From Protein Domains to Drug Candidates—Natural Products as Guiding Principles in the Design and Synthesis of Compound Libraries
Rolf Breinbauer Dr.
Department of Chemical Biology Max-Planck-Institut für molekulare Physiologie Otto-Hahn-Strasse 11, 44227 Dortmund (Germany) and Fachbereich 3, Organische Chemie, Universität Dortmund 44221 Dortmund (Germany) Fax: (+49) 231-133-2499
Search for more papers by this authorIngrid R. Vetter Dr.
Department of Structural Biology Max-Planck-Institut für molekulare Physiologie Otto-Hahn-Strasse 11, 44227 Dortmund (Germany)
Search for more papers by this authorHerbert Waldmann Prof. Dr.
Department of Chemical Biology Max-Planck-Institut für molekulare Physiologie Otto-Hahn-Strasse 11, 44227 Dortmund (Germany) and Fachbereich 3, Organische Chemie, Universität Dortmund 44221 Dortmund (Germany) Fax: (+49) 231-133-2499
Search for more papers by this authorRolf Breinbauer Dr.
Department of Chemical Biology Max-Planck-Institut für molekulare Physiologie Otto-Hahn-Strasse 11, 44227 Dortmund (Germany) and Fachbereich 3, Organische Chemie, Universität Dortmund 44221 Dortmund (Germany) Fax: (+49) 231-133-2499
Search for more papers by this authorIngrid R. Vetter Dr.
Department of Structural Biology Max-Planck-Institut für molekulare Physiologie Otto-Hahn-Strasse 11, 44227 Dortmund (Germany)
Search for more papers by this authorHerbert Waldmann Prof. Dr.
Department of Chemical Biology Max-Planck-Institut für molekulare Physiologie Otto-Hahn-Strasse 11, 44227 Dortmund (Germany) and Fachbereich 3, Organische Chemie, Universität Dortmund 44221 Dortmund (Germany) Fax: (+49) 231-133-2499
Search for more papers by this authorGraphical Abstract
Evolution leads the way: The structure of proteins is based on a limited number of folds (see picture). Natural products have been evolutionarily selected to bind to such protein domains, therefore, they represent biologically validated starting points for the design of combinatorial compound libraries, which allow a higher hit rate despite smaller library sizes.
Abstract
In the continuing effort to find small molecules that alter protein function and ultimately might lead to new drugs, combinatorial chemistry has emerged as a very powerful tool. Contrary to original expectations that large libraries would result in the discovery of many hit and lead structures, it has been recognized that the biological relevance, design, and diversity of the library are more important. As the universe of conceivable compounds is almost infinite, the question arises: where is a biologically validated starting point from which to build a combinatorial library? Nature itself might provide an answer: natural products have been evolved to bind to proteins. Recent results in structural biology and bioinformatics indicate that the number of distinct protein families and folds is fairly limited. Often the same structural domain is used by many proteins in a more or less modified form created by divergent evolution. Recent progress in solid-phase organic synthesis has enabled the synthesis of combinatorial libraries based on the structure of complex natural products. It can be envisioned that natural-product-based combinatorial synthesis may permit hit or lead compounds to be found with enhanced probability and quality.
References
- 1 For reviews, see:
- 1a P. R. E. Mittl, M. G. Grütter, Curr. Opin. Chem. Biol. 2001, 5, 402–408;
- 1b R. C. Stevens, S. Yokoyama, I. A. Wilson, Science 2001, 294, 89–92;
- 1c R. C. Stevens, Curr. Opin. Struct. Biol. 2000, 10, 558–563;
- 1d S. K. Burley, S. C. Almo, J. B. Bonanno, M. Capel, M. R. Chance, T. Gaasterland, D. Lin, A. Sali, F. W. Studier, S. Swaminathan, Nat. Genet. 1999, 23, 151–157;
- 1e G. Montelione, S. Anderson, Nat. Struct. Biol. 1999, 6, 11–12;
- 1f S. A. Teichmann, C. Chothia, M. Gerstein, Curr. Opin. Struct. Biol. 1999, 9, 390–399;
- 1g T. Gaasterland, Nat. Biotechnol. 1998, 16, 625–627;
- 1h B. Rost, Structure 1998, 6, 259–263.
