochim. Acta – Part B Atom. Spectrosc., 51(7 PART B), 665–683 (1996).
- 63 B.L. Batista, J.L. Rodrigues, J.A. Nunes, L. Tormen, A.J. Curtius, F. Barbosa Jr., ‘Simultaneous Determination of Cd, Cu, Mn, Ni, Pb and Zn in Nail Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) After Tetramethylammonium Hydroxide Solubilization at Room Temperature: Comparison with ETAAS’, Talanta, 76(3), 575–579 (2008).
- 64 B. Welz, H. Becker-Ross, S. Florek, U. Heitmann, High-Resolution Continuum Source AAS: The Better Way to Do Atomic Absorption Spectrometry, John Wiley & Sons, Weinheim, 2006.
- 65 D. Paschal, in ICP Emission Spectrometry: A Practical Guide, ed. J. Nölte, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 282, 2003, $49.95, softcover. ISBN 3-3-527-30672-2. Clin. Chem. 2003, 49 (7), 1231.
- 66 N. Miekeley, M.T.W. Dias Carneiro, C.L. Porto da Silveira, ‘How Reliable are Human Hair Reference Intervals for Trace Elements?’, Sci. Total Environ., 218(1), 9–17 (1998).
- 67 R. Bai, L. Wan, H. Li, Z. Zhang, Z. Ma, ‘Identify the Injury Implements by SEM/EDX and ICP-AES’, Forensic Sci. Int., 166(1), 8–13 (2007).
- 68 Y. Suzuki, M. Kasamatsu, S. Suzuki, Y. Marumo, ‘Forensic Discrimination of Lead-Tin Solder Based on the Trace Impurity Analysis by ICP-AES’, Anal. Sci., 19(3), 415–418 (2003).
- 69 K. Pye, S.J. Blott, D.J. Croft, J.F. Carter, ‘Forensic Comparison of Soil Samples: Assessment of Small-Scale Spatial Variability in Elemental Composition, Carbon and Nitrogen Isotope Ratios, Colour and Particle Size Distribution’, Forensic Sci. Int., 163(1–2), 59–80 (2006).
- 70 K. Pye, S.J. Blott, D.S. Wray, ‘Elemental Analysis of Soil Samples for Forensic Purposes by Inductively Coupled Plasma Spectrometry – Precision Considerations’, Forensic Sci. Int., 160(2-3), 178–192 (2006).
- 71 T.R. Brooks, T.E. Bodkin, G.E. Potts, S.A. Smullen, ‘Elemental Analysis of Human Cremains Using ICP-OES to Classify Legitimate and Contaminated Cremains’, J. Forensic Sci., 51(5), 967–973 (2006).
- 72 G. Gallello, J. Kuligowski, A. Pastor, A. Diez, J. Bernabeu, ‘Biological Mineral Content in Iberian Skeletal Cremains for Control of Diagenetic Factors Employing Multivariate Statistics’, J. Archaeol. Sci., 40(5), 2477–2484 (2013).
- 73 R.Q. Aucélio, R.M. de Souza, R.C. de Campos, N. Miekeley, C.L.P. da Silveira, ‘The Determination of Trace Metals in Lubricating Oils by Atomic Spectrometry’, Spectrochim. Acta – Part B At. Spectrosc., 62(9), 952–961 (2007).
- 74 Y. Kim, N.Y. Kim, S.Y. Park, D.-K. Lee, J.H. Lee, ‘Classification and Individualization of Used Engine Oils Using Elemental Composition and Discriminant Analysis’, Forensic Sci. Int., 230, 58–67 (2013).
- 75 N.W. Bower, S.A. McCants, J.M. Custodio, M.E. Ketterer, S.R. Getty, J.M. Hoffman, ‘Human Lead Exposure in a Late 19th Century Mental Asylum Population’, Sci. Total Environ., 372(2–3), 463–473 (2007).
- 76 O. Dalby, D. Butler, J.W. Birkett, ‘Analysis of Gunshot Residue and Associated Materials – A Review’, J. Forensic Sci., 55(4), 924–943 (2010).
- 77 S. Verma, S. Yadav, I. Singh, ‘Trace Metal Concentration in Different Indian Tobacco Products and Related Health Implications’, Food Chem. Toxicol., 48(8–9), 2291–2297 (2010).
- 78
S.M. Nelms, Inductively Coupled Plasma Mass Spectrometry Handbook, Blackwell Publishing CRC Press, Oxford, 2005.
10.1002/9781444305463 Google Scholar
- 79
R. Thomas, Practical Guide to ICP-MS: A Tutorial for Beginners, CRC Press, Boca Raton, FL, 2013.
10.1201/b14923 Google Scholar
- 80 M. Marcinkowska, D. Barałkiewicz, ‘Multielemental Speciation Analysis by Advanced Hyphenated Technique – HPLC/ICP-MS: A Review’, Talanta, 161, 177–204 (2016).
- 81 L.J.S. Tsuji, B.C. Wainman, I.D. Martin, C. Sutherland, J.-P. Weber, P. Dumas, E. Nieboer, ‘Lead Shot Contribution to Blood Lead of First Nations People: The Use of Lead Isotopes to Identify the Source of Exposure’, Sci. Total Environ., 405(1-3), 180–185 (2008).
- 82
F. Vanhaecke, P. Degryse, Isotopic Analysis - Fundamentals and Applications Using ICPMS, Wiley-VCH Verlag & Co. KGaA, Weinheim, 2012.
10.1002/9783527650484 Google Scholar
- 83 S.F. Boulyga, T. Prohaska, ‘Determining the Isotopic Compositions of Uranium and Fission Products in Radioactive Environmental Microsamples Using Laser Ablation ICP-MS with Multiple Ion Counters’, Anal. Bioanal. Chem., 390(2), 531–539 (2008).
- 84 J. Aggarwal, J. Habicht-Mauche, C. Juarez, ‘Application of Heavy Stable Isotopes in Forensic Isotope Geochemistry: A Review’, Appl. Geochem., 23(9), 2658–2666 (2008).
- 85 A. Zeichner, S. Ehrlich, E. Shoshani, L. Halicz, ‘Application of Lead Isotope Analysis in Shooting Incident Investigations’, Forensic Sci. Int., 158(1), 52–64 (2006).
- 86 P. Degryse, D. De Muynck, S. Delporte, S. Boyen, L. Jadoul, J. De Winne, T. Ivaneanu, F. Vanhaecke, ‘Strontium Isotopic Analysis as an Experimental Auxiliary Technique in Forensic Identification of Human Remains’, Anal. Methods, 4(9), 2674–2679 (2012).
- 87 I. Coelho, I. Castanheira, J.M. Bordado, O. Donard, J.A.L. Silva, ‘Recent Developments and Trends in the Application of Strontium and Its Isotopes in Biological Related Fields’, TrAC Trends Anal. Chem., 90, 45–61 (2017).
- 88
J.S. Sehrawat, J. Kaur, ‘Role of Stable Isotope Analyses in Reconstructing Past Life-Histories and the Provenancing Human Skeletal Remains: A Review’, Anthropol. Rev., 80(3), 243–258 (2017).
10.1515/anre-2017-0017 Google Scholar
- 89 J. Irrgeher, T. Prohaska, ‘Application of Non-Traditional Stable Isotopes in Analytical Ecogeochemistry Assessed by MC ICP-MS – A Critical Review’, Anal. Bioanal. Chem., 408(2), 369–385 (2016).
- 90 R. Clough, P. Evans, T. Catterick, E.H. Evans, ‘δ34S Measurements of Sulfur by Multicollector Inductively Coupled Plasma Mass Spectrometry’, Anal. Chem., 78(17), 6126–6132 (2006).
- 91 R. Santamaria-Fernandez, R. Hearn, J.-C. Wolff, ‘Detection of Counterfeit Tablets of an Antiviral Drug Using δ34S Measurements by MC-ICP-MS and Confirmation by LA-MC-ICP-MS and HPLC-MC-ICP-MS’, J. Anal. At. Spectrom., 23(9), 1294–1299 (2008).
- 92 L. Moenke-Blankenburg, Laser Microanalysis, John Wiley, Toronto, 1989.
- 93 J. Koch, D. Günther ed. J. Lindon, Enceclopedia of Spectroscopy and Spectrometry, Elsevier, Amsterdam, 2010.
- 94 J. Koch, M. Walle, J. Pisonero, D. Gunther, ‘Performance Characteristics of Ultra-Violet Femtosecond Laser Ablation Inductively Coupled Plasma Mass Spectrometry at Similar to 265 and Similar to 200 nm’, J. Anal. At. Spectrom., 21(9), 932–940 (2006).
- 95 B. Fernández, F. Claverie, C. Pécheyran, O.F.X. Donard, F. Claverie, ‘Direct Analysis of Solid Samples by fs-LA-ICP-MS’, TrAC – Trends Anal. Chem., 26(10), 951–966 (2007).
- 96 D. Günther, I. Horn, B. Hattendorf, ‘Recent Trends and Developments in Laser Ablation-ICP-Mass Spectrometry’, Fresenius J. Anal. Chem., 368(1), 45–51 (2000).
- 97 R.E. Russo, X. Mao, H. Liu, J. Gonzalez, S.S. Mao, ‘Laser Ablation in Analytical Chemistry – A Review’, Talanta, 57(3), 425–451 (2002).
- 98 C. Pickhardt, H.J. Dietze, J.S. Becker, ‘Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Direct Isotope Ratio Measurements on Solid Samples’, Int. J. Mass Spectrom., 242(2-3), 273–280 (2005).
- 99
J.S. Becker, J.S. Becker, ‘ Imaging of Metals, Metalloids, and Non-Metals by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) in Biological Tissues’, in Mass Spectrometry Imaging: Principles and Protocols, eds. S.S. Rubakhin, J.V. Sweedler, Springer, Berlin, 51–82, Vol. 656, 2010.
10.1007/978-1-60761-746-4_3 Google Scholar
- 100 F. Alamilla Orellana, C. González Gálvez, M. Torre Roldán, C. García-Ruiz, ‘Applications of Laser-Ablation-Inductively-Coupled Plasma-Mass Spectrometry in Chemical Analysis of Forensic Evidence’, TrAC Trends Anal. Chem., 42, 1–34 (2013).
- 101 M.J. Bailey, B.N. Jones, S. Hinder, J. Watts, S. Bleay, R.P. Webb, ‘Depth Profiling of Fingerprint and Ink Signals by SIMS and MeV SIMS’, Nucl. Instrum. Methods Phys. Res., Sect. B, 268(11–12), 1929–1932 (2010).
- 102 G.L. Gresham, G.S. Groenewold, W.F. Bauer, J.C. Ingram, ‘Secondary Ion Mass Spectrometric Characterization of Nail Polishes and Paint Surfaces’, J. Forensic Sci., 45(2), 310–323 (2000).
- 103 M. Betti, G. Tamborini, L. Koch, ‘Use of Secondary Ion Mass Spectrometry in Nuclear Forensic Analysis for the Characterization of Plutonium and Highly Enriched Uranium Particles’, Anal. Chem., 71(14), 2616–2622 (1999).
- 104 M. Wallenius, K. Lützenkirchen, K. Mayer, I. Ray, L.A. de las Heras, M. Betti, O. Cromboom, M. Hild, B. Lynch, A. Nicholl, H. Ottmar, G. Rasmussen, A. Schubert, G. Tamborini, H. Thiele, W. Wagner, C. Walker, E. Zuleger, ‘Nuclear Forensic Investigations with a Focus on Plutonium’, J. Alloys Compd., 444–445, 57–62 (2007).
- 105 S. Bürger, S.D. Balsley, S. Baumann, J. Berger, S.F. Boulyga, J.A. Cunningham, S. Kappel, A. Koepf, J. Poths, ‘Uranium and Plutonium Analysis of Nuclear Material Samples by Multi-Collector Thermal Ionisation Mass Spectrometry: Quality Control, Measurement Uncertainty, and Metrological Traceability’, Int. J. Mass Spectrom., 311, 40–50 (2012).
- 106 S. Bürger, L.R. Riciputi, S. Turgeon, D. Bostick, E. McBay, M. Lavelle, ‘A High Efficiency Cavity Ion Source Using TIMS for Nuclear Forensic Analysis’, J. Alloys Compd., 444–445, 660–662 (2007).
