Highly Efficient Ring-Opening Metathesis Polymerization (ROMP) Using New Ruthenium Catalysts Containing N-Heterocyclic Carbene Ligands
Christopher W. Bielawski
Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena, CA 91125 (USA) Fax: (+1) 626-564-9297
Search for more papers by this authorRobert H. Grubbs Prof.
Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena, CA 91125 (USA) Fax: (+1) 626-564-9297
Search for more papers by this authorChristopher W. Bielawski
Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena, CA 91125 (USA) Fax: (+1) 626-564-9297
Search for more papers by this authorRobert H. Grubbs Prof.
Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena, CA 91125 (USA) Fax: (+1) 626-564-9297
Search for more papers by this authorC.B. is grateful to the National Science Foundation for a pre-doctoral fellowship. The authors thank Dr. Matthias Scholl for providing catalysts 4 a and 4 c.
Abstract
Up to one hundred thousand equivalents of a variety of low-strain cyclic olefins, such as cyclooctadiene, cyclooctene, and several functionalized and sterically hindered derivatives, were polymerized by using highly active ruthenium-based ring-opening metathesis polymerization (ROMP) catalysts [Eq. (1)]. Efficient syntheses of other polymeric structures were also accomplished.
References
- 1a K. J. Ivin, J. C. Mol, Olefin Metathesis and Metathesis Polymerization, Academic Press, San Diego, CA, 1997;
- 1b D. S. Breslow, Prog. Polym. Sci. 1993, 18, 1141–1195.
- 2a R. R. Schrock, J. S. Murdzek, G. C. Bazan, J. Robbins, M. Dimare, M. O'Regan, J. Am. Chem. Soc. 1990, 112, 3875–3886;
- 2b R. R. Schrock, Acc. Chem. Res. 1990, 23, 158–165.
- 3 P. Schwab, R. H. Grubbs, J. W. Ziller, J. Am. Chem. Soc. 1996, 118, 100–110.
- 4 Initial investigations using RuCl3 salts as metathesis catalysts demonstrated the high functional group tolerance of ruthenium, see:
- 4a H. H. Thoi, K. J. Ivin, J. J. Rooney, J. Mol. Catal. 1982, 15, 245–270;
- 4b B. M. Novak, R. H. Grubbs, J. Am. Chem. Soc. 1988, 110, 960–961.
- 5a J. Huang, E. D. Stevens, S. P. Nolan, J. L. Peterson, J. Am. Chem. Soc. 1999, 121, 2674–2678;
- 5b M. Scholl, T. M. Trnka, J. P. Morgan, R. H. Grubbs, Tetrahedron Lett. 1999, 40, 2247–2250;
- 5c
T. Weskamp, F. J. Kohl, W. Hieringer, D. Gleich, W. A. Herrmann, Angew. Chem. 1999, 111, 2573–2576; Angew. Chem. Int. Ed. 1999, 38, 2416–2419;
10.1002/(SICI)1521-3757(19990816)111:16<2573::AID-ANGE2573>3.0.CO;2-A Google Scholar
- 5d J. Huang, H.-J. Schanz, E. D. Stevens, S. P. Nolan, Organometallics 1999, 18, 5375–5380.
- 6 M. Scholl, S. Ding, C. W. Lee, R. H. Grubbs, Org. Lett. 1999, 1, 953–956.
- 7 A. K. Chatterjee, J. P. Morgan, M. Scholl, R. H. Grubbs, J. Am. Chem. Soc. 2000, 122, 3783–3784.
- 8 L. Ackermann, A. Füstner, T. Weskamp, F. J. Kohl, W. A. Herrmann, Tetrahedron Lett. 1999, 40, 4787–4790.
- 9 A. K. Chatterjee, R. H. Grubbs, Org. Lett. 1999, 1, 1751–1753.
- 10a
T. Weskamp, W. C. Schattenmann, M. Spiegler, W. A. Herrmann, Angew. Chem. 1998, 110, 2631–2633; Angew. Chem. Int. Ed. 1998, 37, 2490–2493; corrigendum:
10.1002/(SICI)1521-3757(19980918)110:18<2631::AID-ANGE2631>3.0.CO;2-J Google Scholar
- 10b
T. Weskamp, W. C. Schattenmann, M. Spiegler, W. A. Herrmann, Angew. Chem. 1999, 111, 277; Angew. Chem. Int. Ed. 1999, 38, 262.