- 2 For reviews and a more detailed discussion on the impact of small molecules in dissecting biochemical pathways, see:
- 2a T. J. Mitchison, Chem. Biol. 1994, 1, 3–6;
- 2b S. L. Schreiber, Biorg. Med. Chem. 1998, 6, 1127–1152;
- 2c C. M. Crews, U. Splittgerber, TIBS 1999, 24, 317–320;
- 2d B. R. Stockwell, Trends Biotechnol. 2000, 18, 449–455;
- 2e B. R. Stockwell, Nat. Rev. Genetics 2000, 1, 116–125;
- 2f P. J. Alaimo, M. A. Shogren-Knaak, K. M. Shokat, Curr. Opin. Chem. Biol. 2001, 5, 360–367.
- 3
- 3a
R. S. Bohacek, C. McMartin, W. C. Guida, Med. Res. Rev. 1996, 16, 3–50;
10.1002/(SICI)1098-1128(199601)16:1<3::AID-MED1>3.0.CO;2-6 CAS PubMed Web of Science® Google Scholar
- 3b
H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. 2001, 113, 2056–2075;
Angew. Chem. Int. Ed. 2001, 40, 2004–2021.
10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5 CAS PubMed Web of Science® Google Scholar
- 4 For a discussion on the problem of diversity in combinatorial libraries, see:
- 4a A. Golebiowski, S. R. Klopfenstein, D. E. Portlock, Curr. Opin. Chem. Biol. 2001, 5, 273–284;
- 4b J. S. Mason, M. A. Hermsmeier, Curr. Opin. Chem. Biol. 1999, 3, 342–349;
- 4c J. M. Blaney, E. J. Martin, Curr. Opin. Chem. Biol. 1997, 1, 54–59; for a discussion on the problem of diversity in an historical chemical substance collection of a big pharmaceutical company, see:
- 4d
R. W. Spencer, Biotechnol. Bioeng. 1998, 61, 61–67.
10.1002/(SICI)1097-0290(199824)61:1<61::AID-BIT11>3.0.CO;2-C CAS PubMed Web of Science® Google Scholar
- 5 For a discussion on natural-product-like combinatorial libraries based on privileged structures and for impressive experimental proof of this concept, see:
- 5a K. C. Nicolaou, J. A. Pfefferkorn, A. J. Roecker, G.-Q. Cao, S. Barluenga, H. J. Mitchell, J. Am. Chem. Soc. 2000, 122, 9939–9953;
- 5b K. C. Nicolaou, J. A. Pfefferkorn, H. J. Mitchell, A. J. Roecker, S. Barluenga, G.-Q. Cao, R. L. Affleck, J. E. Lillig, J. Am. Chem. Soc. 2000, 122, 9954–9967;
- 5c K. C. Nicolaou, J. A. Pfefferkorn, S. Barluenga, H. J. Mitchell, A. J. Roecker, G.-Q. Cao, J. Am. Chem. Soc. 2000, 122, 9968–9976.
- 6 For a review on drug-like properties of combinatorial compound libraries, see: W. P. Walters, Ajay, M. A. Murcko, Curr. Opin. Chem. Biol. 1999, 3, 384–387.
- 7 Drug databases have been analyzed to find patterns in scaffolds and functional groups:
- 7a G. W. Bemis, M. A. Murcko, J. Med. Chem. 1996, 39, 2887–2893;
- 7b Ajay, W. P. Walters, M. A. Murcko, J. Med. Chem. 1998, 41, 3314–3324;
- 7c J. Sadowski, H. Kubinyi, J. Med. Chem. 1998, 41, 3325–3329;
- 7d A. K. Ghose, V. N. Viswanadhan, J. J. Wendoloski, J. Comb. Chem. 1999, 1, 55–68;
- 7e M.-L. Lee, G. Schneider, J. Comb. Chem. 2001, 3, 284–289.