- 107 K. Mayer, M. Wallenius, T. Fanghänel, ‘Nuclear Forensic Science – From Cradle to Maturity’, J. Alloys Compd., 444–445, 50–56 (2007).
- 108 Y. Saito-Kokubu, D. Suzuki, C.-G. Lee, J. Inagawa, M. Magara, T. Kimura, ‘Application of a Continuous Heating Method Using Thermal Ionization Mass Spectrometry to Measure Isotope Ratios of Plutonium and Uranium in Trace Amounts of Uranium–Plutonium Mixture Sample’, Int. J. Mass Spectrom., 310, 52–56 (2012).
- 109 A. von Quadt, J.-F. Wotzlaw, Y. Buret, S.J.E. Large, I. Peytcheva, A. Trinquier, ‘High-Precision Zircon U/Pb Geochronology by ID-TIMS Using New 10 13 Ohm Resistors’, J. Anal. At. Spectrom., 31(3), 658–665 (2016).
- 110 J. Andrasko, I. Kopp, A. Abrink, T. Skiold, ‘Lead Isotope Ratios in Lead Smears and Bullet Fragments and Application in Firearm Investigations’, J. Forensic Sci., 38(5), 1161–1171 (1993).
- 111 B.-P. Li, J.-X. Zhao, A. Greig, K.D. Collerson, Z.-X. Zhuo, Y.-X. Feng, ‘Potential of Sr Isotopic Analysis in Ceramic Provenance Studies: Characterisation of Chinese Stonewares’, Nucl. Instrum. Methods Phys. Res., Sect. B, 240(3), 726–732 (2005).
- 112 S. Benson, C. Lennard, P. Maynard, C. Roux, ‘Forensic Applications of Isotope Ratio Mass Spectrometry – A Review’, Forensic Sci. Int., 157(1), 1–22 (2006).
- 113 N. Gentile, L. Besson, D. Pazos, O. Delémont, P. Esseiva, ‘On the Use of IRMS in Forensic Science: Proposals for a Methodological Approach’, Forensic Sci. Int., 212(1–3), 260–271 (2011).
- 114 Z. Muccio, G.P. Jackson, ‘Isotope Ratio Mass Spectrometry’, Analyst, 134(2), 213–222 (2009).
- 115 T.E. Cerling, J.E. Barnette, G.J. Bowen, L.A. Chesson, J.R. Ehleringer, C.H. Remien, P. Shea, B.J. Tipple, J.B. West, ‘Forensic Stable Isotope Biogeochemistry’, Annu. Rev. Earth Planet. Sci., 44, 175–206 (2016).
- 116 W. Meier-Augenstein, Stable Isotope Forensics: An Introduction to the Forensic Application of Stable Isotope Analysis, John Wiley & Sons, Chichester, Vol. 3, 2011.
- 117 C. Lennard, Stable Isotope Forensics: An Introduction to the Forensic Application of Stable Isotope Analysis, Taylor & Francis, Boca Raton, FL, 2012.
- 118 W. Meier-Augenstein, ‘Forensic Stable Isotope Signatures: Comparing, Geo-Locating, Detecting Linkage’, Wiley Interdiscip. Rev. Forensic Sci., e1339 (2019).
- 119 M.P. Matos, G.P. Jackson, ‘Isotope Ratio Mass Spectrometry in Forensic Science Applications’, Forensic Chem., 100154 (2019).
- 120 N. Gentile, R.T.W. Siegwolf, P. Esseiva, S. Doyle, K. Zollinger, O. Delemont, ‘Isotope Ratio Mass Spectrometry as a Tool for Source Inference in Forensic Science: A Critical Review’, Forensic Sci. Int., 251, 139–158 (2015).
- 121 E.J. Barber, Radiocarbon age of human bone: Deciphering the fine line between forensics and archaeology, 2016.
- 122 C. Tuniz, U. Zoppi, M.A.C. Hotchkis, ‘Sherlock Holmes Counts the Atoms’, Nucl. Instrum. Methods Phys. Res., Sect. B, 213, 469–475 (2004).
- 123 K.T. Uno, J. Quade, D.C. Fisher, G. Wittemyer, I. Douglas-Hamilton, S. Andanje, P. Omondi, M. Litoroh, T.E. Cerling, ‘Bomb-Curve Radiocarbon Measurement of Recent Biologic Tissues and Applications to Wildlife Forensics and Stable Isotope (Paleo)ecology’, Proc. Natl. Acad. Sci. U. S. A., 110, 11736–11741 (2013).
- 124 M.J. Kristo, S.J. Tumey, ‘The State of Nuclear Forensics’, Nucl. Instrum. Methods Phys. Res., Sect. B, 294, 656–661 (2013).
- 125 J.D. Fassett, L.J. Moore, J.C. Travis, J.R. DeVoe, ‘Laser Resonance Ionization Mass Spectrometry’, Science, 230(4723), 262–267 (1985).
- 126 J.P. Young, R.W. Shaw, D.H. Smith, ‘Resonance Ionization Mass Spectrometry’, Anal Chem., 61(22), 1271 A–1279 A (1989).
- 127 E.K. Bartle, R.J. Watling, ‘Provenance Determination of Oriental Porcelain Using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS)’, J. Forensic Sci., 52(2), 341–348 (2007).
- 128 G.S. Hurst, M.G. Payne, S.D. Kramer, J.P. Young, ‘Resonance Ionization Spectroscopy and One-Atom Detection’, Rev. Mod. Phys., 51(4), 767–819 (1979).
- 129 J. Levine, M.R. Savina, T. Stephan, N. Dauphas, A.M. Davis, K.B. Knight, M.J. Pellin, ‘Resonance Ionization Mass Spectrometry for Precise Measurements of Isotope Ratios’, Int. J. Mass Spectrom., 288(1-3), 36–43 (2009).
- 130 C. Grüning, G. Huber, P. Klopp, J.V. Kratz, P. Kunz, G. Passler, N. Trautmann, A. Waldek, K. Wendt, ‘Resonance Ionization Mass Spectrometry for Ultratrace Analysis of Plutonium with a New Solid State Laser System’, Int. J. Mass Spectrom., 235(2), 171–178 (2004).
- 131 T. Trejos, J.R. Almirall, ‘Sampling Strategies for the Analysis of Glass Fragments by LA-ICP-MS: Part I. Micro-Homogeneity Study of Glass and Its Application to the Interpretation of Forensic Evidence’, Talanta, 67(2), 388–395 (2005).
- 132 Y. Suzuki, R. Sugita, S. Suzuki, Y. Marumo, ‘Forensic Discrimination of Bottle Glass by Refractive Index Measurement and Analysis of Trace Elements with ICP-MS’, Anal. Sci., 16(11), 1195–1198 (2000).
- 133 J. Almirall, B. Naes, E. Cahoon, T. Trejos, Elemental Analysis of Glass by SEM-EDS, μXRF, LIBS and LA-ICP-MS, Department of Chemistry and Biochemistry and International Forensic Research Institute, Florida International University, Miami, FL, 2012.
- 134 S. Gao, X. Liu, H. Yuan, B. Hattendorf, D. Günther, L. Chen, S. Hu, ‘Determination of Forty Two Major and Trace Elements in USGS and NIST SRM Glasses by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry’, Geostand. Newslett., 26(2), 181–196 (2002).
- 135 K.P. Jochum, B. Stoll, K. Herwig, M. Willbold, A.W. Hofmann, M. Amini, S. Aarburg, W. Abouchami, E. Hellebrand, B. Mocek, I. Raczek, A. Stracke, O. Alard, C. Bouman, S. Becker, M. Dücking, H. Brätz, R. Klemd, D. de Bruin, D. Canil, D. Cornell, C.-J. de Hoog, C. Dalpé, L. Danyushevsky, A. Eisenhauer, Y. Gao, J.E. Snow, N. Groschopf, D. Günther, C. Latkoczy, M. Guillong, E.H. Hauri, H.E. Höfer, Y. Lahaye, K. Horz, D.E. Jacob, S.A. Kasemann, A.J.R. Kent, T. Ludwig, T. Zack, P.R.D. Mason, A. Meixner, M. Rosner, K. Misawa, B.P. Nash, J. Pfänder, W.R. Premo, W.D. Sun, M. Tiepolo, R. Vannucci, T. Vennemann, D. Wayne, J.D. Woodhead, ‘MPI-DING Reference Glasses for In Situ Microanalysis: New Reference Values for Element Concentrations and Isotope Ratios’, Geochem., Geophys. Geosyst., 7(2), Q02008 (2006).
- 136 K.P. Jochum, D.B. Dingwell, A. Rocholl, B. Stoll, A.W. Hofmann, S. Becker, A. Besmehn, D. Bessette, H.J. Dietze, P. Dulski, ‘The Preparation and Preliminary Characterisation of Eight Geological MPI-DING Reference Glasses for In-Situ Microanalysis’, Geostand. Newslett., 24(1), 87–133 (2000).
- 137 R.F. Coleman, G.C. Goode, ‘Comparison of Glass Fragments by Neutron Activation Analysis’, J. Radioanal. Chem., 15(1), 367–388 (1973).
- 138 Y. Kanda, T. Oikawa, T. Niwaguchi, ‘Multi-Element Determinations of Trace Elements in Glass by Instrumental Photon Activation Analysis’, Anal. Chim. Acta, 121(C), 157–163 (1980).
- 139
V. Ravnik, M. Dermelj, L. Kosta, ‘Determination of Some Trace Elements (Fe, Co, Cr, Zn, Cu, Mn, and In) in Different Series of Standard Reference Samples by Neutron-Activation Analysis’, Mikrochim. Acta, 65(2-3), 153–164 (1976).
10.1007/BF01217822 Google Scholar
- 140 J.C. Hughes, T. Catterick, G. Southeard, ‘The Quantitative Analysis of Glass by Atomic Absorption Spectroscopy’, Forensic Sci., 8, 217–227 (1976).
- 141 T. Catterick, C.D. Wall, ‘Rapid Analysis of Small Glass Fragments by Atomic-Absorption Spectroscopy’, Talanta, 25(10), 573–577 (1978).
- 142 D.A. Hickman, ‘Elemental Analysis and the Discrimination of Sheet Glass Samples’, Forensic Sci. Int., 23((2–3), 223), 213 (1983).
- 143 R.D. Koons, C.A. Peters, P.S. Rebbert, ‘Comparison of Refractive Index, Energy Dispersive X-Ray Fluorescence and Inductively Coupled Plasma Atomic Emission Spectrometry for Forensic Characterization of Sheet Glass Fragments’, J. Anal. At. Spectrom., 6(6), 451–456 (1991).
- 144 T. Trejos, W. Castro, J.R. Almirall, Elemental Analysis of Glass and Paint Materials by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) for Forensic Application, 2006.
- 145 T. Trejos, S. Montero, J.R. Almirall, ‘Analysis and Comparison of Glass Fragments by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) and ICP-MS’, Anal. Bioanal. Chem., 376(8), 1255–1264 (2003).
- 146 K. Smith, T. Trejos, R.J. Watling, J. Almirall, ‘A Guide for the Quantitative Elemental Analysis of Glass Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry’, At. Spectrosc., 27(3), 69–75 (2006).
- 147 A. Zurhaar, L. Mullings, ‘Characterisation of Forensic Glass Samples Using Inductively Coupled Plasma Mass Spectrometry’, J. Anal. At. Spectrom., 5(7), 611–617 (1990).
- 148 T. Parouchais, I. Warner, L. Palmer, H. Kobus, ‘The Analysis of Small Glass Fragments Using Inductively Coupled Plasma Mass Spectrometry’, J. Forensic Sci., 41(3), 351–360 (1996).
- 149 W.T. Perkins, N.J.G. Pearce, T.E. Jeffries, ‘Laser Ablation Inductively Coupled Plasma Mass Spectrometry: A New Technique for the Determination of Trace and Ultra-Trace Elements in Silicates’, Geochim. Cosmochim. Acta, 57(2), 475–482 (1993).
- 150 D.C. Duckworth, S.J. Morton, C.K. Bayne, R.D. Koons, S. Montero, J.R. Almirall, ‘Forensic Glass Analysis by ICP-MS: A Multi-Element Assessment of Discriminating Power Via Analysis of Variance and Pairwise Comparisons’, J. Anal. At. Spectrom., 17(7), 662–668 (2002).