10.1002/(SICI)1521-3757(19990816)111:16<2573::AID-ANGE2573>3.0.CO;2-A Google Scholar
- 11 It is well-established that complexes 3 and 4 are more active than 2 in ROMP.5c–d See also: U. Frenzel, T. Weskamp, F. J. Kohl, W. C. Schattenmann, O. Nuyken, W. A. Herrmann, J. Organomet. Chem. 1999, 586, 263–265.
- 12 The molybdenum catalyst 1 was purchased from Strem Chemicals and recrystallized from pentane at −40 °C prior to use. For the ROMP kinetics experiments, COD and CD2Cl2 were distilled from CaH2 and degassed prior to use. The ruthenium catalysts 3 and 4 were prepared as previously reported.5–7 All polymerizations were performed under an atmosphere of nitrogen.
- 13 A similar observation is obtained when comparing the ROMP activity of 2 (∼300 equiv COD per hour) and its dimethylvinyl carbene derivative (∼200 equiv COD per hour, catalyst structure not shown).
- 14 For a comprehensive study on phosphane effects in ruthenium-catalyzed olefin metathesis, see: E. L. Dias, S. T. Nguyen, R. H. Grubbs, J. Am. Chem. Soc. 1997, 119, 3887–3897.
- 15 For examples of polymerizing low-strain cyclic olefins using complex 1, see: P. Dounis, W. J. Feast, A. M. Kenwright, Polymer 1995, 36, 2787–2796.
- 16 Polymers of this type have been prepared by using 2, see: M. A. Hillmyer, W. R. Laredo, R. H. Grubbs, Macromolecules 1995, 28, 6311–6316.
- 17 Other functionalized cyclooctenes have been polymerized by using a cyclometalated aryloxy(chloro)neopentylidenenetungsten complex, see:
- 17a J.-L. Couturier, C. Paillet, M. Leconte, J.-M. Basset, K. Weiss, Angew. Chem. 1992, 104, 622–624; Angew. Chem. Int. Ed. Engl. 1992, 31, 628–631;
- 17b J.-L. Couturier, K. Tanaka, M. Leconte, J.-M. Basset, J. Ollivier, Angew. Chem. 1993, 105, 99; Angew. Chem. Int. Ed. Engl. 1993, 32, 112–115.
- 18a T. C. Chung, M. Chasmawala, Macromolecules 1992, 25, 5137–5144;
- 18b M. A. Hillmyer, S. T. Nguyen, R. H. Grubbs, Macromolecules 1997, 30, 718–721.
- 19 For a review on telechelic polymers, see: E. J. Goethals, Telechelic Polymers: Synthesis and Applications, CRC, Boca Raton, FL, 1989.
- 20 Chain transfer during the ROMP of other oxanorbornene derivatives has been observed to occur when initiated with RuCl3, see: M. B. France, R. H. Grubbs, D. V. McGrath, R. A. Paciello, Macromolecules 1993, 26, 4742–4747.
- 21a T. Viswanathan, F. Gomez, K. B. Wagener, J. Polym. Sci. Polym. Chem. 1994, 32, 2469–2477;
- 21b H. Cramail, M. Fontanille, A. Soum, J. Mol. Catal. 1991, 65, 193–203.
- 22a W. E. Crowe, J. P. Mitchell, V. C. Gibson, R. R. Schrock, Macromolecules 1990, 23, 3534–3536;
- 22b V. C. Gibson, T. Okada, Macromolecules 2000, 33, 655–656.
- 23 The 1,5-dimethyl-1,5-cyclooctadiene (6) employed in this study contained 1,6-dimethyl-1,5-cyclooctadiene (20 %) as an inseparable mixture.
- 24 The ethylene–propylene copolymer obtained was not “perfectly” alternating because of the impurity in 1,5-dimethyl-1,5-cyclooctadiene (6).25 We believe that if pure 6 was polymerized, the poly(isoprene) obtained would have perfectly alternating head-to-tail microstructure, since trisubstituted alkylidenes have not been observed to form. Thus, a perfectly alternating ethylene–propylene would be obtained after hydrogenation.
- 25 Z. Wu, R. H. Grubbs, Macromolecules 1995, 28, 3502–3508.