- 8
- 8a A. N. Lupas, C. P. Ponting, R. B. Russell, J. Struct. Biol. 2001, 134, 199–203; and ref. [12d];
- 8b S. Govindarajan, R. A. Goldstein, Proc. Natl. Acad. Sci. USA 1996, 93, 3341–3345.
- 9
- 9a M. Weir, M. Swindells, J. Overington, Trends Biotechnol. 2001, 19, S61-S66;
- 9b C. P. Ponting, J. Schultz, R. P. Copley, M. A. Andrade, P. Bork, Adv. Protein. Chem. 2000, 54, 185–244;
- 9c K. Hofmann in Handbook of Enzymes in Organic Synthesis ( ), Wiley-VCH, Weinheim, 2002.
- 10 SCOP databank: A. G. Murzin, S. E. Brenner, T. Hubbard, C. Chothia, J. Mol. Biol. 1995, 247, 536–540.
- 11 C. Branden, J. Tooze, Introduction to Protein Structure, Garland, New York, 1998.
- 12
- 12a C. A. Orengo, D. T. Jones, J. M. Thornton, Nature 1994, 372, 631–634;
- 12b J. M. Thornton, D. T. Jones, M. W. MacArthur, C. A. Orengo, M. B. Swindells, Philos. Trans. R. Soc. London Ser. B 1995, 348, 71–79;
- 12c Y. I. Wolf, N. V. Grishin, E. V. Koonin, J. Mol. Biol. 2000, 299, 897–905;
- 12d
S. Govindarajan, R. Recabarren, R. A. Goldstein, Proteins 1999, 35, 408–414.
10.1002/(SICI)1097-0134(19990601)35:4<408::AID-PROT4>3.0.CO;2-A CAS PubMed Web of Science® Google Scholar
- 13
- 13a C. Chothia, Nature 1992, 357, 543–544;
- 13b P. Green, D. Lipman, L. Hillier, R. Waterston, D. Stobes, J. M. Claverie, Science 1993, 259, 1711–1716.
- 14 N. Alexandrov, N. Go, Abstract presented at the Bioinformatics-Genome-Regulation-Structure Conference (Novosibirsk), 1998.
- 15
- 15a A. Danchin, Curr. Opin. Struct. Biol. 1999, 9, 363–367;
- 15b R. L. Tatusov, D. A. Natale, I. V. Garkavtsev, T. A. Tatusova, U. T. Shankavaram, B. S. Rao, B. Kiryutin, M. Y. Galperin, N. D. Fedorova, E. V. Koonin, Nucleic Acids Res. 2001, 29, 22–28.
- 16 An analysis of the PDB database revealed that at present about 7000 structures of proteins with small-molecule binders have been solved (compiled from the IMP library of Biological Macromolecules, http://www.imb-jena.de/ImgLibPDB/).
- 17 For excellent reviews of protein function and folds, see:
- 17a J. A. Gerlt, P. C. Babbitt, Annu. Rev. Biochem. 2001, 70, 209–246;
- 17b A. E. Todd, C. A. Orengo, J. M. Thornton, Curr. Opin. Chem. Biol. 1999, 3, 548–556;
- 17c J. A. Gerlt, P. C. Babbitt, Curr. Opin. Chem. Biol. 1998, 2, 607–612.
- 18
- 18a L. Holm, Curr. Opin. Struct. Biol. 1998, 8, 372–379;
- 18b
L. Holm, C. Sander, Proteins 1997, 28, 72–82.
10.1002/(SICI)1097-0134(199705)28:1<72::AID-PROT7>3.0.CO;2-L CAS PubMed Web of Science® Google Scholar
- 19a M. M. G. M. Thunnissen, P. Nordlund, J. Z. Haeggström, Nat. Struct. Biol. 2001, 8, 131–135;
- 19b M.-Q. Zhang, Curr. Med. Chem. 1997, 4, 67–78;
- 19c A. Wetterholm, J. Z. Haeggström, B. Samuelsson, W. Yuan, B. Munoz, C.-H. Wong, J. Pharmacol. Exp. Ther. 1995, 275, 31–37;
- 19d I. R. Ollmann, J. H. Hogg, B. Munoz, J. Z. Haeggström, B. Samuelsson, C.-H. Wong, Biorg. Med. Chem. 1995, 3, 969–995;
- 19e L. Orning, G. Krivi, F. A. Fitzpatrick, J. Biol. Chem. 1991, 266, 1375–1378.