- 151 W. Castro, T. Trejos, B. Naes, J.R. Almirall, ‘Comparison of High-Resolution and Dynamic Reaction Cell ICP-MS Capabilities for Forensic Analysis of Iron in Glass’, Anal. Bioanal. Chem., 392(4), 663–672 (2008).
- 152 T. Trejos, J.R. Almirall, ‘Sampling Strategies for the Analysis of Glass Fragments by LA-ICP-MS: Part II: Sample Size and Sample Shape Considerations’, Talanta, 67(2), 396–401 (2005).
- 153 B.E. Naes, S. Umpierrez, S. Ryland, C. Barnett, J.R. Almirall, ‘A Comparison of Laser Ablation Inductively Coupled Plasma Mass Spectrometry, Micro X-Ray Fluorescence Spectroscopy, and Laser Induced Breakdown Spectroscopy for the Discrimination of Automotive Glass’, Spectrochim. Acta – Part B At. Spectrosc., 63(10), 1145–1150 (2008).
- 154 T. Hoffman, R. Corzo, P. Weis, E. Pollock, A. van Es, W. Wiarda, A. Stryjnik, H. Dorn, A. Heydon, E. Hoise, S. Le Franc, X. Huifang, B. Pena, T. Scholz, J. Gonzalez, J. Almirall, ‘An Inter-Laboratory Evaluation of LA-ICP-MS Analysis of Glass and the Use of a Database for the Interpretation of Glass Evidence’, Forensic Chem., 11, 65–76 (2018).
- 155 M. Resano, P. Marzo, J. Perez-Arantegui, M. Aramendia, C. Cloquet, F. Vanhaecke, ‘Laser Ablation-Inductively Coupled Plasma-Dynamic Reaction Cell-Mass Spectrometry for the Determination of Lead Isotope Ratios in Ancient Glazed Ceramics for Discriminating Purposes’, J. Anal. At. Spectrom., 23(9), 1182–1191 (2008).
- 156 G. Schultheis, T. Prohaska, G. Stingeder, K. Dietrich, D. Jembrih-Simbürger, M. Schreiner, ‘Characterisation of Ancient and Art Nouveau Glass Samples by Pb Isotopic Analysis Using Laser Ablation Coupled to a Magnetic Sector Field Inductively Coupled Plasma Mass Spectrometer (LA-ICP-SF-MS)’, J. Anal. At. Spectrom., 19(7), 838–843 (2004).
- 157 A. Martyna, K.-E. Sjastad, G. Zadora, D. Ramos, ‘Analysis of Lead Isotopic Ratios of Glass Objects with the Aim of Comparing them for Forensic Purposes’, Talanta, 105, 158–166 (2013).
- 158 K.-E. Sjastad, S.L. Simonsen, T. Andersen, ‘Use of Lead Isotopic Ratios to Discriminate Glass Samples in Forensic Science’, J. Anal. At. Spectrom., 26(2), 325–333 (2011).
- 159 I. Liritzis, N. Zacharias, ‘ X-Ray Fluorescence Spectrometry (XRF)’, in Geoarchaeology, 8th edition, ed. M.S. Shackley, Springer, Berkeley, CA, 2011.
- 160 M. Guillong, D. Günther, ‘Quasi ‘Non-Destructive’ Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Fingerprinting of Sapphires’, Spectrochim. Acta – Part B At. Spectrosc., 56(7), 1219–1231 (2001).
- 161 M. Resano, F. Vanhaecke, D. Hutsebaut, K. De Corte, L. Moens, ‘Possibilities of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry for Diamond Fingerprinting’, J. Anal. At. Spectrom., 18(10), 1238–1242 (2003).
- 162 G.H. Fontaine, K. Hametner, A. Peretti, D. Günther, ‘Authenticity and Provenance Studies of Copper-Bearing Andesines Using Cu Isotope Ratios and Element Analysis by fs-LA-MC-ICPMS and ns-LA-ICPMS’, Anal. Bioanal. Chem., 398(7-8), 2915–2928 (2010).
- 163
Y. Suzuki, T. Igawa, M. Kasamatsu, D. Kokubu, A. Funatsuki, ‘Forensic Discrimination of Automotive Sheet Glass Manufactured in a Same Production Line by Quantitative Analysis of Iron Using an ICP-QMS/QMS with an Octapole Reaction Cell’, Jpn. J. Forensic Sci. Technol., 24, 115–121 (2019).
10.3408/jafst.752 Google Scholar
- 164
B.W. Kammrath, A.C. Koutrakos, M.E. McMahon, J.A. Reffner, ‘ The Forensic Analysis of Glass Evidence: Past, Present, and Future’, in Forensic Science: A Multidisciplinary Approach, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2016.
10.1002/9783527693535.ch14 Google Scholar
- 165 Y. Nishiwaki, M. Takatsu, N. Miyamoto, S. Watanabe, O. Shimoda, S. Muratsu, T. Nakanishi, I. Nakai, ‘Analysis of Trace Elements in Ceramic Prints on Automobile Glasses for Forensic Examination Using High-Energy Synchrotron Radiation X-Ray Fluorescence Spectrometry’, Bunseki Kagaku (Japan Analyst), 56(12), 1045–1051 (2007).
- 166 E. Muccino, G.F. Giovanetti, G.D.L. Crudele, G. Gentile, M. Marchesi, A. Rancati, R. Zoja, ‘Characterisation of the Weapon Used in a Patricide by SEM/EDS Analysis of a Microscopic Trace from the Object’, Med. Sci. Law, 56(3), 221–226 (2015).
- 167
R.M. Di Maggio, P.M. Barone, Geoscientists at Crime Scenes: A Companion to Forensic Geoscience, Springer International Publishing, Basel, 2017.
10.1007/978-3-319-58048-7 Google Scholar
- 168 D.G. Poolman, P.C. Pistorius, ‘The Possibility of Using Elemental Analysis to Identify Debris from the Cutting of Mild Steel’, J. Forensic Sci., 41(6), 998–1004 (1996).
- 169 R.C. Carpenter, ‘The Analysis of Casework Sized Alloy Fragments by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) Using Discrete Nebulisation’, Forensic Sci. Int., 27(3), 165–170 (1985).
- 170 R.D. Koons, C.A. Peters, R.A. Merrill, ‘Forensic Comparison of Household Aluminum Foils Using Elemental Composition by Inductively Coupled Plasma-Atomic Emission Spectrometry’, J. Forensic Sci., 38(2), 302–315 (1993).
- 171 X. Feng, G. Horlick, ‘Analysis of Aluminium Alloys Using Inductively Coupled Plasma and Glow Discharge Mass Spectrometry’, J. Anal. At. Spectrom., 9(8), 823–831 (1994).
- 172 L. Balcaen, L. Moens, F. Vanhaecke, ‘Determination of Isotope Ratios of Metals (and Metalloids) by Means of Inductively Coupled Plasma-Mass Spectrometry for Provenancing Purposes – A Review’, Spectrochim. Acta B At. Spectrosc., 65(9–10), 769–786 (2010).
- 173 D.F. Rendle, ‘Analysis of Brass by X-Ray Powder Diffraction’, J. Forensic Sci., 26(2), 343–351 (1981).
- 174 J. Vogl, Y.H. Yim, K.S. Lee, H. Goenaga-Infante, D. Malinovskiy, R.D. Vocke, K. Murphy, N. Nonose, O. Rienitz, J. Noordmann, T. Näykki, T. Sara-Aho, B. Ari, O. Cankur, CCQM-P134 Pb Isotope Amount Ratios and Delta-Values in Bronze, BIPM (Bureau International des Poids et Mesures), Paris, 1–42, 2017.
- 175 E. Randich, W. Duerfeldt, W. McLendon, W. Tobin, ‘A Metallurgical Review of the Interpretation of Bullet Lead Compositional Analysis’, Forensic Sci. Int., 127(3), 174–191 (2002).
- 176 F.S. Romolo, P. Margot, ‘Identification of Gunshot Residue: A Critical Review’, Forensic Sci. Int., 119(2), 195–211 (2001).
- 177 K.E. Seyfang, N. Lucas, R.S. Popelka-Filcoff, H.J. Kobus, K.E. Redman, K.P. Kirkbride, ‘Methods for Analysis of Glass in Glass-Containing Gunshot Residue (gGSR) Particles’, Forensic Sci. Int., 298, 359–371 (2019).
- 178 A. Zeichner, ‘Recent Developments in Methods of Chemical Analysis in Investigations of Firearm-Related Events’, Anal. Bioanal. Chem., 376(8), 1178–1191 (2003).
- 179 H.C. Harrison, R. Gilroy, ‘Firearms Discharge Residue’, J. Forensic Sci., 4, 184–199 (1959).
- 180 J.S. Wallace, J. McQuillan, ‘Discharge Residues from Cartridge-Operated Industrial Tools’, J. Forensic Sci. Soc., 24(5), 495–508 (1984).
- 181 D.B. Dahl, P.F. Lott, ‘Gunshot Residue Determination by Means of Gunpowder Stabilizers Using High-Performance Liquid Chromatography with Electrochemical Detection and Analysis of Metallic Residues by Graphite Furnace Atomic Absorption Spectrophotometry’, Microchem. J., 35(3), 347–359 (1987).
- 182 R.D. Koons, D.G. Havekost, C.A. Peters, ‘Analysis of Gunshot Primer Residue Collection Swabs Using Flameless Atomic Absorption Spectrophotometry and Inductively Coupled Plasma-Atomic Emission Spectrometry: Effects of a Modified Extraction Procedure and Storage of Standards’, J. Forensic Sci., 34(1), 218–221 (1989).
- 183 T. Dufosse, P. Touron, ‘Comparison of Bullet Alloys by Chemical Analysis: Use of ICP-MS Method’, Forensic Sci. Int., 91(3), 197–206 (1998).
- 184 J. Flynn, M. Stoilovic, C. Lennard, I. Prior, H. Kobus, ‘Evaluation of X-Ray Microfluorescence Spectrometry for the Elemental Analysis of Firearm Discharge Residues’, Forensic Sci. Int., 97(1), 21–36 (1998).
- 185 J.E. Souza Sarkis, O.N. Neto, S. Viebig, S.F. Durrant, ‘Measurements of Gunshot Residues by Sector Field Inductively Coupled Plasma Mass Spectrometry – Further Studies with Pistols’, Forensic Sci. Int., 172(1), 63–66 (2007).
- 186 M. Aliste, L.G. Chávez, ‘Analysis of Gunshot Residues as Trace in Nasal Mucus by GFAAS’, Forensic Sci. Int., 261, 14–18 (2016).
- 187 A.F. Sedda, G. Rossi, ‘Bullets Fragments Identification by Comparison of Their Chemical Composition Obtained Using Instrumental Neutron Activation Analysis’, Forensic Sci. Int., 206(1–3), e5–e7 (2011).
- 188 R.L. Brunelle, R.W. Reed, Forensic Examination of Ink and Paper, Charles C. Thomas Publisher Ltd, Springfield, IL, 1984.
- 189
J.P. Murphy, ‘ Paper Analysis’, in Wiley Encyclopedia of Forensic Science, John Wiley & Sons, Ltd, Chichester, 2009.
10.1002/9780470061589.fsa334 Google Scholar
- 190 W.J. Egan, R.C. Galipo, B.K. Kochanowski, S.L. Morgan, E.G. Bartick, M.L. Miller, D.C. Ward, R.F. Mothershead Ii, ‘Forensic Discrimination of Photocopy and Printer Toners. III. Multivariate Statistics Applied to Scanning Electron Microscopy and Pyrolysis Gas Chromatography/Mass Spectrometry’, Anal. Bioanal. Chem., 376(8), 1286–1297 (2003).
- 191 H.A. Foner, N. Adan, ‘The Characterization of Papers by X-Ray Diffraction (XRD): Measurement of Cellulose Crystallinity and Determination of Mineral Composition’, J. Forensic Sci. Soc., 23(4), 313–321 (1983).
- 192 V. Causin, C. Marega, A. Marigo, R. Casamassima, G. Peluso, L. Ripani, ‘Forensic Differentiation of Paper by X-Ray Diffraction and Infrared Spectroscopy’, Forensic Sci. Int., 197(1–3), 70–74 (2010).
- 193 L.D. Spence, A.T. Baker, J.P. Byrne, ‘Characterization of Document Paper Using Elemental Compositions Determined by Inductively Coupled Plasma Mass Spectrometry’, J. Anal. At. Spectrom., 15(7), 813–819 (2000).