- 20 M. S. Hasson, I. Schlichting, J. Moulai, K. Taylor, W. Barrett, G. L. Kenyon, P. C. Babbitt, J. A. Gerlt, A Petsko, D. Ringe, Proc. Natl. Acad. Sci. USA 1998, 95, 10 396–10 401.
- 21 For recent perspectives on paradigm changes in medicinal chemistry, see:
- 21a
G. Wess, M. Urmann, B. Sickenberger, Angew. Chem. 2001, 113, 3443–3453;
10.1002/1521-3757(20010917)113:18<3443::AID-ANGE3443>3.0.CO;2-S Google ScholarAngew. Chem. Int. Ed. 2001, 40, 3341–3350;10.1002/1521-3773(20010917)40:18<3341::AID-ANIE3341>3.0.CO;2-D CAS PubMed Web of Science® Google Scholar
- 21b J. Drews, Science 2000, 287, 1960–1964.
- 22 For an excellent review of chemogenomic approaches to drug discovery, see: P. R. Caron, M. D. Mullican, R. D. Mashal, K. P. Wilson, M. S. Su, M. A. Murcko, Curr. Opin. Chem. Biol. 2001, 5, 464–470.
- 23 R. B. Russell, P. D. Sasieni, M. J. E. Sternberg, J. Mol. Biol. 1998, 282, 903–918.
- 24 A. G. Murzin, Curr. Opin. Struct. Biol. 1998, 8, 380–387.
- 25 B. E. Evans, K. E. Rittle, M. G. Bock, R. M. DiPrado, R. M. Freidinger, W. L. Whitter, G. F. Lundell, D. F. Veber, P. S. Anderson, R. S. L. Chang, V. J. Lotti, D. J. Cerino, T. B. Chen, P. J. Kling, K. A. Kunkel, J. P. Springer, J. Hirshfield, J. Med. Chem. 1988, 31, 2235–2246.
- 26
K. A. Denessiouk, M. S. Johnson, Proteins 2000, 38, 310–326.
10.1002/(SICI)1097-0134(20000215)38:3<310::AID-PROT7>3.0.CO;2-T CAS PubMed Web of Science® Google Scholar
- 27 I. Vetter, A. Wittinghofer, Q. Rev. Biophys. 1999, 32, 1–56.
- 28 Based on the experience of a leading pharmaceutical company in random screening processes, the number of hits from historical compound collections is estimated to be two orders of magnitude higher than those from random combinatorial libraries. And the hit rates of isolated natural products are significantly higher than the former (personal communication, Frank Petersen, Novartis). The authors are aware of the fact that despite this overall trend, the outcome of a specific screen can exhibit different results, depending on the particular architecture of the historical compound archive of a drug company, the biological target in question, and the assay type chosen. See also ref. [4d] and K. U. Bindseil, J. Jakupovic, D. Wolf, J. Lavayre, J. Leboul, D. van der Pyl, Drug Discovery Today 2001, 6, 840–847.
- 29 J. Clardy in Chemical Ecology ( ), National Academy Press, Washington, DC, 1995.