- 194 L.D. Spence, R.B. Francis, U. Tinggi, ‘Comparison of the Elemental Composition of Office Document Paper: Evidence in a Homicide Case’, J. Forensic Sci., 47(3), 648–651 (2002).
- 195 E.A. McGaw, D.W. Szymanski, R.W. Smith, ‘Determination of Trace Elemental Concentrations in Document Papers for Forensic Comparison Using Inductively Coupled Plasma-Mass Spectrometry’, J. Forensic Sci., 54(5), 1163–1170 (2009).
- 196 T. Trejos, A. Flores, J.R. Almirall, ‘Micro-Spectrochemical Analysis of Document Paper and Gel Inks by Laser Ablation Inductively Coupled Plasma Mass Spectrometry and Laser Induced Breakdown Spectroscopy’, Spectrochim. Acta – Part B At. Spectrosc., 65(11), 884–895 (2010).
- 197 F. Alamilla, M. Calcerrada, C. García-Ruiz, M. Torre, ‘Forensic Discrimination of Blue Ballpoint Pens on Documents by Laser Ablation Inductively Coupled Plasma Mass Spectrometry and Multivariate Analysis’, Forensic Sci. Int., 228(1–3), 1–7 (2013).
- 198 M.I. Szynkowska, K. Czerski, T. Paryjczak, A. Parczewski, ‘Ablative Analysis of Black and Colored Toners Using LA-ICP-TOF-MS for the Forensic Discrimination of Photocopy and Printer Toners’, Surf. Interface Anal., 42(5), 429–437 (2010).
- 199 S. Dhara, N.L. Misra, S.D. Maind, S.A. Kumar, N. Chattopadhyay, S.K. Aggarwal, ‘Forensic Application of Total Reflection X-Ray Fluorescence Spectrometry for Elemental Characterization of Ink Samples’, Spectrochim. Acta B At. Spectrosc., 65(2), 167–170 (2010).
- 200 K. Jones, S. Benson, C. Roux, ‘The Forensic Analysis of Office Paper Using Carbon Isotope Ratio Mass Spectrometry – Part 1: Understanding the Background Population and Homogeneity of Paper for the Comparison and Discrimination of Samples’, Forensic Sci. Int. (2013).
- 201 J.M. Gallo, J.R. Almirall, ‘Elemental Analysis of White Cotton Fiber Evidence Using Solution ICP-MS and Laser Ablation ICP-MS (LA-ICP-MS)’, Forensic Sci. Int., 190(1–3), 52–57 (2009).
- 202 J. Lee, C. Lee, K. Lee, Y. Lee, ‘TOF-SIMS study of Red Sealing-Inks on Paper and Its Forensic Applications’, Appl. Surf. Sci., 255(4), 1523–1526 (2008).
- 203 L.A. Chesson, B.J. Tipple, J.E. Barnette, T.E. Cerling, J.R. Ehleringer, ‘The Potential for Application of Ink Stable Isotope Analysis in Questioned Document Examination’, Sci. Justice, 55(1), 27–33 (2015).
- 204 A.L. Hobbs, J.R. Almirall, ‘Trace Elemental Analysis of Automotive Paints by Laser Ablation–Inductively Coupled Plasma–Mass Spectrometry (LA–ICP–MS)’, Anal. Bioanal. Chem., 376(8), 1265–1271 (2003).
- 205 I. Deconinck, C. Latkoczy, D. Günther, F. Govaert, F. Vanhaecke, ‘Capabilities of Laser Ablation – Inductively Coupled Plasma Mass Spectrometry for (Trace) Element Analysis of Car Paints for Forensic Purposes’, J. Anal. At. Spectrom., 21(3), 279–287 (2006).
- 206 R.L. Green, R.J. Watling, ‘Trace Element Fingerprinting of Australian Ocher Using Laser Ablation Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) for the Provenance Establishment and Authentication of Indigenous Art’, J. Forensic Sci., 52(4), 851–859 (2007).
- 207 N. Farmer, W. Meier-Augenstein, D. Lucy, ‘Stable Isotope Analysis of White Paints and Likelihood Ratios’, Sci. Justice, 49(2), 114–119 (2009).
- 208 H.F. Kemp, W. Meier-Augenstein, ‘Human Provenancing of Mutilated Murder Victims Through Stable Isotope Profiles’, Minerva Med., 129(4), 219–231 (2009).
- 209 W. Meier-Augenstein, I. Fraser, ‘Forensic Isotope Analysis Leads to Identification of a Mutilated Murder Victim’, Sci. Justice, 48(3), 153–159 (2008).
- 210 G. Michalski, S. Earman, C. Dahman, R.L. Hershey, T. Mihevc, ‘Multiple Isotope Forensics of Nitrate in a Wild Horse Poisoning Incident’, Forensic Sci. Int., 198(1-3), 103–109 (2010).
- 211 E. Rauch, S. Rummel, C. Lehn, A. Büttner, ‘Origin Assignment of Unidentified Corpses by Use of Stable Isotope Ratios of Light (Bio-) And Heavy (Geo-) Elements – A Case Report’, Forensic Sci. Int., 168(2-3), 215–218 (2007).
- 212 K. Virkler, I.K. Lednev, ‘Analysis of Body Fluids for Forensic Purposes: From Laboratory Testing to Non-Destructive Rapid Confirmatory Identification at a Crime Scene’, Forensic Sci. Int., 188(1–3), 1–17 (2009).
- 213 S. D'Ilio, N. Violante, M. Di Gregorio, O. Senofonte, F. Petrucci, ‘Simultaneous Quantification of 17 Trace Elements in Blood by Dynamic Reaction Cell Inductively Coupled Plasma Mass Spectrometry (DRC-ICP-MS) Equipped with a High-Efficiency Sample Introduction System’, Anal. Chim. Acta, 579(2), 202–208 (2006).
- 214 V.L. Dressler, F.G. Antes, C.M. Moreira, D. Pozebon, F.A. Duarte, ‘As, Hg, I, Sb, Se and Sn Speciation in Body Fluids and Biological Tissues Using Hyphenated-ICP-MS Techniques: A Review’, Int. J. Mass Spectrom., 307(1–3), 149–162 (2011).
- 215 J. Delafiori, G. Ring, A. Furey, ‘Clinical Applications of HPLC–ICP-MS Element Speciation: A Review’, Talanta, 153, 306–331 (2016).
- 216 T. Agusa, P.T.K. Trang, V.M. Lan, D.H. Anh, S. Tanabe, P.H. Viet, M. Berg, ‘Human Exposure to Arsenic From Drinking Water in Vietnam’, Sci. Total Environ., 488-489, 562–569 (2014).
- 217 M. Parent, P. Hantson, V. Haufroid, J.-F. Heilier, P. Mahieu, F. Bonbled, ‘Invasive Aspergillosis in Association with Criminal Arsenic Poisoning’, J. Clin. Forensic Med., 13(3), 139–143 (2006).
- 218 T. Lech, F. Trela, ‘Massive Acute Arsenic Poisonings’, Forensic Sci. Int., 151((2–3)), 273–277 (2005).
- 219 B.K. Mandal, Y. Ogra, K.T. Suzuki, ‘Identification of Dimethylarsinous and Monomethylarsonous Acids in Human Urine of the Arsenic-Affected Areas in West Bengal’, India Chem. Res. Toxicol., 14(4), 371–378 (2001).
- 220 A.A. Meharg, P.N. Williams, C.M. Deacon, G.J. Norton, M. Hossain, D. Louhing, E. Marwa, Y. Lawgalwi, M. Taggart, C. Cascio, P. Haris, ‘Urinary Excretion of Arsenic Following Rice Consumption’, Environ. Pollut., 194, 181–187 (2014).
- 221 T. Liu, H. Guo, W. Xiu, C. Wei, X. Li, Z. Di, W. Song, ‘Biomarkers of Arsenic Exposure in Arsenic-Affected Areas of the Hetao Basin’, Inner Mongolia. Sci.Total Environ., 609, 524–534 (2017).
- 222 K. Nganvongpanit, K. Buddhachat, P. Piboon, T. Euppayo, P. Mahakkanukrauh, ‘Variation in Elemental Composition of Human Teeth and Its Application for Feasible Species Identification’, Forensic Sci. Int., 271, 33–42 (2017).
- 223
L.A. Chesson, B.J. Tipple, L.V. Youmans, M.A. O'Brien, M.M. Harmon, ‘ Forensic Identification of Human Skeletal Remains Using Isotopes: A Brief History of Applications From Archaeological Dig Sites to Modern Crime Scenes’, in New Perspectives in Forensic Human Skeletal Identification, Elsevier, Academic Press, Massachusetts, 157–173, 2018.
10.1016/B978-0-12-805429-1.00014-4 Google Scholar
- 224
E.J. Bartelink, G.E. Berg, M.M. Beasley, L.A. Chesson, ‘Application of Stable Isotope Forensics for Predicting Region of Origin of Human Remains from Past Wars and Conflicts’, Ann. Anthropol. Pract., 38(1), 124–136 (2014).
10.1111/napa.12047 Google Scholar
- 225 J. Beaumont, A. Gledhill, J. Lee-Thorp, J. Montgomery, ‘Childhood Diet: A Closer Examination of the Evidence from Dental Tissues Using Stable Isotope Analysis of Incremental Human Dentine’, Archaeometry, 55(2), 277–295 (2013).
- 226 I.D. Bull, R. Berstan, A. Vass, R.P. Evershed, ‘Identification of a Disinterred Grave by Molecular and Stable Isotope Analysis’, Sci. Justice, 49(2), 142–149 (2009).
- 227 I. János, L. Szathmáry, E. Nádas, A. Béni, Z. Dinya, E. Máthé, ‘Evaluation of Elemental Status of Ancient Human Bone Samples from Northeastern Hungary Dated to the 10th Century AD by XRF’, Nucl. Instrum. Methods Phys. Res., Sect. B, 269(21), 2593–2599 (2011).
- 228 G. Piga, A. Santos-Cubedo, S. Moya Solà, A. Brunetti, A. Malgosa, S. Enzo, ‘An X-ray Diffraction (XRD) and X-ray Fluorescence (XRF) Investigation in Human and Animal Fossil Bones from Holocene to Middle Triassic’, J. Archaeol. Sci., 36(9), 1857–1868 (2009).
- 229 M.W. Warren, A.B. Falsetti, I.I. Kravchenko, F.E. Dunnam, H.A. Van Rinsvelt, W.R. Maples, ‘Elemental Analysis of Bone: Proton-Induced X-Ray Emission Testing in Forensic Cases’, Forensic Sci. Int., 125(1), 37–41 (2002).
- 230 W. Castro, J. Hoogewerff, C. Latkoczy, J.R. Almirall, ‘Application of Laser Ablation (LA-ICP-SF-MS) for the Elemental Analysis of Bone and Teeth Samples for Discrimination Purposes’, Forensic Sci. Int., 195(1–3), 17–27 (2010).
- 231 J. Montgomery, ‘Passports from the Past: Investigating Human Dispersals Using Strontium Isotope Analysis of Tooth Enamel’, Ann. Hum. Biol., 37(3), 325–346 (2010).
- 232 A. Kumagai, Y. Fujita, S. Endo, K. Itai, ‘Concentrations of Trace Element in Human Dentin by Sex and Age’, Forensic Sci. Int., 219(1-3), 29–32 (2012).
- 233 G.D. Kamenov, B.L. Gulson, ‘The Pb Isotopic Record of Historical to Modern Human Lead Exposure’, Sci. Total Environ., 490, 861–870 (2014).
- 234 N. Robbins, Z.-F. Zhang, J. Sun, M.E. Ketterer, J.A. Lalumandier, R.A. Shulze, ‘Childhood lead Exposure and Uptake in Teeth in the Cleveland Area During the Era of Leaded Gasoline’, Sci. Total Environ., 408(19), 4118–4127 (2010).
- 235 T. Uryu, J. Yoshinaga, Y. Yanagisawa, M. Endo, J. Takahashi, ‘Analysis of Lead in Tooth Enamel by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry’, Anal. Sci., 19(10), 1413–1416 (2003).
- 236 B.L. Beard, C.M. Johnson, ‘Strontium Isotope Composition of Skeletal Material can Determine the Birth Place and Geographic Mobility of Humans and Animals’, J. Forensic Sci., 45(5), 1049–1061 (2000).
- 237 R.A. Bentley, ‘Strontium Isotopes from the Earth to the Archaeological Skeleton: A Review’, J. Archaeol. Method Theory, 13(3), 135–187 (2006).
- 238 R.C. Capo, B.W. Stewart, O.A. Chadwick, ‘Strontium Isotopes as Tracers of Ecosystem Processes: Theory and Methods’, Geoderma, 82(1–3), 197–225 (1998).
- 239 J.E. Ericson, ‘Strontium Isotope Characterization in the Study of Prehistoric Human Etiology’, J. Hum. Evol., 14(5), 503–514 (1985).
- 240 M.Q.R. Bastos, R.V. Santos, S.M.F.M. De Souza, C. Rodrigues-Carvalho, R.H. Tykot, D.C. Cook, R.V. Santos, ‘Isotopic Study of Geographic Origins and Diet of ENSLAVED AFRICANS BURIED in two Brazilian Cemeteries’, J. Archaeol. Sci., 70, 82–90 (2016).
- 241 G.T. Cook, A.B. Mackenzie, ‘Radioactive Isotope Analyses of Skeletal Materials in Forensic Science: A Review of Uses and Potential Uses’, Int. J. Legal Med., 128(4), 685–698 (2014).
- 242 D.H. Ubelaker, ‘Radiocarbon Analysis of Human Remains: A Review of Forensic Applications’, J. Forensic Sci., 59(6), 1466–1472 (2014).
- 243 N. Wang, C.D. Shen, P. Ding, W.X. Yi, W.D. Sun, K.X. Liu, X.F. Ding, D.P. Fu, J. Yuan, X.Y. Yang, L.P. Zhou, ‘Improved Application of Bomb Carbon in Teeth for Forensic Investigation’, Radiocarbon, 52, 706–716 (2010).
- 244 C. Solis, E. Solis-Meza, M.E. Morales, M. Rodriguez-Ceja, M.A. Martínez-Carrillo, D. Garcia-Calderon, A. Huerta, E. Chávez, ‘AMS- 14 C analysis of modern teeth: A comparison between two sample preparation techniques’, Nucl. Instrum. Methods Phys. Res., Sect. B, 406, 292–295 (2017).
- 245 J.L. Casper, Praktisches Handbuchder Gerichtlichen Medizin, Hirschwald, Berlin, Vol. 2, 1857–58.
- 246
T. Althausen, L. Gunther, ‘Acute Arsenic Poisoning: A Report of Seven Cases and a Study of Arsenic Excretion with Especial Reference to the Hair’, J. Am. Med. Assoc., 92(24), 2002–2006 (1929).
10.1001/jama.1929.02700500014005 Google Scholar
- 247 N. Violante, O. Senofonte, G. Marsili, P. Meli, M.E. Soggiu, S. Caroli, ‘Human Hair as a Marker of Pollution by Chemical Elements Emitted by a Thermoelectric Power Plant’, Microchem. J., 67(1–3), 397–405 (2000).
- 248 F. D'Urso, A. Salomone, F. Seganti, M. Vincenti, ‘Identification of Exposure to Toxic Metals by Means of Segmental Hair Analysis: A Case Report of Alleged Chromium Intoxication’, Forensic Toxicol., 35(1), 195–200 (2017).
- 249 B. Lemos Batista, J. Lisboa Rodrigues, V.C. de Oliveira Souza, F. Barbosa Jr., ‘A Fast Ultrasound-Assisted Extraction Procedure for Trace Elements Determination in Hair Samples by ICP-MS for Forensic Analysis’, Forensic Sci. Int., 192(1–3), 88–93 (2009).
- 250 J.L. Rodrigues, J.A. Nunes, B.L. Batista, S. Simiao de Souza, F. Barbosa Jr., ‘A Fast Method for the Determination of 16 Elements in Hair Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) with Tetramethylammonium Hydroxide Solubilization at Room Temperature’, J. Anal. At. Spectrom., 23(7), 992–996 (2008).
- 251 S.K. Sahoo, S. Mishra, Z.S. Žunić, H. Arae, F. Gjergj, P. Stegnar, L. Benedik, U. Repinc, R. Kritsananuwat, ‘Distribution of Uranium and Selected Trace Metals in Balkan Human Scalp Hair Using Inductively Coupled Plasma Mass Spectrometry’, Int. J. Mass Spectrom., 373, 15–21 (2014).
- 252 D. Pozebon, G.L. Scheffler, V.L. Dressler, ‘Elemental Hair Analysis: A Review of Procedures and Applications’, Anal. Chim. Acta, 992, 1–23 (2017).
- 253 L. Rahman, W.T. Corns, D.W. Bryce, P.B. Stockwell, ‘Determination of Mercury, Selenium, Bismuth, Arsenic and Antimony in Human Hair by Microwave Digestion Atomic Fluorescence Spectrometry’, Talanta, 52(5), 833–843 (2000).
- 254 R. Wennig, ‘Potential Problems with the Interpretation of Hair Analysis Results’, Forensic Sci. Int., 107(1–3), 5–12 (2000).
- 255 S.F. Durrant, N.I. Ward, ‘Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) for the Multielemental Analysis of Biological Materials: A Feasibility Study’, Food Chem., 49(3), 317–323 (1994).
- 256 R.D. Ash, M. He, ‘Details of a Thallium Poisoning Case Revealed by Single Hair Analysis Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry’, Forensic Sci. Int., 292, 224–231 (2018).
- 257 P. Cheajesadagul, W. Wananukul, A. Siripinyanond, J. Shiowatana, ‘Metal Doped Keratin Film Standard for LA-ICP-MS Determination of Lead in Hair Samples’, J. Anal. At. Spectrom., 26(3), 493–498 (2011).
- 258 U. Kumtabtim, A. Matusch, S. Ulhoa Dani, A. Siripinyanond, S.J. Becker, ‘Biomonitoring for Arsenic, Toxic and Essential Metals in Single Hair Strands by Laser Ablation Inductively Coupled Plasma Mass Spectrometry’, Int. J. Mass Spectrom., 307(1–3), 185–191 (2011).
- 259 D. Pozebon, V.L. Dressler, A. Matusch, J.S. Becker, ‘Monitoring of Platinum in a Single Hair by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) After Cisplatin Treatment for Cancer’, Int. J. Mass Spectrom., 272(1), 57–62 (2008).
- 260 L. Zeb, Multi Elements and Isotope Ratio Analysis in Biological Samples for by LA-ICPMS, 2011.
- 261 C. Stadlbauer, T. Prohaska, C. Reiter, A. Knaus, G. Stingeder, ‘Time-Resolved Monitoring of Heavy-Metal Intoxication in Single Hair by Laser Ablation ICP–DRCMS’, Anal. Bioanal. Chem., 383(3), 500–508 (2005).
- 262 E. Mützel Rauch, C. Lehn, O. Peschel, S. Hölzl, A. Rossmann, ‘Assignment of Unknown Persons to Their Geographical Origin by Determination of Stable Isotopes in Hair Samples’, Int. J. Legal Med., 123(1), 35–40 (2009).
- 263
L.O. Valenzuela, L.A. Chesson, G. Bowen, T.E. Cerling, J.R. Ehleringer, ‘ Spatial Distribution of Stable Isotope Values of Human Hair: Tools for Region-of-Origin and Travel History Assignment’, in Forensic Science and Humanitarian Action: Interacting with the Dead and the Living, Wiley, Hoboken, 385–410, 2020.
10.1002/9781119482062.ch25 Google Scholar
- 264 S.A. Macko, M.H. Engel, V. Andrusevich, G. Lubec, T.C. O'Connell, R.E.M. Hedges, ‘Documenting the Diet in Ancient Human Populations Through Stable Isotope Analysis of Hair’, Philos. Trans. R. Soc. B: Biol. Sci., 354(1379), 65–76 (1999).
- 265 I. Fraser, W. Meier-Augenstein, ‘Stable 2H Isotope Analysis of Modern-Day Human Hair and Nails Can Aid Forensic Human Identification’, Rapid Commun. Mass Spectrom., 21(20), 3279–3285 (2007).
- 266 C.J. Mancuso, J.R. Ehleringer, ‘Resident and Nonresident Fingernail Isotopes Reveal Diet and Travel Patterns’, J. Forensic Sci., 64(1), 77–87 (2019).
- 267 R. Santamaria-Fernandez, J. Giner Martínez-Sierra, J.M. Marchante-Gayón, J.I. García-Alonso, R. Hearn, ‘Measurement of Longitudinal Sulfur Isotopic Variations by Laser Ablation MC-ICP-MS in Single Human Hair Strands’, Anal. Bioanal. Chem., 394(1), 225–233 (2009).
- 268 C. Lehn, E.M. Kalbhenn, A. Rossmann, M. Graw, ‘Revealing Details of Stays Abroad by Sequential Stable Isotope Analyses Along Human Hair Strands’, Int. J. Legal Med., 133, 935–947 (2018).
- 269 M.M. El-Deftar, J. Robertson, S. Foster, C. Lennard, ‘Evaluation of Elemental Profiling Methods, Including Laser-Induced Breakdown Spectroscopy (LIBS), for the Differentiation of Cannabis Plant Material Grown in Different Nutrient Solutions’, Forensic Sci. Int., 251, 95–106 (2015).
- 270 W. Meier-Augenstein, N. NicDaeid, ‘Feasibility of Source Identification of Seized Street Drug Samples by Exploiting Differences in Isotopic Composition at Natural Abundance Level by GC/MS as Compared to Isotope Ratio Mass Spectrometry (IRMS)’, Forensic Sci. Int., 174(2–3), 259–261 (2008).
- 271 J.M. Hurley, J.B. West, J.R. Ehleringer, ‘Stable Isotope Models to Predict Geographic Origin and Cultivation Conditions of Marijuana’, Sci. Justice, 50(2), 86–93 (2010).
- 272 E.K. Shibuya, J.E.S. Sarkis, O. Negrini-Neto, L.A. Martinelli, ‘Carbon and Nitrogen Stable Isotopes as Indicative of Geographical Origin of Marijuana Samples Seized in the City of São Paulo (Brazil)’, Forensic Sci. Int., 167(1), 8–15 (2007).
- 273 J.B. West, J.M. Hurley, F.O. Dudás, J.R. Ehleringer, ‘The Stable Isotope Ratios of Marijuana. II. Strontium Isotopes Relate to Geographic Origin’, J. Forensic Sci., 54(6), 1261–1269 (2009).
- 274 J.B. West, J.M. Hurley, J.R. Ehleringer, ‘Stable Isotope Ratios of Marijuana. I. Carbon and Nitrogen Stable Isotopes Describe Growth Conditions’, J. Forensic Sci., 54(1), 84–89 (2009).
- 275 J. Debord, A. Pourmand, S.C. Jantzi, S. Panicker, J. Almirall, ‘Profiling of Heroin and Assignment of Provenance by 87 Sr/ 86 Sr Isotope Ratio Analysis’, Inorg. Chim. Acta, 468, 294–299 (2017).
- 276 M. Collins, A. Doddridge, H. Salouros, ‘Cathinones: Isotopic Profiling as an Aid to Linking Seizures’, Drug Test. Anal., 8, 903–909 (2015).
- 277 S. Tai, C. Morrison, ‘Chiral and Stable Isotope Analysis of Synthetic Cathinones’, TrAC Trends Anal. Chem., 86, 251–262 (2017).
- 278 J.R. Ehleringer, D.A. Cooper, M.J. Lott, C.S. Cook, ‘Geo-Location of Heroin and Cocaine by Stable Isotope Ratios’, Forensic Sci. Int., 106(1), 27–35 (1999).
- 279 E. Ihle, H.L. Schmidt, ‘Multielement Isotope Analysis on Drugs of Abuse. Possibility for Their Origin Assignement’, Isot. Environ. Health Stud., 32, 226–228 (1996).
- 280 M. Collins, A.T. Cawley, A.C. Heagney, L. Kissane, J. Robertson, H. Salouros, ‘δ13C, δ15N and δ2H Isotope Ratio Mass Spectrometry of Ephedrine and Pseudoephedrine: Application to Methylamphetamine Profiling’, Rapid Commun. Mass Spectrom., 23(13), 2003–2010 (2009).