- 30 Genistein inhibits PTK and topoisomerases:
- 30a T. Akiyama, J. Ishida, S. Nakagawa, H. Ogawara, S. Watanabe, N. Itoh, M. Shibuya, Y. Fukami, J. Biol. Chem. 1987, 262, 5592–5595;
- 30b K. Kiguchi, A. I. Constantinou, E. Huberman, Cancer. Commun. 1990, 2, 271–277;
- 30c G. Peterson, J. Nutr. 1995, 125 (3rd Suppl.), 7845–7895;
- 30d A. Constantinou, E. Huberman, Proc. Soc. Exp. Biol. Med. 1995, 218, 109–115;
- 30e genistein inhibits PI(4)K: F. Shen, G. Weber, Oncol. Res. 1997, 9, 597–602;
- 30f genistein with estrogen receptor: D. T. Zava, G. Duwe, Nutr. Cancer 1997, 27, 31–40.
- 31 For an outstanding analysis of the role of natural products in pharmaceuticals, see: C. M. Cragg, D. J. Newman, K. M. Snader, J. Nat. Prod. 1997, 60, 52–60.
- 32a
T. Henkel, R. M. Brunne, H. Müller, F. Reichel, Angew. Chem. 1999, 111, 688–691;
10.1002/(SICI)1521-3757(19990301)111:5<688::AID-ANGE688>3.0.CO;2-K Google ScholarAngew. Chem. Int. Ed. 1999, 38, 643–647;10.1002/(SICI)1521-3773(19990301)38:5<643::AID-ANIE643>3.0.CO;2-G CAS PubMed Web of Science® Google Scholar
- 32b Y.-Z. Shu, J. Nat. Prod. 1998, 61, 1053–1071;
- 32c J. Mann, Nat. Rev. Cancer 2002, 2, 143–148.
- 33 D. G. I. Kingston in The Practice of Medicinal Chemistry ( ), Academic Press, London, 1996.
- 34
- 34a P. Stahl, L. Kissau, R. Mazitschek, A. Huwe, P. Furet, A. Giannis, H. Waldmann, J. Am. Chem. Soc. 2001, 123, 11 586–11 593;
- 34b
P. Stahl, L. Kissau, R. Mazitschek, A. Giannis, H. Waldmann, Angew. Chem. 2002, 114, 1222–1226;
10.1002/1521-3757(20020402)114:7<1222::AID-ANGE1222>3.0.CO;2-R Google ScholarAngew. Chem. Int. Ed., 2002, 41, 1174–1178.10.1002/1521-3773(20020402)41:7<1174::AID-ANIE1174>3.0.CO;2-V CAS PubMed Web of Science® Google Scholar
- 35 For a recent and comprehensive review of solution-phase and solid-phase synthesis of natural-product libraries, see:
- 35a L. Wessjohann, Curr. Opin. Chem. Biol. 2000, 4, 303–309;
- 35b L. J. Wilson in Solid-Phase Organic Synthesis ( ), Wiley-Interscience, New York, 2000;
- 35c D. G. Hall, S. Manku, F. Wang, J. Comb. Chem. 2001, 3, 125–150;
- 35d
C. Watson, Angew. Chem. 1999, 111, 2025–2031;
10.1002/(SICI)1521-3757(19990712)111:13/14<2025::AID-ANGE2025>3.0.CO;2-4 Web of Science® Google ScholarAngew. Chem. Int. Ed. 1999, 38, 1903–1908.10.1002/(SICI)1521-3773(19990712)38:13/14<1903::AID-ANIE1903>3.0.CO;2-Z CAS Web of Science® Google Scholar
- 36
- 36a K. C. Nicolaou, N. Winssinger, J. Pastor, S. Ninkovic, F. Sarabia, Y. He, D. Vourloumis, Z. Yang, T. Li, P. Giannakakou, E. Hamel, Nature 1997, 387, 268–272;
- 36b
K. C. Nicolaou, D. Vourloumis, T. Li, J. Pastor, N. Winssinger, Y. He, S. Ninkovic, F. Sarabia, H. Vallberg, F. Roschangar, N. P. King, M. R. V. Finlay, P. Giannakakou, P. Verdier-Panard, E. Hamel, Angew. Chem. 1997, 109, 2181–2187;
10.1002/ange.19971091917 Google ScholarAngew. Chem. Int. Ed. Engl. 1997, 36, 2097–2103.