- 281 N. Kurashima, Y. Makino, Y. Urano, K. Sanuki, Y. Ikehara, T. Nagano, ‘Use of Stable Isotope Ratios for Profiling of Industrial Ephedrine Samples: Application of Hydrogen Isotope Ratios in Combination with Carbon and Nitrogen’, Forensic Sci. Int., 189(1-3), 14–18 (2009).
- 282
S. Schneiders, T. Holdermann, R. Dahlenburg, ‘Comparative Analysis of Ephedrine and Pseudoephedrine by Using Stable Isotope Ratio Mass Spectrometry (IRMS)’, Sci. Justice, 50(1), 41 (2010).
10.1016/j.scijus.2009.11.057 Google Scholar
- 283 J.F. Casale, J.R. Mallette, E.M. Guest, ‘Analysis of Illicit Carfentanil: Emergence of the Death Dragon’, Forensic Chem., 3, 74–80 (2017).
- 284 R. Santamaria-Fernandez, R. Hearn, J.C. Wolff, ‘Detection of Counterfeit Antiviral Drug Heptodin™ and Classification of Counterfeits Using Isotope Amount Ratio Measurements by Multicollector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS) and Isotope Ratio Mass Spectrometry (IRMS)’, Sci. Justice, 49(2), 102–106 (2009).
- 285 L.N. Brewer, J.A. Ohlhausen, P.G. Kotula, J.R. Michael, ‘Forensic Analysis of Bioagents by X-ray and TOF-SIMS Hyperspectral Imaging’, Forensic Sci. Int., 179(2–3), 98–106 (2008).
- 286 S. Ghosal, T.J. Leighton, K.E. Wheeler, I.D. Hutcheon, P.K. Weber, ‘Spatially Resolved Characterization of Water and Ion Incorporation in Bacillus Spores’, Appl. Environ. Microbiol., 76(10), 3275–3282 (2010).
- 287 J. Horita, A.A. Vass, ‘Stable-Isotope Fingerprints of Biological Agents as Forensic Tools’, J. Forensic Sci., 48(1), 122–126 (2003).
- 288 H.W. Kreuzer-Martin, L.A. Chesson, M.J. Lott, J.V. Dorigan, J.R. Ehleringer, ‘Stable Isotope Ratios as a Tool in Microbial Forensics – Part 1. Microbial Isotopic Composition as a Function of Growth Medium’, J. Forensic Sci., 49(5), 954–960 (2004).
- 289 J.J. Moran, C.G. Fraga, M.K. Nims, ‘Stable-Carbon Isotope Ratios for Sourcing the Nerve-Agent Precursor Methylphosphonic Dichloride and Its Products’, Talanta, 186, 678–683 (2018).
- 290 N.S. Mirjankar, C.G. Fraga, A.J. Carman, J.J. Moran, ‘Source Attribution of Cyanides Using Anionic Impurity Profiling, Stable Isotope Ratios Trace Elemental Analysis and Chemometrics’, Anal. Chem., 88(3), 1827–1834 (2016).
- 291 D.R. Cohen, N.F. Rutherford, E. Morisseau, A.M. Zissimos, ‘Geochemical Patterns in the Soils of Cyprus’, Sci. Total Environ., 420, 250–262 (2012).
- 292 A. Ruffell, ‘Forensic Pedology, Forensic Geology, Forensic Geoscience Geoforensics and Soil Forensics’, Forensic Sci. Int., 202(1–3), 9–12 (2010).
- 293 S.C. Jantzi, J.R. Almirall, ‘Elemental Analysis of Soils Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) and Laser-Induced Breakdown Spectroscopy (LIBS) with Multivariate Discrimination: Tape Mounting as an Alternative to Pellets for Small Forensic Transfer Specimens’, Appl. Spectrosc., 68(9), 963–974 (2014).
- 294 S.C. Jantzi, J.R. Almirall, ‘Characterization and Forensic Analysis of Soil Samples Using Laser-Induced Breakdown Spectroscopy (LIBS)’, Anal. Bioanal. Chem., 400(10), 3341–3351 (2011).
- 295 T. Trojek, M. Hložek, ‘X-Ray Fluorescence Analysis of Archaeological Finds and Art Objects: Recognizing Gold and Gilding’, Appl. Radiat. Isot., 70(7), 1420–1423 (2012).
- 296 T. Trojek, M. Hložek, T. Čechák, L. Musílek, ‘X-Ray Fluorescence Analyzers for Investigating Postmediaeval Pottery from Southern Moravia’, Appl. Radiat. Isot., 68(4–5), 879–883 (2010).
- 297 D.N. Papadopoulou, G.A. Zachariadis, A.N. Anthemidis, N.C. Tsirliganis, J.A. Stratis, ‘Development and Optimisation of a Portable Micro-XRF Method for In Situ Multi-Element Analysis of Ancient Ceramics’, Talanta, 68(5), 1692–1699 (2006).
- 298 B. Giussani, D. Monticelli, L. Rampazzi, ‘Role of Laser Ablation–Inductively Coupled Plasma–Mass Spectrometry in Cultural Heritage Research: A Review’, Anal. Chim. Acta, 635(1), 6–21 (2009).
- 299 C.T. Halperin, R.L. Bishop, ‘Chemical Analysis of Late Classic Maya Polychrome Pottery Paints and Pastes from Central Petén’, Guatemala. J. Archaeol. Sci., 69, 118–129 (2016).
- 300 J.F. Carter, P.L. Grundy, J.C. Hill, N.C. Ronan, E.L. Titterton, R. Sleeman, ‘Forensic Isotope Ratio Mass Spectrometry of Packaging Tapes’, Analyst, 129(12), 1206 (2004).
- 301 C. Roux, S. Bull, J. Goulding, C. Lennard, ‘Tracing the Source of Illicit Drugs Through Plastic Packaging – A Database’, J. Forensic Sci., 45(1), 99–114 (2000).
- 302 C. Martinez-Lopez, M. Sakayanagi, J.R. Almirall, ‘Elemental Analysis of Packaging Tapes by LA-ICP-MS and LIBS’, Forensic Chem., 8, 40–48 (2018).
- 303 M.E. Dietz, L.A. Stern, A.H. Mehltretter, A. Parish, V. McLasky, R. Aranda, ‘Forensic Utility of Carbon Isotope Ratio Variations in PVC Tape Backings’, Sci. Justice, 52(1), 25–32 (2012).
- 304 A.M. Dobney, W. Wiarda, P. De Joode, G.J.Q. Van Der Peijl, ‘Sector Field ICP-MS Applied to the Forensic Analysis of Commercially Available Adhesive Packaging Tapes’, J. Anal. At. Spectrom., 17(5), 478–484 (2002).
- 305 M. Horacek, J.-S. Min, S. Heo, J. Park, W. Papesch, ‘The Application of Isotope Ratio Mass Spectrometry for Discrimination and Comparison of Adhesive Tapes’, Rapid Commun. Mass Spectrom., 22(11), 1763–1766 (2008).
- 306 M.A. Al-Ghouti, L. Al-Atoum, ‘Virgin and Recycled Engine Oil Differentiation: A Spectroscopic Study’, J. Environ. Manag., 90(1), 187–195 (2009).
- 307 M.A. Zali, W.K.W. Ahmad, A. Retnam, N. Catrina, ‘Concentration of Heavy Metals in Virgin Used, Recovered and Waste Oil: A Spectroscopic Study’, Procedia Environ. Sci., 30, 201–204 (2015).
- 308 L. Husáková, J. Šrámková, J. Staňková, P. Němec, M. Večeřa, A. Krejčová, M. Štancl, Z. Akštein, ‘Characterization of Industrial Explosives Based on the Determination of Metal Oxides in the Identification Particles by Microwave Digestion and Atomic Absorption Spectrometry Method’, Forensic Sci. Int., 178(2–3), 146–152 (2008).
- 309 H.-J. Im, H.-J. Cho, B.C. Song, Y.J. Park, Y.-S. Chung, W.-H. Kim, ‘Analytical Capability of an Explosives Detection by a Prompt Gamma-Ray Neutron Activation Analysis’, Nucl. Instrum. Methods Phys. Res., 566(2), 442–447 (2006).
- 310 W. Papesch, D. Rank, M. Horacek, R. Tesch, ‘Isotope Evidence to Link a Suspect with a Pipe Bomb Multimurder in Austria 1995’, J. Forensic Sci., 56, S188–S191 (2011).
- 311 G. Pierrini, S. Doyle, C. Champod, F. Taroni, D. Wakelin, C. Lock, ‘Evaluation of Preliminary Isotopic Analysis (13C and 15N) of Explosives A Likelihood Ratio Approach to Assess the Links Between Semtex Samples’, Forensic Sci. Int., 167(1), 43–48 (2007).
- 312 A.T. Quirk, J.M. Bellerby, J.F. Carter, F.A. Thomas, J.C. Hill, ‘An Initial Evaluation of Stable Isotopic Characterisation of Post-Blast Plastic Debris from Improvised Explosive Devices’, Sci. Justice, 49(2), 87–93 (2009).
- 313 D. Widory, J.J. Minet, M. Barbe-Leborgne, ‘Sourcing Explosives: A Multi-Isotope Approach’, Sci. Justice, 49(2), 62–72 (2009).
- 314 B.L. Grimm, L.A. Stern, A.J. Lowe, ‘Forensic Utility of a Nitrogen and Oxygen Isotope Ratio Time Series of Ammonium Nitrate and Its Isolated Ions’, Talanta, 178, 94–101 (2018).
- 315 H. Brust, M. Koeberg, A. Van Der Heijden, W. Wiarda, I. Mügler, M. Schrader, G. Vivo-Truyols, P. Schoenmakers, A. Van Asten, ‘Isotopic and Elemental Profiling of Ammonium Nitrate in Forensic Explosives Investigations’, Forensic Sci. Int., 248, 101–112 (2015).
- 316 J.D. Howa, M.J. Lott, J.R. Ehleringer, ‘Isolation and Stable Nitrogen Isotope Analysis of Ammonium Ions in Ammonium Nitrate Prills Using Sodium Tetraphenylborate’, Rapid Commun. Mass Spectrom., 28(13), 1530–1534 (2014).
- 317 J.D. Howa, M.J. Lott, L.A. Chesson, J.R. Ehleringer, ‘Isolation of Components of Plastic Explosives for Isotope Ratio Mass Spectrometry’, Forensic Chem., 1, 6–12 (2016).
- 318 L.A. Chesson, J.D. Howa, M.J. Lott, J.R. Ehleringer, ‘Development of a Methodological Framework for Applying Isotope Ratio Mass Spectrometry to Explosive Components’, Forensic Chem., 2, 9–14 (2016).
- 319 J.D. Howa, J.E. Barnette, L.A. Chesson, M.J. Lott, J.R. Ehleringer, ‘TATP Isotope Ratios as Influenced by Worldwide Acetone Variation’, Talanta, 181, 125–131 (2018).
- 320 A. Rizzo, C. Telloli, P. Bartolomei, F. Manassero, ‘$\delta^{13} $ C Analysis to Screen Out Explosive Precursors by Using Cavity Ring Down Laser Spectroscopy’, Eur. Phys. J. Plus, 133(7), 292 (2018).
- 321
B.L. Murphy, R.D. Morrison, ‘ Introduction to the Third Edition’, in Introduction to Environmental Forensics, 3rd edition, eds. B.L. Murphy, R.D. Morrison, Academic Press, San Diego, xxvii–xxviii, 2015.
10.1016/B978-0-12-404696-2.02004-X Google Scholar
- 322 C.F. Boutron, U. Görlach, J.-P. Candelone, M.A. Bolshov, R.J. Delmas, ‘Decrease in Anthropogenic Lead, Cadmium and Zinc in Greenland Snows Since the Late 1960s’, Nature, 353(6340), 153 (1991).
- 323
V. Spikmans, ‘The Evolution of Environmental Forensics: From Laboratory to Field Analysis’, Wiley Interdiscip. Rev. Forensic Sci., 1(3), e1334 (2019).
10.1002/wfs2.1334 Google Scholar
- 324 B.S. Kamber, ‘Geochemical Fingerprinting: 40 Years of Analytical Development and Real World Applications’, Appl. Geochem., 24(6), 1074–1086 (2009).
- 325 C. Parsons, E.M. Grabulosa, E. Pili, G.H. Floor, G. Roman-Ross, L. Charlet, ‘Quantification of Trace Arsenic in Soils by Field-Portable X-Ray Fluorescence Spectrometry: Considerations for Sample Preparation and Measurement Conditions’, J. Hazard. Mater., 262, 1213–1222 (2013).
- 326 T. Prohaska, C. Stadlbauer, R. Wimmer, G. Stingeder, C. Latkoczy, E. Hoffmann, H. Stephanowitz, ‘Investigation of Element Variability in Tree Rings of Young Norway Spruce by Laser-Ablation-ICPMS’, Sci. Total Environ., 219(1), 29–39 (1998).
- 327
R.P. Philp, ‘ Application of Stable Isotopes and Radioisotopes in Environmental Forensics’, in Introduction to Environmental Forensics, Elsevier, 395–455, 2015.
10.1016/B978-0-12-404696-2.00011-4 Google Scholar
- 328 M. Blessing, T.C. Schmidt, R. Dinkel, S.B. Haderlein, ‘Delineation of Multiple Chlorinated Ethene Sources in an Industrialized Area. A Forensic Field Study Using Compound-Specific Isotope Analysis’, Environ. Sci. Technol., 43(8), 2701–2707 (2009).
- 329 B.L. Guo, Y.M. Wei, J.R. Pan, Y. Li, C. Stable, ‘N Isotope Ratio Analysis for Regional Geographical Traceability of Cattle in China’, Food Chem., 118(4), 915–920 (2010).
- 330 S.A. Mancini, G. Lacrampe-Couloume, B.S. Lollar, ‘Source Differentiation for Benzene and Chlorobenzene Groundwater Contamination: A Field Application of Stable Carbon and Hydrogen Isotope Analyses’, Environ. Forensic, 9(2-3), 177–186 (2008).
- 331 J. Palau, A. Soler, A. Canals, R. Aravena, ‘Use of Environmental Isotopes (13C, 15N, and 18O) for Evaluating Sources and Fate of Nitrate and Tetrachloroethene in an Alluvial Aquifer’, Environ. Forensic, 11(3), 237–247 (2010).
- 332
A. Bernstein, F. Gelman, Z. Ronen, ‘ Stable Isotope Tools for Tracking In Situ Degradation Processes of Military Energetic Compounds’, in Biological Remediation of Explosive Residues, Springer, Berlin, 259–284, 2014.
10.1007/978-3-319-01083-0_12 Google Scholar
- 333 O. Shouakar-Stash, S.K. Frape, R. Aravena, A. Gargini, M. Pasini, R.J. Drimmie, ‘Analysis of Compound-Specific Chlorine Stable Isotopes of Vinyl Chloride by Continuous Flow–Isotope Ratio Mass Spectrometry (FC–IRMS)’, Environ. Forensic, 10(4), 299–306 (2009).
- 334 W.U. Ault, R.G. Senechal, W.E. Erlebach, ‘Isotopic Composition as a Natural Tracer of Lead in the Environment’, Environ. Sci. Technol., 4(4), 305–313 (1970).
- 335 P. Álvarez-Iglesias, B. Rubio, J. Millos, ‘Isotopic Identification of Natural vs. Anthropogenic Lead Sources in Marine Sediments from the Inner Ría de Vigo (NW Spain)’, Sci. Total Environ., 437, 22–35 (2012).
- 336 R.W. Hurst, ‘Applications of Anthropogenic Lead Archaeostratigraphy (ALAS Model) to Hydrocarbon Remediation’, Environ. Forensic, 1(1), 11–23 (2000).
- 337 M. Whittaker, S.J.T. Pollard, A.E. Fallick, T. Preston, ‘Characterisation of Refractory Wastes at Hydrocarbon-Contaminated Sites – II. Screening of Reference Oils by Stable Carbon Isotope Fingerprinting’, Environ. Pollut., 94(2), 195–203 (1996).
- 338 M.E. Ketterer, S.C. Szechenyi, ‘Determination of Plutonium and Other Transuranic Elements by Inductively Coupled Plasma Mass Spectrometry: A Historical Perspective and New Frontiers in the Environmental Sciences’, Spectrochim. Acta B At. Spectrosc., 63(7), 719–737 (2008).
- 339 P. Lindahl, M. Keith-Roach, P. Worsfold, M.-S. Choi, H.-S. Shin, S.-H. Lee, ‘Ultra-Trace Determination of Plutonium in Marine Samples Using Multi-Collector Inductively Coupled Plasma Mass Spectrometry’, Anal. Chim. Acta, 671(1-2), 61–69 (2010).
- 340 O.J. Marsden, F.R. Livens, J.P. Day, L.K. Fifield, P.S. Goodall, ‘Determination of U-236 in Sediment Samples by Accelerator Mass Spectrometry’, Analyst, 126(5), 633–636 (2001).
- 341 J.E. Huffman, J.R. Wallace, Wildlife Forensics: Methods and Applications, John Wiley & Sons, Chichester, 7, Vol. 6, 2012.
- 342 G.J. Bowen, L.I. Wassenaar, K.A. Hobson, ‘Global Application of Stable Hydrogen and Oxygen Isotopes to Wildlife Forensics’, Oecologia, 143(3), 337–348 (2005).
- 343 L.I. Wassenaar, K.A. Hobson, ‘Stable-Hydrogen Isotope Heterogeneity in Keratinous Materials: Mass Spectrometry and Migratory Wildlife Tissue Subsampling Strategies’, Rapid Commun. Mass Spectrom., 20(16), 2505–2510 (2006).
- 344
S. Ziegler, B. Streit, D.E. Jacob, ‘ Assigning Elephant Ivory with Stable Isotopes’, in Isotopic Landscapes in Bioarchaeology, Springer, Berlin-Heidelberg, 213–220, 2016.
10.1007/978-3-662-48339-8_12 Google Scholar
- 345 B. Conservation, N. Safety, Determination of Age and Geographical Origin of African Elephant Ivory, 2017.
- 346 D.T. Flockhart, T.K. Kyser, D. Chipley, N.G. Miller, D.R. Norris, ‘Experimental Evidence Shows No Fractionation of Strontium Isotopes (87Sr/86Sr) Among Soil, Plants, and Herbivores: Implications for Tracking Wildlife and Forensic Science’, Isot. Environ. Health Stud., 51(3), 372–381 (2015).
- 347 J.C. Vogel, B. Eglington, J.M. Auret, ‘Isotope Fingerprints in Elephant Bone and Ivory’, Nature, 346(6286), 747–749 (1990).
- 348 S. De Souza, E. Landulfo, Identification of Nuclear Forensics Signatures in Environmental Samples, 2017.
- 349 M. Wallenius, K. Mayer, ‘Age Determination of Plutonium Material in Nuclear Forensics by Thermal Ionisation Mass Spectrometry’, Fresenius J. Anal. Chem., 366(3), 234–238 (2000).
- 350 X. Hou, W. Chen, Y. He, B.T. Jones, ‘Analytical Atomic Spectrometry for Nuclear Forensics’, Appl. Spectrosc. Rev., 40(3), 245–267 (2005).
- 351 F.E. Stanley, A.M. Stalcup, H.B. Spitz, ‘A Brief Introduction to Analytical Methods in Nuclear Forensics’, J. Radioanal. Nucl. Chem., 295(2), 1385–1393 (2013).
- 352 S. Boulyga, S. Konegger-Kappel, S. Richter, L. Sangely, ‘Mass Spectrometric Analysis for Nuclear Safeguards’, J. Anal. At. Spectrom., 30(7), 1469–1489 (2015).
- 353 D.L. Donohue, ‘Strengthened Nuclear Safeguards’, Anal. Chem., 74(1), 28A–35A (2002).
- 354 S. Bürger, R.M. Essex, K.J. Mathew, S. Richter, R.B. Thomas, ‘Implementation of Guide to the Expression of Uncertainty in Measurement (GUM) to Multi-Collector TIMS Uranium Isotope Ratio Metrology’, Int. J. Mass Spectrom., 294(2–3), 65–76 (2010).
- 355 S.F. Boulyga, U. Klotzli, T. Prohaska, ‘Improved Abundance Sensitivity in MC-ICP-MS for Determination of U-236/U-238 Isotope Ratios in the 10(-7) to 10(-8) Range’, J. Anal. At. Spectrom., 21(12), 1427–1430 (2006).
- 356 C.R. Quetel, J. Vogl, T. Prohaska, S. Nelms, P.D.P. Taylor, P. De Bievre, ‘Comparative Performance Study of ICP Mass Spectrometers by Means of U “Isotopic Measurements”’, Fresenius J. Anal. Chem., 368(2-3), 148–155 (2000).
- 357 E. Keegan, S. Richter, I. Kelly, H. Wong, P. Gadd, H. Kuehn, A. Alonso-Munoz, ‘The Provenance of Australian Uranium Ore Concentrates by Elemental and Isotopic Analysis’, Appl. Geochem., 23(4), 765–777 (2008).
- 358 L.K. Fifield, R.G. Cresswell, M.L. Di Tada, T.R. Ophel, J.P. Day, A.P. Clacher, S.J. King, N.D. Priest, ‘Accelerator Mass Spectrometry of Plutonium Isotopes’, Nucl. Instrum. Methods Phys. Res., B, 117(3), 295–303 (1996).
- 359 S.J. Tumey, T.A. Brown, B.A. Buchholz, T.F. Hamilton, I.D. Hutcheon, R.W. Williams, ‘Ultra-Sensitive Measurements of 233U by Accelerator Mass Spectrometry for National Security Applications’, J. Radioanal. Nucl. Chem., 282(3), 721–724 (2009).
- 360 M. Fayek, J. Horita, E.M. Ripley, ‘The Oxygen Isotopic Composition of Uranium Minerals: A Review’, Ore Geol. Rev., 41(1), 1–21 (2011).
- 361 G. Tamborini, D. Phinney, O. Bildstein, M. Betti, ‘Oxygen Isotopic Measurements by Secondary Ion Mass Spectrometry in Uranium Oxide Microparticles: A Nuclear Forensic Diagnostic’, Anal. Chem., 74(23), 6098–6101 (2002).
- 362 N. Vajda, Radioactive particles in the environment – occurrence, characterization, appropriate analytical techniques. Review, International Atomic Energy Agency, 2001.
- 363 A. Ciurapinski, J. Parus, D. Donohue, ‘Particle analysis for a strengthened safeguards system: Use of a scanning electron microscope equipped with EDXRF and WDXRF spectrometers’, J. Radioanal. Nucl. Chem., 251(3), 345–352 (2002).
- 364 D. Donohue, A. Ciurapinski, J. Cliff Iii, F. Rüdenauer, T. Kuno, J. Poths, ‘Microscopic Studies of Spherical Particles for Nuclear Safeguards’, Appl. Surf. Sci., 255(5 Part 2), 2561–2568 (2008).
- 365 Y. Ranebo, P.M.L. Hedberg, M.J. Whitehouse, K. Ingeneri, S. Littmann, ‘Improved Isotopic SIMS Measurements of Uranium Particles for Nuclear Safeguard Purposes’, J. Anal. At. Spectrom., 24(3), 277–287 (2009).
- 366 G. Tamborini, ‘SIMS Analysis of Uranium and Actinides in Microparticles of Different Origin’, Microchim. Acta, 145(1-4), 237–242 (2004).
- 367 K.T. Esaka, F. Esaka, J. Inagawa, K. Iguchi, C.G. Lee, S. Sakurai, K. Watanabe, S. Usuda, ‘Application of Fission Track Technique for the Analysis of Individual Particles Containing Uranium in Safeguard Swipe Samples’, Jpn. J. Appl. Phys. 2 Lett., 43(7 A), L915–L916 (2004).
- 368 C.G. Lee, K. Iguchi, J. Inagawa, D. Suzuki, F. Esaka, M. Magara, S. Sakurai, K. Watanabe, S. Usuda, ‘Development in Fission Track-Thermal Ionization Mass Spectrometry for Particle Analysis of Safeguards Environmental Samples’, J. Radioanal. Nucl. Chem., 272(2), 299–302 (2007).
- 369 Y. Chen, Y. Shen, Z.-Y. Chang, Y.-G. Zhao, S.-L. Guo, J.-Y. Cui, Y. Liu, ‘Studies on Analyzing Single Uranium-Bearing Particle by FT-TIMS’, Radiat. Measure., 50, 43–45 (2013).