- 37
- 37a L. A. Thompson, F. L. Moore, Y.-C. Moon, J. A. Ellman, J. Org. Chem. 1998, 63, 2066–2067;
- 37b D. R. Dragoli, L. A. Thompson, J. O'Brien, J. A. Ellman, J. Comb. Chem. 1999, 1, 534–539; for a soluble polymer-supported synthesis of a prostanoid library and the screening thereof for antiviral activity, see:
- 37c K. J. Lee, A. Angulo, P. Ghazal, K. D. Janda, Org. Lett. 1999, 1, 1859–1862.
- 38
- 38a C. W. Lindsley, L. K. Chan, B. C. Goess, R. Joseph, M. D. Shair, J. Am. Chem. Soc. 2000, 122, 422–423;
- 38b for a recent report on the solid-phase synthesis of a 2527-membered galanthamine-like library by applying a similar biomimetic oxidative coupling strategy on a solid support, see: H. E. Pelish, N. J. Westwood, Y. Feng, T. Kirchhausen, M. D. Shair, J. Am. Chem. Soc. 2001, 123, 6740–6741.
- 39 K. C. Nicolaou, N. Winssinger, D. Vourloumis, T. Ohshima, S. Kim, J. Pfefferkorn, J. Y. Xu, T. Li, J. Am. Chem. Soc. 1998, 120, 10 814–10 826.
- 40
- 40a
B. Meseguer, D. Alonso-Diaz, N. Griebenow, T. Herget, H. Waldmann, Angew. Chem. 1999, 111, 3083–3087;
10.1002/(SICI)1521-3757(19991004)111:19<3083::AID-ANGE3083>3.0.CO;2-Q Google ScholarAngew. Chem. Int. Ed. 1999, 38, 2902–2906;10.1002/(SICI)1521-3773(19991004)38:19<2902::AID-ANIE2902>3.0.CO;2-2 CAS PubMed Web of Science® Google Scholar
- 40b
B. Meseguer, D. Alonso-Diaz, N. Griebenow, T. Herget, H. Waldmann, Chem. Eur. J. 2000, 6, 3943–3954.
10.1002/1521-3765(20001103)6:21<3943::AID-CHEM3943>3.0.CO;2-T CAS PubMed Web of Science® Google Scholar
- 41
D. Brohm, S. Metzger, A. Bhargava, O. Müller, F. Lieb, H. Waldmann, Angew. Chem. 2002, 114, 319–323;
10.1002/1521-3757(20020118)114:2<319::AID-ANGE319>3.0.CO;2-E Google ScholarAngew. Chem. Int. Ed. 2002, 41, 307–311.10.1002/1521-3773(20020118)41:2<307::AID-ANIE307>3.0.CO;2-1 CAS PubMed Web of Science® Google Scholar
- 42 U. Reiser, J. Jauch, Synlett 2001, 90–92.
- 43 For review articles, see:
- 43a J. Augen, Drug Discovery Today 2002, 7, 315–323;
- 43b A. R. Leach, M. M. Hann, Drug Discovery Today 2000, 5, 326–336.
- 44 For an excellent account of this concept and its conceptual difference to target-oriented synthesis, see: S. L. Schreiber, Science 2000, 287, 1964–1969.
- 45 For some notable examples of this approach, see:
- 45a D. S. Tan, M. A. Foley, B. R. Stockwell, M. D. Shair, S. L. Schreiber, J. Am. Chem. Soc. 1999, 121, 9073–9087;
- 45b D. S. Tan, M. A. Foley, M. D. Shair, S. L. Schreiber, J. Am. Chem. Soc. 1998, 120, 8565–8566;
- 45c D. Lee, J. K. Sello, S. L. Schreiber, J. Am. Chem. Soc. 1999, 121, 10 648–10 649;
- 45d D. Lee, J. K. Sello, S. L. Schreiber, Org. Lett. 2000, 2, 709–712; for a recent review article, see:
- 45e R. Arya, M.-G. Baek, Curr. Opin. Chem. Biol. 2001, 5, 292–301.