- 370 K.G. Heumann, S.M. Gallus, G. Rädlinger, J. Vogl, ‘Precision and Accuracy in Isotope Ratio Measurements by Plasma Source Mass Spectrometry’, J. Anal. At. Spectrom., 13(9), 1001–1008 (1998).
- 371 C.-G. Lee, D. Suzuki, Y. Saito-Kokubu, F. Esaka, M. Magara, T. Kimura, ‘Simultaneous Determination of Plutonium and Uranium Isotope Ratios in Individual Plutonium–Uranium Mixed Particles by Thermal Ionization Mass Spectrometry’, Int. J. Mass Spectrom., 314, 57–62 (2012).
- 372 R. Kips, A. Leenaers, G. Tamborini, M. Betti, S. Van Den Berghe, R. Wellum, P. Taylor, ‘Characterization of Uranium Particles Produced by Hydrolysis of UF 6 Using SEM and SIMS’, Microsc. Microanal., 13(3), 156–164 (2007).
- 373 Y. Ranebo, M. Eriksson, G. Tamborini, N. Niagolova, O. Bildstein, M. Betti, ‘The Use of SIMS and SEM for the Characterization of Individual Particles with a Matrix Originating from a Nuclear Weapon’, Microsc. Microanal., 13(3), 179–190 (2007).
- 374 S.F. Boulyga, J.S. Becker, ‘Determination of Uranium Isotopic Composition and 236U Content of Soil Samples and Hot Particles Using Inductively Coupled Plasma Mass Spectrometry’, Fresenius J. Anal. Chem., 370(5), 612–617 (2001).
- 375 S. Boulyga, M. Tibi, K. Heumann, ‘Application of Isotope-Dilution Laser Ablation ICP–MS for Direct Determination of Pu Concentrations in Soils at pg g-1 Levels’, Anal. Bioanal. Chem., 378(2), 342–347 (2004).
- 376 J.S. Becker, H. Sela, J. Dobrowolska, M. Zoriy, J.S. Becker, ‘Recent Applications on Isotope Ratio Measurements by ICP-MS and LA-ICP-MS on Biological Samples and Single Particles’, Int. J. Mass Spectrom., 270(1–2), 1–7 (2008).
- 377 S.F. Durrant, N.I. Ward, ‘Recent Biological and Environmental Applications of Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS)’, J. Anal. At. Spectrom., 20(9), 821–829 (2005).
- 378 S.D. Richardson, ‘Mass Spectrometry in Environmental Sciences’, Chem. Rev., 101(2), 211–254 (2001).
- 379 Y. Aregbe, T. Prohaska, Z. Stefanka, E. Szeles, A. Hubert, S. Boulyga, ‘Report on the Workshop on Direct Analysis of Solid Samples Using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS)’, ESARDA Bull. (2011).
- 380 X.Z. Zhang, F. Esaka, K.T. Esaka, M. Magara, S. Sakurai, S. Usuda, K. Watanabe, ‘Application of Inductively Coupled Plasma Mass Spectrometry to the Determination of Uranium Isotope Ratios in Individual Particles for Nuclear Safeguards’, Spectrochim. Acta Part B-At. Spectrosc., 62(10), 1130–1134 (2007).
- 381 J. Cizdziel, M. Ketterer, D. Farmer, S. Faller, V. Hodge, ‘239, 240, 241Pu Fingerprinting of Plutonium in Western US Soils Using ICPMS: Solution and Laser Ablation Measurements’, Anal. Bioanal. Chem., 390(2), 521–530 (2008).
- 382 Z. Varga, ‘Application of Laser Ablation Inductively Coupled Plasma Mass Spectrometry for the Isotopic Analysis of Single Uranium Particles’, Anal. Chim. Acta, 625(1), 1–7 (2008).
- 383 N.S. Lloyd, R.R. Parrish, M.S.A. Horstwood, S.R.N. Chenery, ‘Precise and Accurate Isotopic Analysis of Microscopic Uranium-Oxide Grains Using LA-MC-ICP-MS’, J. Anal. At. Spectrom., 24(6), 752–758 (2009).
- 384 K. Raptis, C. Ingelbrecht, R. Wellum, A. Alonso, W. De Bolle, R. Perrin, ‘The Preparation of Uranium-Doped Glass Reference Materials for Environmental Measurements’, Nucl. Instrum. Methods Phys. Res., 480(1), 40–43 (2002).
- 385 F. Pointurier, A.-C. Pottin, A. Hubert, ‘Application of Nanosecond-UV Laser Ablation-Inductively Coupled Plasma Mass Spectrometry for the Isotopic Analysis of Single Submicrometer-Size Uranium Particles’, Anal. Chem., 83(20), 7841–7848 (2011).
- 386 E. Keegan, M.J. Kristo, K. Toole, R. Kips, E. Young, ‘Nuclear Forensics: Scientific Analysis Supporting Law Enforcement and Nuclear Security Investigations’, Anal. Chem., 88(3), 1496–1505 (2016).
- 387 S. Primrose, M. Woolfe, S. Rollinson, ‘Food Forensics: Methods for Determining the Authenticity of Foodstuffs’, Trends Food Sci. Technol., 21(12), 582–590 (2010).
- 388 S. Kelly, K. Heaton, J. Hoogewerff, ‘Tracing the Geographical Origin of food: The Application of Multi-Element and Multi-Isotope Analysis’, Trends Food Sci. Technol., 16(12), 555–567 (2005).
- 389 G.P. Danezis, A.S. Tsagkaris, F. Camin, V. Brusic, C.A. Georgiou, ‘Food Authentication: Techniques Trends & Emerging Approaches’, TrAC Trends Anal. Chem., 85, 123–132 (2016).
- 390 G.J. Martin, J. Koziet, A. Rossmann, J. Dennis, ‘Site-Specific Natural Isotope Fractionation in Fruit Juices Determined by Deuterium NMR An European Inter-Laboratory Comparison Study’, Anal. Chim. Acta, 321(2-3), 137–146 (1996).
- 391 G.J. Martin, M.L. Martin, ‘Stable Isotope Analysis of Food and Beverages by Nuclear Magnetic Resonance’, Ann. Rep. NMR Spectrosc., 31, 81–104 (1995).
- 392 N. Christoph, A. Hermann, H. Wachter, 25 Years authentication of wine with stable isotope analysis in the European Union – Review and outlook, EDP Sciences, Les Ulis, 02020, 2015.
- 393 A.S. Bateman, S.D. Kelly, M. Woolfe, ‘Nitrogen Isotope Composition of Organically and Conventionally Grown Crops’, J. Agric. Food Chem., 55(7), 2664–2670 (2007).
- 394 I.-M. Chung, J.-K. Kim, M. Prabakaran, J.-H. Yang, S.-H. Kim, ‘Authenticity of Rice (Oryza sativa L.) Geographical Origin Based on Analysis of C, N, O and S Stable Isotope Ratios: A Preliminary Case Report in Korea, China and Philippine’, J. Sci. Food Agric., 96, 2433–2439 (2016).
- 395 F. Camin, L. Bontempo, M. Perini, E. Piasentier, ‘Stable Isotope Ratio Analysis for Assessing the Authenticity of Food of Animal Origin’, Compr. Rev. Food Sci. Food Saf., 15(5), 868–877 (2016).
- 396 C.N. Rhodes, J.H. Lofthouse, S. Hird, P. Rose, P. Reece, J. Christy, R. Macarthur, P.A. Brereton, ‘The Use of Stable Carbon Isotopes to Authenticate Claims that Poultry have been Corn-Fed’, Food Chem., 118(4), 927–932 (2010).
- 397 J.G. Bell, T. Preston, R.J. Henderson, F. Strachan, J.E. Bron, K. Cooper, D.J. Morrison, ‘Discrimination of Wild and Cultured European Sea Bass (Dicentrarchus labrax) Using Chemical and Isotopic Analyses’, J. Agric Food Chem., 55(15), 5934–5941 (2007).
- 398 B.M. Franke, G. Gremaud, R. Hadorn, M. Kreuzer, ‘Geographic Origin of Meat – Elements of an Analytical Approach to Its Authentication’, Eur. Food Res. Technol., 221(3-4), 493–503 (2005).
- 399 B.M. Franke, S. Koslitz, F. Micaux, U. Piantini, V. Maury, E. Pfammatter, S. Wunderli, G. Gremaud, J.-O. Bosset, R. Hadorn, M. Kreuzer, ‘Tracing the Geographic Origin of Poultry Meat and Dried Beef with Oxygen and Strontium Isotope Ratios’, Eur. Food Res. Technol., 226(4), 761–769 (2008).
- 400 K. Heaton, S.D. Kelly, J. Hoogewerff, M. Woolfe, ‘Verifying the Geographical Origin of Beef: The Application of Multi-Element Isotope and Trace Element Analysis’, Food Chem., 107(1), 506–515 (2008).
- 401 Y. Zhao, B. Zhang, G. Chen, A. Chen, S. Yang, Z. Ye, ‘Tracing the Geographic Origin of Beef in China on the Basis of the Combination of Stable Isotopes and Multielement Analysis’, J. Agric. Food Chem., 61(29), 7055–7060 (2013).
- 402 S. Swoboda, M. Brunner, S.F. Boulyga, P. Galler, M. Horacek, T. Prohaska, ‘Identification of Marchfeld asparagus Using Sr Isotope Ratio Measurements by MC-ICP-MS’, Anal. Bioanal. Chem., 390(2), 487–494 (2008).
- 403 M. Brunner, R. Katona, Z. Stefanka, T. Prohaska, ‘Determination of the Geographical Origin of Processed Spice Using Multielement and Isotopic Pattern on the Example of Szegedi paprika ’, Eur. Food Res. Technol., 231(4), 623–634 (2010).
- 404 C. Rodrigues, C. Máguas, T. Prohaska, ‘Strontium and Oxygen Isotope Fingerprinting of Green Coffee Beans and Its Potential to Proof Authenticity of Coffee’, Eur. Food Res. Technol., 232(2), 361–373 (2011).
- 405 A. Tchaikovsky, J. Irrgeher, A. Zitek, T. Prohaska, ‘Isotope Pattern Deconvolution of Different Sources of Stable Strontium Isotopes in Natural Systems’, J. Anal. At. Spectrom., 32(11), 2300–2307 (2017).
- 406 D. Bandoniene, D. Zettl, T. Meisel, M. Maneiko, ‘Suitability of Elemental Fingerprinting for Assessing the Geographic Origin of Pumpkin (Cucurbita pepo var. styriaca) Seed Oil’, Food Chem., 136(3–4), 1533–1542 (2013).
- 407
K.W. Kim, I. Thornton, ‘Influence of Ordovician Uraniferous Black Shales on the Trace Element Composition of Soils and Food Crops, Korea’, Appl. Geochem., 8, 249–255 (1993).
10.1016/S0883-2927(09)80045-0 Google Scholar
- 408 G. Danezis, A. Tsagkaris, V. Brusic, C. Georgiou, ‘Food Authentication: State of the Art and Prospects’, Curr. Opin. Food Sci., 10, 10 (2016).
- 409 D. Joebstl, D. Bandoniene, T. Meisel, S. Chatzistathis, ‘Identification of the Geographical Origin of Pumpkin Seed Oil by the Use of Rare Earth Elements and Discriminant Analysis’, Food Chem., 123(4), 1303–1309 (2010).
- 410 A. Gonzalvez, S. Armenta, M. De La Guardia, ‘Trace-Element Composition and Stable-Isotope Ratio for Discrimination of Foods with Protected Designation of Origin’, TrAC Trends Anal. Chem., 28(11), 1295–1311 (2009).
- 411 D. Zettl, D. Bandoniene, T. Meisel, W. Wegscheider, G. Rantitsch, ‘Chemometric Techniques to Protect the Traditional Austrian Pumpkin Seed Oil’, Eur. J. Lipid Sci. Technol., 119(11), 1600468 (2017).
- 412 E. Imwinkelried, ‘The Importance of Forensic Metrology in Preventing Miscarriages of Justice: Intellectual Honesty About the Uncertainty of Measurement in Scientific Analysis’, John Marshall Law J., 7, 333 (2013).
- 413
T. Vosk, A.F. Emery, Forensic Metrology: Scientific Measurement and Inference for Lawyers, Judges, and Criminalists, CRC Press, Boca Raton, London, New York, 2014.
10.1201/b17462 Google Scholar
Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation
Browse other articles of this reference work: