Chemical and Biochemical Sensors, 1. Fundamentals
Nicolae Barsan
Eberhard-Karls University, Institute of Physical and Theoretical Chemistry, Tübingen, Germany
Search for more papers by this authorGünter Gauglitz
Eberhard-Karls University, Institute of Physical and Theoretical Chemistry, Tübingen, Germany
Search for more papers by this authorAlexandru Oprea
Eberhard-Karls University, Institute of Physical and Theoretical Chemistry, Tübingen, Germany
Search for more papers by this authorEdwin Ostertag
Reutlingen University, Process Analysis and Technology, Reutlingen, Germany
Search for more papers by this authorGünther Proll
Eberhard-Karls University, Institute of Physical and Theoretical Chemistry, Tübingen, Germany
Search for more papers by this authorKarsten Rebner
Reutlingen University, Process Analysis and Technology, Reutlingen, Germany
Search for more papers by this authorKlaus Schierbaum
Heinrich Heine University, Düsseldorf, Germany
Search for more papers by this authorFrank Schleifenbaum
Eberhard-Karls University, Institute of Physical and Theoretical Chemistry, Tübingen, Germany
Berthold Technologies GmbH & Co. KG, Bad Wildbad, Germany
Search for more papers by this authorUdo Weimar
Eberhard-Karls University, Institute of Physical and Theoretical Chemistry, Tübingen, Germany
Search for more papers by this authorNicolae Barsan
Eberhard-Karls University, Institute of Physical and Theoretical Chemistry, Tübingen, Germany
Search for more papers by this authorGünter Gauglitz
Eberhard-Karls University, Institute of Physical and Theoretical Chemistry, Tübingen, Germany
Search for more papers by this authorAlexandru Oprea
Eberhard-Karls University, Institute of Physical and Theoretical Chemistry, Tübingen, Germany
Search for more papers by this authorEdwin Ostertag
Reutlingen University, Process Analysis and Technology, Reutlingen, Germany
Search for more papers by this authorGünther Proll
Eberhard-Karls University, Institute of Physical and Theoretical Chemistry, Tübingen, Germany
Search for more papers by this authorKarsten Rebner
Reutlingen University, Process Analysis and Technology, Reutlingen, Germany
Search for more papers by this authorKlaus Schierbaum
Heinrich Heine University, Düsseldorf, Germany
Search for more papers by this authorFrank Schleifenbaum
Eberhard-Karls University, Institute of Physical and Theoretical Chemistry, Tübingen, Germany
Berthold Technologies GmbH & Co. KG, Bad Wildbad, Germany
Search for more papers by this authorUdo Weimar
Eberhard-Karls University, Institute of Physical and Theoretical Chemistry, Tübingen, Germany
Search for more papers by this authorAbstract
The article contains sections titled:
1. | Introduction |
2. | Detection Principles |
2.1. | Electrochemical Sensors |
2.1.1. | Electrochemical Sensor Components and Processes |
2.1.2. | Potentiometric Sensors |
2.1.2.1. | Basic Functionality and Principle Structure |
2.1.2.2. | Ion-Selective Electrodes |
2.1.2.3. | Potentiometric Sensors for Neutral Analytes |
2.1.2.4. | Solid State Potentiometric Sensors |
2.1.2.5. | Application Related Aspects |
2.1.3. | Amperometric and Voltammetric Sensors |
2.1.3.1. | Voltammetric Sensors |
2.1.3.2. | Amperometric Sensors |
2.2. | Conductometric and Impedimetric Sensors |
2.3. | Chemically-Sensitized Field Effect Transistors |
2.4. | Thermal Conductivity and Calorimetric Sensors |
2.5. | Mass-Sensitive Devices |
2.5.1. | Introduction |
2.5.2. | Bulk Shear Mode Microbalances |
2.5.3. | Surface Acoustic Waves (SAW) |
2.5.3.1. | Rayleigh Surface Acoustic Wave Devices |
2.5.3.2. | Shear Horizontal Acoustic Plate Mode |
2.5.3.3. | Flexural Plate Mode |
2.5.4. | Cantilevers |
2.5.5. | Gravimetric Sensor Readout |
2.5.6. | Sensor Manufacture |
2.6. | Optical Detection |
2.6.1. | Optical Principles |
2.6.2. | Fiber-Optical |
2.6.3. | Coupling Techniques |
2.6.4. | Refractometry |
2.6.5. | Reflectometry |
2.6.6. | Fluorescence and Bioluminescence |
2.6.6.1. | Principle of Luminescent Measurements |
2.6.6.2. | Types of Sensors |
2.6.6.3. | Functional Fluorescent Sensing |
2.6.6.4. | FRET-based Fluorescence Sensors |
3. | Recognition Structures |
3.1. | Polymers and Nanomaterials |
3.1.1. | Functionalized Polymers |
3.1.2. | Molecularly Imprinted Polymers |
3.1.3. | Carbon Nanotubes |
3.1.4. | Graphene |
3.2. | Biomolecules |
3.2.1. | Antibodies |
3.2.2. | Peptides |
3.2.3. | Receptors |
3.2.4. | Cells and Membranes |
3.2.5. | Nucleic Acids |
3.2.6. | Aptamers, Affimers, Affibodies and Scaffolds |
3.2.7. | Enzymes |
4. | Data Handling |
4.1. | Data Acquisition |
4.2. | Analytical Parameters |
4.2.1. | Fundamentals |
4.2.2. | Calibration |
4.2.3. | Quality Assurance and Validation |
4.3. | Chemometrics |
References
- 1 McDonagh, C., Burke, C.S., and MacCraith, B.D. (2008) Optical chemical sensors. Chem. Rev., 108, 400–422.
- 2 Hulanicki, A., Glab, S., and Ingman, F. (1991) Chemical sensors, definitions and classification. Pure Appl. Chem., 63, 1247–1250.
- 3 Thevenot, D.R., Tóth, K., Durst, R.A., and Wilson, G.S. (1999) Electrochemical biosensors: recommended definitions and classification. Pure Appl. Chem., 71, 2333–2348.
- 4 Wolfbeis, O.S. (2013) Probes, sensors, and labels: why is real progress slow? Angew. Chem. Int. Ed., 52, 9864–9865.
- 5 F.W. Scheller, F. Schubert, and J. Fedrowitz (eds) (1997) Frontiers in Biosensorics I: Fundamental Aspects, Birkhäuser, Basel.
- 6 Wang, X. and Wolfbeis, O.S. (2013) Fiber optic chemical sensors and biosensors (2008–2012) Anal. Chem. (Wash.), 85, 487–508. doi: 10.1021/ac303159b, IF: 5.9.
- 7
Spichiger, U.E. (1998) Chemical Sensors and Biosensors for Medical and Biological Applications, Wiley-VCH Verlag GmbH, Weinheim.
10.1002/9783527612284 Google Scholar
- 8 Gründler, P. (2004) Chemische Sensoren, Springer Verlag, Berlin, Heidelberg, New York.
- 9 T. Scheper (ed.) (2007) Advances in Biochemical Engineering/Biotechnology, Biosensing for the 21st Century, vol. 109 (Vol eds R. Renneberg, F. Lisdat), Springer Verlag, Berlin, Heidelberg, New York.
- 10 W. Göpel, J.J. Hesse, and N. Zemel (eds) (1989) Sensors-A Comprehensive Survey, vols. 1–8 + updates, VCH-Wiley Verlag GmbH, Weinheim.
- 11 Janata, J. (2009) Principles of Chemical Sensors, Springer, Dordrecht, Heidelberg, London, New York.
- 12 Cammann, K. et al. (2012) Chemical and biochemical sensors, in Ullmann's Encyclopedia Industrial Chemistry, Wiley-VCH Verlag GmbH, Weinheim.
- 13 Skoog, D.A., Holler, F., James, Crouch, and Stanley, R. Instrumentelle Analytik: Grundlagen - Geräte – Anwendungen (ed. R. Niessner), Springer Verlag, Berlin, Heidelberg, New York; Skoog, D.A., Crouch, Stanley R., and Holler, F. James (2007) Principles of Instrumental Analysis, 6th edn, Brooks/Cole Cengage Learning, Pacific Grove, Calif, ISBN 9780495125709.
- 14 Skoog, D.A. and Leary, J.J. (1992) Principles of Instrumental Analysis, Fort Worth: Saunders College Publishing, Philadelphia.
- 15 Analytical Chemistry 2.0, An Electronic Textbook for Introductory Courses in Analytical Chemistry http://acad.depauw.edu/harvey_web/eText%20Project/AnalyticalChemistry2.0.html (Accessed 4. October 2015).
- 16 K. Cammann (ed.) (2000) Instrumentelle Analytische Chemie, Spektrum-Verlag, Heidelberg.
- 17 Bockris O'Mara, J. and Reddy, A.K.N. (1998) Modern Electrochemistry, Kluwer Academic Publisher, New York, Boston, Dordrecht, London, Moscow.
- 18
Bockris O'Mara, J. and Khan, S.U.M. (1979) Quantum Electrochemistry, Plenum Press, New York, London.
10.1007/978-1-4684-2493-5 Google Scholar
- 19 Koryta, J., Dvořák, J., and Kavan, L. (1003) Principles of Electrochemistry, John Wiley & Sons, Inc., Chichester, New York, Brisbane, Toronto, Singapore.
- 20 Goodisman, J. (1987) Electrochemistry: Theoretical Foundations, Quantum and Statistical Mechanics, Thermodynamics, the Solid State, John Wiley & Sons, Inc., New York, Chichester, Brisbane, Toronto, Singapore.
- 21 Bard, A.J. and Faulkner, L.R. (2001) Electrochemical Methods: Fundamentals and Applications, John Wiley & Sons, Inc., New York, Chichester, Weinheim, Brisbane, Singapore, Toronto.
- 22 Barsukov, E. and Macdonald, R.J. (2005) Impedance Spectroscopy: Theory, Experiment, and Applications, John Wiley & Sons, Inc., Hoboken, New Jersey.
- 23 Atkins, P. and de Paula, J. (2006) Physical Chemistry, Oxford University Press, Oxford.
- 24 Buck, P.R. and Lindner, E. (2001) Tracing the history of selective ion sensors. Anal. Chem., 73 (3), 88A–97A.
- 25 Guggenheim, E.A. (1929) The conceptions of electrical potential difference between two phases and the individual activities of ions. J. Phys. Chem., 33, 842–849.
- 26 Guggenheim, E.A. (1930) On the conceptions of electrical potential difference between two phases. II J. Phys. Chem., 34, 1540–1543.
- 27 Cammann, K. (1985) Ion-selectivebulk membranes as models for biomembranes. Top. Curr. Chem., 128, 219–258.
- 28
Koryta, J. and Štulík, K. (1983) Ion Selective Electrodes, Cambridge University Press, Cambridge.
10.1017/CBO9780511897610 Google Scholar
- 29 Bobacka, J., Ivaska, A., and Lewenstam, A. (2008) Potentiometric ion sensors. Chem. Rev., 108 (2), 329–351.
- 30 Bakker, E., Bühlmann, P., and Pretsch, E. (2004) Review: The phase-boundary potential model. Talanta, 63, 3–20.
- 31 Nikolskii, B.P.J. (1937) Theory of the glass electrode. I. Theoretical. Phys. Chem. (U.S.S.R.), 10, 495–503.
- 32 R.A. Durst (ed.) (1969) In Ion-selective electrodes, Proceedings of a Symposium held at the National Bureau of Standards Gaithersburg, Maryland, January 30–31, 1969, NBS Special Publication 314; NBS: Washington, DC.
- 33 Bakker, E., Pretsch, E., and Bühlmann, P. (2000) Selectivity of potentiometric ion sensors. Anal. Chem., 72 (6), 1127–1133.
- 34 Cremer, M. (1906) Über die Ursache der elektromotorischen Eigenschaften der Gewebe, zugleich ein Beitrag zur Lehre von Polyphasischen Elektrolytketten. Z. Biol., 47, 56.
- 35 Haber, F. and Klemensiewicz, Z. (1909) Über elektrische Phasengrenzkräfte, Zeitschrift für Physikalische Chemie, Leipzig, (Vorgetragen in der Sitzung der Karlsruher chemischen Gesellschaft am 28. Jan. 1909) 385–431.
- 36 Frant, M.S. and Ross, J.W. Jr. (1966) Electrode for sensing fluoride ion activity in solution. Science, 154, 1553–1555.
- 37 Bakker, E., Bühlmann, P., and Pretsch, E. (1997) Carrier-based ion-selective electrodes and bulk optodes. 1. General Characteristics. Chem. Rev., 97 (8), 3083–3132.
- 38 Bühlmann, P., Pretsch, E., and Bakker, E. (1998) Carrier-based ion-selective electrodes and bulk optodes. 2. Ionophores for potentiometric and optical sensors. Chem. Rev., 98 (4), 1593–1687.
- 39 Bakker, E., Bühlmann, P., and Pretsch, E. (1999) Review: Polymer membrane ion-selective electrodes - What are the limits? Electroanal., 11 (13), 915–933.
- 40 Fu, B., Bakker, E., Yun, J.H., Yang, V.C., and Meyerhoff, M.E. (1994) Response mechanism of polymer membrane-based potentiometric polyion sensors. Anal. Chem., 66 (14), 2250–2259.
- 41 Thoma, A.P., Viviani-Nauer, A., Arvanitis, S., Morf, W.E., and Simon, W. (1977) Mechanism of neutral carrier mediated ion transport through ion-selective membranes. Anal. Chem., 49 (11), 1567–1572.
- 42 Rahman, Md.A., Kumar, P., Park, D.-S., and Shim, Y.-B. (2008) Electrochemical sensors based on organic conjugated polymers. Sensors, 8, 118–141.
- 43 Guilbault, G.G. and Montalvo, J.G. Jr. (1969) Urea-specific enzyme electrode. J. Am. Chem. Soc., 91, 2164–2165.
- 44 Severinghaus, J.W. (1965) Blood gas concentrations, in Handbook of Physiology, Sect. 3, Respiration, Vol. II. (eds W.O. Fenn and H. Rahn), American Physiological Society, Washington DC, pp. 1475–1487.
- 45
Maier, J. (2004) Physical Chemistry of Ionic Materials; Ions and Electrons in Solids, John Wiley & Sons, Ltd., Chichester, West Sussex.
10.1002/0470020229 Google Scholar
- 46 Ivers-Tiffée, E., Härdtl, K.H., Menesklou, W., and Riegel, J. (2001) Principles of solid state oxygen sensors for lean combustion gas control. Electrochim. Acta, 47, 807–814.
- 47 Moos, R. (2005) A brief overview on automotive exhaust gas sensors based on electroceramics. Int. J. Appl. Ceram. Technol., 2 (5), 401–413.
- 48 Polk, B.J., Stelzenmuller, A., Mijares, G., MaeCrehan, W., and Gaitan, M. (2006) Ag/AgCl microelectrodes with improved stability for microfluidies. Sens. Actuators, B, 114, 239–247.
- 49 Suzuki, H., Shiroishi, H., Sasaki, S., and Karube, I. (1999) Microfabricated liquid junction Ag/AgCl reference electrode and its application to a one-chip potentiometric sensor. Anal. Chem., 71 (22), 5069–5075.
- 50 Rûžička, J. and Hansen, E.H. (1975) Flow injection analyses- Part I. A new concept of fast continuous flow analysis. Anal. Chim. Acta, 78, 145–157.
- 51 Rûžička, J. and Hansen, E.H. (1978) Flow injection analyses- Part X. Theory, theniques, trends. Anal. Chim. Acta, 99, 37–76.
- 52 Bakker, E., Diamond, D., Lewenstam, A., and Pretsch, E. (1999) Ion sensors: current limit and new trends. Anal. Chim. Acta, 393, 11–18.
- 53 Pretsch, E. (2007) The new wave of ion-selective electrodes. Trends Anal. Chem., 26 (1), 46–51.
- 54 Ceresa, A., Radu, A., Peper, S., Bakker, E., and Pretsch, E. (2002) Rational Design of potentiometric trace level ion sensors. A Ag+-selective electrode withh a 100 ppt detection limit. Anal. Chem., 74 (16), 4027–4036.
- 55 Chumbimuni-Torres, K.Y., Rubinova, N., Radu, A., Kubota, L.T., and Bakker, E. (2006) Solid contact potentiometric sensors for trace level measurements. Anal. Chem., 78 (4), 1318–1322.
- 56 Bakker, E. and Pretsch, E. (2005) Potentiometric sensors for trace-level analysis. Trends Anal. Chem., 24 (3), 199–207.
- 57 Clark, L.C., Jr., Wolf, R., Granger, D., and Taylor, Z. (1953) Continuous recording of blood oxygen tensions by polarography. J. Appl. Physiol., 6 (3), 189–193.
- 58 Stetter, J.R. and Li, J. (2008) Amperometric gas sensors - a review. Chem. Rev., 108, 352–366.
- 59 Xiong, L. and Compton, R.G. (2014) Amperometric gas detection: a review. Int. J. Electrochem. Sci., 9, 7152–7181.
- 60 Cammann, K., Ahlers, B., Henn, D., Dumschat, C., and Shul'ga, A.A. (1996) New sensing principles for ion detection. Sens. Actuators, B, 35– 36, 26–31.
- 61 Katz, E. and Willner, I. (2003) Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: Routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors. Electroanalysis, 15 (11), 913–947.
- 62 Lundstrom, Shivaraman, M.S., Svensson, C.S., and Lundkvist, L. (1975) A hydrogen-sensitive MOS field effect transistor. Appl. Phys. Lett., 26, 55–57.
- 63 Bergveld, P. (1970) Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng., 17, 70–71.
- 64 Janata, J. (1983) US Patent No. 4 411 741.
- 65
Senft, C., Iskra, P., and Eisele, I. (2012) Theory and Application of Suspended Gate FET Gas Sensors, in Solid State Gas Sensors: Industrial Applications, vol. 11 (eds M. Fleischer and M. Lehmann), Springer Series on Chemical Sensors and Biosensors, pp. 79–112. doi: 10.1007/5346_2011_12
10.1007/5346_2011_12 Google Scholar
- 66 Oprea, A., Frerichs, H.-P., Wilbertz, C., Lehmann, M., and Weimar, U. (2007) Hybrid gas sensor platform based on capacitive coupled field effect transistors: Ammonia and nitrogen dioxide detection. Sens. Actuators, B, 127, 161–167.
- 67 Burgmair, M., Frerichs, H.-P., Zimmer, M., Lehmann, M., and Eisele, I. (2003) Field effect transducers for work function gas measurements: device improvements and comparison of performance. Sens. Actuators, B, 95, 183–188.
- 68 Masel, R.I. (1996) Principles of Adsorption and Reaction on Solid Surfaces, John Wiley & Sons, pp. 438.
- 69 Senft, C., Galonska, T., Widanarto, W., Frerichs, H.-P., Wilbertz, C., and Eisele, I. (2007) Cross sensitivity and stability of FET based hydrogen sensors. Proceedings of the IEEE Sens, Atlanta, GA, 189–192.
- 70 Lloyd Spetz, A. and Andersson, M. (2012) Technology and Application Opportunities for SiC-FET Gas Sensors, in Solid State Gas Sensors: Industrial Applications, vol. 11 (eds M. Fleischer and M. Lehmann), Springer Series on Chemical Sensors and Biosensors, pp. 79–112. doi: 10.1007/5346_2011_12
- 71 Sen.SiC AB http://sensic.se/ (Accessed 20 January 2016).
- 72
Hunter, G.W., Xu, J.C., Dungan, L.K., Ward, B.J., Rowe, S., Williams, J., Makel, D.B., Liu, C.C., and Chang, C.W. (2008) Smart sensor systems for aerospace applications: from sensor development to application. ECS Trans., 16, 333–344.
10.1149/1.2981136 Google Scholar
- 73 Wingbrant, H., Svenningstorp, H., Kubinski, D.J., Visser, J.H., Andersson, M., Unéus, L., Löfdahl, M., and Spetz, A.Lylod. (2006) Encyclopedia of Sensors, vol. 6 (eds C.A. Grimes and E.C. Dickey), American Scientific.
- 74 Janata, J. (2004) Thirty years of CHEMFETs- A personal view. Electroanalysis, 16, 1831.
- 75 Daynes, H.A. (1920) The theory of the katharometer. Proc. Roy. Soc. A, 97, 273–286.
- 76 Grob, R.L. (2004) Modern practice of gas chromatography, [ed.], 4. ed.
- 77
Madou, M.J. (2002) Fundamentals of Microfabrication: The Science of Miniaturization, 2nd edn, CRC Press.
10.1201/9781482274004 Google Scholar
- 78 de Graaf, G. and Wolffenbuttel, R.F. (2012) IEEE Instrumentation and measurement technology conference. doi: 10.1109/I2MTC.2012.6229412
- 79 Luginbühl, M., Lauber, R., Feigenwinter, P., and Zbinden, A.M. (2002) Monitoring xenon in the breathing circuit with a thermal conductivity sensor. J. Clin. Monit. Comput., 17, 23–30.
- 80
Freden, J. (2010) Handbook of Modern Sensors: Physics, Designs, and Applications, 4th edn, Springer, New York, Heidelberg, Dordrecht, London. doi: 10.1007/978-1-4419-6466-3
10.1007/978-1-4419-6466-3 Google Scholar
- 81 Husjsing, J.H. (2008) Smart sensor system: Why? Where? How? in Smart Sensor Systems (ed. G.C.M. Meijer), John Wiley & Sons, ISBN 9780470866917.
- 82 Blundell, S.J. and Blundell, K.M. (2010) Concepts in Thermal Physics, 2nd edn, Oxford University Press.
- 83 Bird, RB., Stewart, WE., and Lightfoot, EN. (1960) Transport Phenomena, John Wiley & Sons, New York, pp. 258–260.
- 84 Tsilingiris, P.T. (2008) Thermophysical and transport properties of humid air at temperature range between 0 and 100 C. Energy Convers. Manage., 49, 1098–1110.
- 85 Wiegleb, G. (2001) Industrielle Gassensorik: Messverfahren-Signalverarbeitung-Anwendungstechnik-Prüfkriterien, Expert-Verlag. ISBN 3-8169-1956-1.
- 86 Feßmann, J. and Orth, H. (2002) Angewandte Chemie und Umwelttechnik für Ingenieure, Handbuch für Studium und betriebliche Praxis, ecomed Verlagsges., Landsberg.
- 87 Mahdavifar, A., Aguilar, R., Peng, Z., Hesketh, P.J., Findlay, M., Stetter, J.R., and Hunter, G.W. (2014) Simulation and fabrication of an ultra-low power miniature microbridge thermal conductivity gas sensor. J. Electr. Soc., 161 (4), B55–B61.
- 88 Jones, T.A. and Walsh, P.T. (1988) Flammable gas detection the role of the platinum metals. Platinum Metals Rev., 32, 50–60.
- 89 Chou, J. (2000) Hazardous Gas Monitors, McGraw-Hill, New York, ISBN 0-07-135876-5.
- 90 Khan, M.S., Bhaskar, M., and Verna, S. (2014) Computational analysis of natural convection in spherical annulus using FEV. Int. J. Mod. Eng. Res., 4 (10), 29.
- 91 Incropera, F. and D.P., DeWitt. (1999) Fundamentals of heat and Mass Transfer, John Wiley & Sons, ISBN 0.471.30460-3.
- 92
Schlünder, E.-U. (1989) Einführung in die Wärmeübertragung, 6. Aufl, Vieweg, Braunschweig, Wiesbaden. doi: 10.1007/978-3-322-84049-3
10.1007/978-3-322-84049-3 Google Scholar
- 93 VDI e.V. (2010) Heat Atlas, Springer-Verlag, Berlin Heidelberg. doi 10.1007/978-3-540-77877-6.
- 94 Chiu, C.P., Shich, J.Y., and Chen, W.R. (1999) Transient natural convection of micropolar fluids in concentric spherical annuli. Acta Mech., 132, 75–92.
- 95 Kakaç, S. and Yener, Y. (1993) Heat Conduction, Taylor & Francis, ISBN 1-56032-027-3.
- 96 Fluidverfahrenstechnik: Grundlagen, Methodik, Technik, Praxis, (2011) (ed. R. Goedecke), Wiley-VCH, Weinheim.
- 97 Ma, H., Ding, E., and Wang, W. (2013) Power reduction with enhanced sensitivity for pellistor methane sensor by improved thermal insulation packaging. Sens. Actuators, B, 187, 221–226.
- 98 Marrero, T.R. and Mason, E.A. (1972) Gaseous diffusion coefficients. J. Phys. Chem. Ref. Data, 1, 3.
- 99 M.J. Moran and H.N. Shapiro (eds) (2008) Fundamentals of Engineering Thermodynamics, John Wiley & Sons.
- 100 Firth, J.G., Jones, A., and Jones, T.A. (1973) The principles of the detection of flammable atmospheres by catalytic devices. Combust. Flame, 20, 303–311.
- 101 Higgins, B.G. and Binous, H. (2013) Binary Diffusion Coefficients for Gases http://demonstrations.wolfram.com/BinaryDiffusionCoefficientsForGases/Wolfram Demonstrations Project (Accessed 11 July 2016).
- 102
Bird, R.B., Stewart, W.E., and Lightfoot, E.N. (2002) Transport Phenomena, 2nd edn, John Wiley & Sons, New York.
10.1115/1.1424298 Google Scholar
- 103 http://ecoenvironmental.com.au/wp-content/uploads/gas_VRAE_Sensor_Specs_and_Cross_Sensitivites.pdf (Accessed 28 July 2016).
- 104 Li, Z. and Hoflund, G.B. (2003) A review on complete oxidation of methane at low temperatures. J. Nat. Gas Chem., 12, 153–160.
- 105 Deutschmann, O., Maier, L.I., Riedel, U., Stroemman, A.H., and Dibble, R.W. (2000) Hydrogen assisted catalytic combustion of methane on platinum. Catal. Today, 59, 141.
- 106 Reinke, M. (2005) Katalytisch Stabilisierte Verbrennung von CH4/Luft Gemischen und H2O- und CO2-verdünnten CH4/Luft Gemischen über Plating unter Hochdruckbedingungen, Dissertation, ETH Zürich.
- 107 Gélin, P. and Primet, P. (2002) Complete oxidation of methane at low temperature over noble metal based catalysts, a review. Appl. Catal., B39, 1.
- 108 Burch, R. (1997) Low NOx options in catalytic combustion and emission control. Catal. Today, 35, 27.
- 109 Burch, R., Crittle, D.J., and Hayes, M.J. (1999) CH bond activation in hydrocarbon oxidation on heterogeneous catalysts. Catal. Today, 47, 229.
- 110 Burch, R., Urbano, F.J., and Loader, P.K. (1995) Methane combustion over palladium catalysts: The effect of carbon dioxide and water on activity. Appl. Catal. A, 123, 173.
- 111 Narui, K., Yata, H., Furuta, K., Nishida, A., Kohtoku, Y., and Matsuzaki, T. (1999) Effects of addition of Pt to PdO/Al2O3 catalyst on catalytic activity for methane combustion and TEM observations of supported particles. Appl. Catal. A, 179, 165.
- 112
Korotcenkov, G. (2013) Handbook of Gas Sensor Materials: Properties, Advantages and Shortcomings for Applications Volume 1: Conventional Approaches, Springer Science+Business Media. doi: 10.1007/978-1-4614-7165-3-11
10.1007/978-1-4614-7165-3 Google Scholar
- 113 Hoyos, L.J., Praliaud, H., and andPrimet, M. (1993) Catalytic combustion of methane over palladium supported on alumina and silica in presence of hydrogen sulphide. Appl. Catal. A, 98, 125.
- 114 Gélina, P., Urfelsa, L., Primeta, M., and Tenab, E. (2003) Complete oxidation of methane at low temperature over Pt and Pd catalysts for the abatement of lean-burn natural gas fuelled vehicles emissions: influence of water and sulphur containing compounds. Catalysis Today, 83, 45–57.
- 115 (eds J.G. Webster and H. Eren) (2014) Measurement, Instrumentation, and Sensors Handbook, 2nd edn, CRC Press, Boca Raton, ISBN 13:978-1-4398-4893-7; E. Comini, G. Faglia, and G. Sberveglieri (eds) (2009) Solid State Gas Sensing, Springer. doi: 10.1007/978-0-387-09665-0
- 116 Buck, R.P., Lindner, E., Kutner, W., and Inzelt, G. (2004) Piezoelectric chemical sensors (IUPAC technical report) Pure Appl. Chem, 76 (6), 1139–1160.
- 117
Jones, F.E. and Schoonover, R.M. (2002) Handbook of Mass Measurement, CRC Press, Taylor Francis Group, Boca Raton, London, New York, Washington, DC.
10.1201/9781420038453 Google Scholar
- 118 Gläser, M. and Borys, M. (2009) Precision mass measurements. Rep. Prog. Phys., 72, 126101
- 119 Curie, J. and Curie, P. (1880) Développement, par pression, de l'électricité polaire dans les cristaux hémièdres à faces inclines. Comptes rendus hebdomadaires des séances de l'Académie des sciences, 91, 294–299.
- 120 Lippmann, G. (1881) Principe de la conservation de l'électricité. Ann. Chim. Phys., 24, 145–178.
- 121 Ikeda, T. (1990) Fundamentals of Piezoelectricity, Oxford University Press, Oxford, New York, Tokyo.
- 122
Bower, A.F. (2009) Applied Mechanics of Solids, CRC Press, Taylor Francis Group, Boca Raton, London, New York, Washington, DC.
10.1201/9781439802489 Google Scholar
- 123 Jackson, J.D. (1998) Classical Electrodynamics, John Wiley & Sons, Inc.
- 124 Martin, R.M. (1972) Piezoelectricity. Phys. Rev. B, 5 (4), 1607–1613.
- 125 Resta, R. (2010) Electrical polarization and orbital magnetization: the modern theories. J. Phys.: Condens. Matter, 22, 123201
- 126 Munn, R.W. (2010) Theory of piezoelectricity, electrostriction, and pyroelectricity in molecular crystals. J. Chem. Phys., 132, 104512 (6pp).
- 127
Cohen, R.E. (2008) First-Principles Theories of Piezoelectric Materials, in Piezoelectricity, Springer Series in materials science, vol. 114 (eds W. Heywang, K. Lubitz, and W. Wersing), Springer-Verlag, Berlin, Heidelberg, pp. 471–492.
10.1007/978-3-540-68683-5_21 Google Scholar
- 128 Cady, W.G. (1946) Piezoelectricity, McGraw-Hill, Book Company, Inc., New York, London.
- 129 http://www.quartzpage.de/gen_struct.html (Accessed 30 January 2016).
- 130 Thompson, M., Ballantyne, S.M., Cheran, L.E., Stevenson, A.C., and Lowe, C.R. (2003) Electromagnetic excitation of high frequency acoustic waves and detection in the liquid phase. Analyst, 128, 1048–1055.
- 131 Sauerbrey, G. (1959) Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys., 155 (2), 206–222.
- 132
Lu, C. (1984) Theory and practice of the quartz crystal microbalance, in Applications of piezoelectric quartz crystal microbalances (eds C. Lu and Czanderna), Elsevier, Amsterdam, Oxford, New York, Tokyo, pp. 19–61.
10.1016/B978-0-444-42277-4.50008-9 Google Scholar
- 133 King, W.H. (1964) Piezoelectric sorption detector. Anal. Chem., 36 (9), 1735–1739.
- 134 Fanget, S., Hentz, S., Puget, P., Arcamone, J., Matheron, M., Colinet, E., Andreucci, P., Duraffourg, L., Myers, E., and Roukes, M.L. (2011) Gas sensors based on gravimetric detection - A review. Sens. Actuators, B, 160, 804–821.
- 135 Hierlemann, A., Weimar, U., Kraus, G., Schweizer-Berberich, M., and Göpel, W. Polymer-based sensor arrays and multicomponent analysis for the detection of hazardous organic vapours in the environment. Sens. Actuators, B, 26–27, 126–134.
- 136 Bodenhöfer, K., Hierlemann, A., Seemann, J., Gauglitz, G., Koppenhoefer, B., and Göpel, W. (1997) Chiral discrimination using piezoelectric and optical gas sensors. Nature, 387, 577–579.
- 137 Kanazawa, K.K. and Gordon, J.G. (1985) The oscillation frequency of a quartz resonator in contact with a liquid. Ana. Chim. Acta, 175, 99–105.
- 138 Yang, M. and Thompson, M. (1993) Interfacial properties and the response of the thickness-shear-mode acoustic wave sensor in liquids. Langmuir, 9, 802–811.
- 139 Martin, B.A. and Hager, H.E. (1989) Flow profile above a quartz crystals vibrating in liquid. J. Appl. Phys., 65 (7), 2627–2629.
- 140 Martin, B.A. and Hager, H.E. (1989) Velocity profile on quartz crystals oscillating in liquids. J. Appl. Phys., 65 (7), 2630–2635.
- 141 Hayward, G.L. (1997) A transverse shear model of a piezoelectric chemical sensor. J. Appl. Phys., 83 (4), 2194–2201.
- 142 Lucklum, R. and Hauptmann, P. (2006) Acoustic microsensors - the challenge behind microgravimetry Anal. Bioanal. Chem., 384, 667–682.
- 143 Reed, C.E., Kanazawa, K.K., and Kaufmann, J.H. (1990) Physical description of a viscoelastically loaded AT-cut quartz resonator. J. Appl. Phys., 68 (5), 1993–2001.
- 144 Johannsmann, D., Mathauer, K., Wegner, G., and Knoll, W. (1992) Viscoelastic properties of thin films probed with a quartz-crystal resonator. Phys. Rev. B, 46 (12), 7808–7815.
- 145 Ballatine, D.S., White, R.M., Martin, S.J., Ricco, A.J., Fryre, G.C., Zellers, E.T., and Wohltjen, H. (1997) Acoustic wave sensors theory, design and physico-chemical applications, Academic Press, New York.
- 146 Mason, W.P. (1950) Piezoelectric crystals and their applications to ultrasonics, Van Nostrand, New York.
- 147
Lord Rayleigh (1885) On waves propagated along the plane surface of an elastic solid. Proc. London Math. Soc., s1–17, 4–11.
10.1112/plms/s1-17.1.4 Google Scholar
- 148 Grate, J.W., Martin, S.J., and White, R.M. (1993) Acoustic wave microsensors, part I. Anal. Chem., 65 (21), 940–948.
- 149
Grate, J.W., Martin, S.J., and White, R.M. (1993) Acoustic wave microsensors, part II. Anal. Chem., 65 (22), 987–996.
10.1021/ac00070a717 Google Scholar
- 150 White, R.M. and Voltmer, F.W. (1965) Direct piezoelectric coupling to surface elastic waves. Appl. Phys. Lett., 7 (12), 314–316.
- 151
Janshoff, A., Galla, H.-J., and Steinem, C. (2000) Piezoelectric mass-sensing devices as biosensors-an alternative to optical biosensors. Angew. Chem. Int. Ed., 39, 4004–4032.
10.1002/1521-3773(20001117)39:22<4004::AID-ANIE4004>3.0.CO;2-2 CAS PubMed Web of Science® Google Scholar
- 152 Wohltjen, H. and Dessy, R. (1979) Surface acoustic wave probe for chemical analysis. I. Introduction and instrument description. Anal. Chem., 51 (9), 1458–1464.
- 153 Auld, B.A. (1973) Acoustic Fields and Waves in Solids, Wiley-Interscience, New York.
- 154 Wohltjen, H. (1984) Mechanism of operation and design considerations for surface acoustic wave device vapour sensors. Sens. Actuators, 5, 307–325.
- 155 Flory, C.A. and Baer, R.L. (1987) Surface transverse wave mode analysis and coupling to interdigital transducers IEEE 1987 Ultrason. Symp., Denver, Colorado, USA Otober 14-16 313–318.
- 156 Martin, S.J., Ricco, A.J., Niemczyk, T.M., and Frye, G.C. (1989) Characterization of sh acoustic plate mode liquid sensors. Sens. Actuators, 20, 253–268.
- 157 Lamb, H. (1917) On waves in an elastic plate. Proc. Roy. Soc. London Ser., A, 93, 114–128.
- 158 Binnig, G., Quate, C.F., and Gerber, C. (1986) Atomic force microscope. Phys. Rev. Lett., 56 (9), 930–934.
- 159 Gimzewski, J.K., Gerber, C., Meyer, E., and Schittler, R.R. (1994) Observation of a chemical reaction using a micromechanical sensor. Chem. Phys. Lett., 217 (56), 589–594.
- 160 Vashist, S.K. (2007) A Review of microcantilevers for sensing applications. AZojono - Journal of Nanotechnology Online, 3, 1–15.
- 161 Stoney, G.G. (1909) The tension of metallic films deposited by electrolysis. Proc. Roy. Soc. London, A 82, 172–175.
- 162 Ohring, M. (1992) Materials science of thein films, Academic Press, San Diego, New York, Boston, London, Sydney, Tokyo, Toronto.
- 163 Raiteri, R., Grattarola, M., Butt, H.-J., and Skládal, P. (2001) Micromechanical cantilever-based biosensors. Sens. Actuators, B, 79, 115–126.
- 164 Szewczyk, S.T., Shih, W.Y., and Shih, W.-H. (2006) Palpationlike soft-material elastic modulus measurement using piezoelectric cantilevers. Rev. Sci. Instrum., 77, 044302.
- 165 Chen, G.Y., Thundat, T., Wachter, E.A., and Warmack, R.J. (1995) Adsorption-induced surface stress and its effects on resonance frequency of microcantilevers. J. Appl. Phys., 77 (8), 3618–3622.
- 166 Chen, G.Y., Warmack, R.J., Thundat, T., Allison, D.P., and Huang, A. (1994) Resonance response of scanning force microscopy cantilevers. Rev. Sci. Instrum., 65, 2532–2537.
- 167 Mukhopadhyay, R., Sumbayev, V.V., Lorentzen, M., Kjems, J., Andreasen, P.A., and Flemming Besenbacher, F. (2005) Cantilever sensor for nanomechanical detection of specific protein conformations. Nano Lett., 5 (12), 2385–2388.
- 168 Mo L., Tang, H.X., and Roukes, M.L. (2007) Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nature Nanotechnology, 2, 114–120.
- 169 Weigert, S., Dreier, M., and Hegner, M. (1996) Frequency shifts of cantilevers vibrating in various media. Appl. Phys. Lett., 69 (19), 2834–2836.
- 170 O'Sullivan, C.K. and Guilbault, G.G. (1999) Commercial quartz crystal microbalances-theory and applications. Biosens. Bioelectron., 14, 663–670.
- 171 Pang, W., Zhao, H., Kim, E.S., Zhang, H., Yu, H., and Hu, X. (2012) Piezoelectric microelectromechanical resonant sensors for chemical and biological detection. Lab Chip, 12, 29–44.
- 172
Gauglitz G. and Goddard N.J. (2014) Direct Optical Detection in Bioanalytics, in Handbook of Spectroscopy (eds. G. Gauglitz and D.S. Moore), Wiley-VCH, Weinheim, Chapter 29.
10.1002/9783527654703 Google Scholar
- 173 Hecht, E. and Zajac, A. (1974) Optics, Reading, Addison-Wesley.
- 174 Gauglitz, G. (1994) Ultraviolet and visible spectroscopy, in Ullmann's Encyclopedia of Industrial Chemistry, vol. B5, VCH-Wiley Verlag GmbH, Weinheim, Germany.
- 175 Parker, C.A. (1969) Photoluminescence of Solutions, Elsevier, Amsterdam.
- 176 Guilbault, G.G. (1973) Practical Fluorescence; Theory, Methods, and Techniques, Marcel Dekker, New York.
- 177 Borisov, S.M. and Wolfbeis, O.S. (2008) Review: Optical Biosensors. Chem. Rev., 108, 423–461. doi: 10.1021/cr068105t
- 178 Boens, N., Qin, W., Basaric, N., Hofkens, J., Ameloot, M., Pouget, J., Lefevre, J., Valeur, B., Gratton, E., VandeVen, M. et al. (2007) Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy. Anal. Chem., 79 (5), 2137–2149.
- 179 Geddes, C.D., Aslan, K., Gryczynski, I., and Lakowicz, J.R. (2006) Metal-enhanced fluorescence sensing, in Fluorescence Sensors and Biosensors (ed. R.B. Thompson), CRC Press LLC, Boca Raton, Fla, pp. 121–181.
- 180 Förster, Th. (1946) Energiewanderung und fluoreszenz. Naturwiss., 6, 166–175.
- 181 Förster, Th. (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Physik, 2, 55–75.
- 182 B.W. Van der Meer, G. Coker, and S-.Y.S. Chen (eds) (1994) Resonance Energy Transfer-theory and Data, VCH Publishers, Inc., New York.
- 183 van de Hulst, H.C. (1957) Light Scattering by Small Particles, John Wiley & Sons, New York.
- 184 Stacey, K.A. (1956) Light-Scattering in Physical Chemistry, Butterworths, London.
- 185
Colthup, N.B., Daly, L.H., and Wiberley, S.E. (1990) Introduction to Infrared and Raman Spectroscopy, Academic Press, New York.
10.1016/B978-0-08-091740-5.50014-4 Google Scholar
- 186
Vandenabeele, P. (2013) Practical Raman Spectroscopy An Introduction, Wiley-VCH, Weinheim.
10.1002/9781119961284 Google Scholar
- 187 Bonifacio, A., Cervo, S., and Sergo, V. (2015) Label-free surface-enhanced Raman spectroscopy of biofluids: fundamental aspects and diagnostic applications. Anal. Bioanal. Chem., 407 (27), 8265–8277. doi: 10.1007/s00216-015-8697-z
- 188 Hecht, E. (1997) Optics, 3rd edn, Addison Wesley, London.
- 189 Born, M. and Wolf, E. (1980) Principles of Optics, Pergamon, New York.
- 190 Goos, F. and Hänchen, H. (1947) Ein neuer und fundamentaler Versuch zur Totalreflexion. Annal. Phys., 436 (7–8), 333–346.
- 191 Buerck, J., Conzen, J.P., and Ache, H.J. (1992) A fiber optic evanescent field absorption sensor for monitoring organic contaminants in water. Fresenius' J. Anal. Chem., 342 (4–5), 394–400.
- 192 Eugster, R., Rosatzin, Th., Rusterholz, B., Aebersold, B., Pedrazza, U., Rueegg, D., Schmid, A., Spichiger, U.E., and Simon, W. (1994) Plasticizers for liquid polymeric membranes of ion-selective chemical sensors. Anal. Chim. Acta, 289 (1), 1–13.
- 193 Arnold, M.A. and Ostler, T.J. (1986) Fiberoptic ammonia gas sensing probe. Anal. Chem., 58, 1137–1140.
- 194 Opitz, N. and Luebbers, D.W. (1987) Fluorescence-based optochemical sensors (optodes) and related biosensors using enzyme-catalyzed biochemical and antibody-linked immunological reactions, in GBF Monograph Series 10 (Biosens. Int. Workshop, pp. 207–216.
- 195 Peterson, I.J., Goldstein, S.R., Fitzgerald, R.V., and Buckhold, D.K. (1980) Fiberoptic pH Probe for Physiological Use. Anal. Chem., 52, 864–869.
- 196 Wang, X. and Wolfbeis, O.S. (2014) Optical methods for sensing and imaging of oxygen: materials, spectroscopies and applications. Chem. Soc. Rev., 43, 3666–3761. doi: 10.1039/c4cs00039k, IF: 30.4. Open access.
- 197 Zhujun, Z. and Seitz, W.R. (1984) A carbon dioxide sensor based on fluorescence. Anal. Chim. Acta, 170, 209–216.
- 198 O.S. Wolfbeis (ed.) (1991) Fiber Optic Chemical Sensors and Biosensors, CRC Press, Boca Raton.
- 199
Narayanaswamy, R. and Wolfbeis, O.S. (2004) Optical Sensors, Springer Verlag., Berlin, Heidelberg.
10.1007/978-3-662-09111-1 Google Scholar
- 200 Sharma, A. and Wolfbeis, O.S. (1989) Fiberoptic fluorosensor for sulfur dioxide based on energy transfer and exciplex quenching. Proc. SPIE Int. Soc. Opt. Eng., 990, 116–120.
- 201 Conzen, J.P., Bürck, J., and Ache, H.J. (1993) Characterization of a fiber-optic evanescent wave absorbance sensor for nonpolar organic compounds. Appl. Spectrosc., 47 (6), 753–763.
- 202 Homola, J. (1995) Optical fiber sensor based on surface plasmon excitation. Sens. Actuators, B, 29 (1–3), 401–405.
- 203 I.S. Martellucci and A.N. Chester (eds) (1983) Integrated Optics: Physics and Applications, ATO Advanced Studies Institutes Series, E. Voges, Coupling Techniques: Prism-, Grating- and Endfire-Coupling, vol. 91 pp. 323–333 ISBN 978-1-4613-3663-1 (Print) 978-1-4613-3661-7 (Online) Plenum Press, New York and London, (Published in cooperation with NATO Scientific Affairs Division).
- 204 Tiefenthaler, K. and Lukosz, W. (1985) Grating couplers as integrated optical humidity and gas sensors. Thin Solid Films, 126 (3–4), 205–211.
- 205 Fattinger, C., Mangold, C., Gale, M.T., and Schuetz, H. (1995) Bidiffractive grating coupler: universal transducer for optical interface analytics. Opt. Eng., 34, 2744–2753.
- 206 Maguis, S., Laffont, G., Ferdinand, P., Carbonnier, B., Kham, K., Mekhalif, T., and Millot, M.-C. (2008) Biofunctionalized tilted fiber bragg gratings for label-free immunosensing. Opt. Express, 16 (23), 19049–19062.
- 207 Carvalho, L., Alberto, N.J., Gomes, P.S., Nogueira, R.N., Pinto, J.L., and Fernandes, M.H. (2011) In the trail of a new bio-sensor for measuring strain in bone: Osteoblastic biocompatibility. Biosens. Bioelectron., 26 (10), 4046–4052.
- 208 Sadykov, I.R., Morozov, O.G., and Sadeev, T.S. (2012) The biosensor based on fiber Bragg grating to determine the composition of the fuel and biofuel. Proc. SPIE 8410, Optical Technologies for Telecommunications 84100F-84100F-6.
- 209 Dagenais, M. and Stanford, C.J. (2011) Evanescent fiber bragg grating biosensors, in VLSI Micro- and Nanophotonics (ed. E.-H. Lee), CRC Press, Florida, 21/1-21/16.
- 210 Cunningham, B.T., Chan, L., Mathias, P.C., Ganesh, N., George, S., Lidstone, E., Heeres, J., and Hergenrother, P.J. (2008) Photonic crystals: A platform for label-free and enhanced fluorescence biomolecular and cellular assays. Mater. Res. Soc. Symp. Proc., 1133 E, 10:30 AM *AA4.1.
- 211 Zhang, Y., Zhao, Y., and Lv, R. (2015) A review for optical sensors based on photonic crystal cavities. Sens. Actuators, A, 233, 374–389.
- 212 Buckle, P.E., Davies, R.J., Kinning, T., Yeung, D., Edwards, P.R., Pollard-Knight, D., and Lowe, C.R. (1993) The resonant mirror: a novel optical sensor for direct sensing of biomolecular interactions. Part II: applications. Biosens. Bioelectron., 8 (7–8), 355–363.
- 213 Homola, J., Yee, S.S., and Gauglitz, G. (1999) Surface plasmon resonance sensors: review. Sens. Actuators, B, 54 (1–2), 3–15.
- 214 Homola, J. (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev., 108 (2), 462–493.
- 215 Guo, X. (2012) Surface plasmon resonance based biosensor technique: a review. J. Biophoton., 5 (7), 483–501.
- 216 Caucheteur, C., Guo, T., and Albert, J. (2015) Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal. Bioanal. Chem., 407 (14), 3883–3897.
- 217 Ymeti, A., Greve, J., Lambeck, P.V., Wink, T., van Hoevell, S.W.F.M., Beumer, T.A.M., Wijn, R.R., Heideman, R.G., Subramaniam, V., and Kanger, J.S. (2007) Fast, ultrasensitive virus detection using a young interferometer sensor. Nano Letters, 7 (2), 394–397.
- 218 Ingenhoff, J., Drapp, B., and Gauglitz, G. (1993) Biosensors using integrated optical devices. Fresenius' J. Anal. Chem., 346 (6), 580–583.
- 219 Brosinger, F., Freimuth, H., Lacher, M., Ehrfeld, W., Gedig, E., Katerkamp, A., Spener, F., and Cammann, K. (1997) A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach-Zehnder interferometer on silicon. Sens. Actuators, B, 44, 350–355.
- 220 Dante, S., Duval, D., Sepulveda, B., Gonzalez-Guerrero, A.B., Sendra, J.R., and Lechuga, L.M. (2012) All-optical phase modulation for integrated interferometric biosensors. Opt. Express, 20 (7), 7195–7205.
- 221 Sieger, M., Balluff, F., Wang, X., Kim, S.-S., Leidner, L., Gauglitz, G., and Mizaikoff, B. (2013) On-chip integrated mid-infrared GaAs/AlGaAs Mach-Zehnder interferometer. Anal. Chem., 85 (6), 3050–3052.
- 222 Ksendzov, A. and Lin, Y. (2005) Integrated optics ring - resonator sensors for protein detection. Opt. Lett., 30 (24), 3344–3346.
- 223 Sun, Y. and Fan, X. (2013) Optical micro-ring resonators for chemical vapor sensing, in Optochemical Nanosensors (eds A. Cusano and F.J. Arregui), CRC Press, Florida, pp. 455–471.
- 224 Suter, J.D., White, I.M., Zhu, H., Shi, H., Caldwell, C.W., and Fan, X. (2008) Label-free quantitative DNA detection using the liquid core optical ring resonator. Biosens. Bioelectron., 23 (7), 1003–1009.
- 225 Brecht, A., Gauglitz, G., and Striebel, C. (1994) Characterization of biomembranes by spectral ellipsometry. Biosens. Bioelectron., 9, 139–146.
- 226 Garipcan, B., Caglayan, M.O., and Demirel, G. (2011) New generation biosensors based on ellipsometry, in New Perspectives in Biosensors Technology and Applications (ed. P.A. Serra), InTech, pp. 197–214.
- 227 Landry, J.P., Fei, Y., and Zhu, X.D. (2011) High throughput, label-free screening small molecule compound libraries for protein-ligands using combination of small molecule microarrays and a special ellipsometry-based optical scanner. Int. Drug Discov., 6 (6), 8–13.
- 228 Gauglitz, G. and Proll, G. (2008) Strategies for label-free optical detection, in Advances in Biochemical Engineering/Biotechnology, vol. 109 (ed. T. Sheper), (Biosensing for the 21st Century) Springer, pp. 395–432.
- 229 Gauglitz, G. (2010) Direct optical detection in bioanalysis: an update. Anal. Bioanal. Chem., 398 (6), 2363–2372.
- 230 Bornhop, D.J., Latham, J.C., Kussrow, A., Markov, D.A., Jones, R.D., and Sørensen, H.S. (2007) Free-solution, label-free molecular interactions studied by back-scattering interferometry. Science, 317, 1732–1736.
- 231 Rodriguez-Lorenzo, L., Fabris, L., and Alvarez-Puebla, R.A. (2012) Multiplex optical sensing with surface-enhanced Raman scattering: a critical review. Anal. Chim. Acta, 745, 10–23.
- 232 Forzani, E.S., Lu, D., Leright, M.J., Aguilar, A.D., Tsow, F., Iglesias, R.A., Zhang, Q., Lu, J., Li, J., and Tao, N. (2009) A hybrid electrochemical-colorimetric sensing platform for detection of explosives. J. Am. Chem. Soc., 131 (4), 1390–1391.
- 233 Liu, J., Tian, S., Tiefenauer, L., Nielsen, P.E., and Knoll, W. (2005) Simultaneously amplified electrochemical and surface plasmon optical detection of DNA hybridization based on ferrocene-streptavidin conjugates. Anal. Chem., 77 (9), 2756–2761.
- 234 Cheng, X.R., Hau, B.Y., Endo, T., and Kerman, K. (2014) Au nanoparticle-modified DNA sensor based on simultaneous electrochemical impedance spectroscopy and localized surface plasmon resonance. Biosens.Bioelectron., 53, 513–518.
- 235 Trettnak, W., Leiner, P.J.M., and Wolfbeis, O.S. (1988) Fiberoptic Glucose Biosensor with an Oxygen Optrode as the Transducer. Analyst (London), 113, 1519–1523.
- 236 Saari, L.A. and Seitz, W.R. (1983) Immobilized Morin as Fluorescense Sensor for Determination of Aluminum(III) Anal. Chem., 55, 667–670.
- 237 Bürck, J., Zimmermann, B., Mayer, J., and Ache, H.-J. (1996) Integrated optical NIR-evanescent wave absorbance sensor for chemical analysis. Fresenius' J. Anal. Chem., 354 (3), 284–290.
- 238 Blair, D.S., Burgess, L.W., and Brodsky, A.M. (1997) Evanescent fiber-optic chemical sensor for monitoring volatile organic compounds in water. Anal. Chem., 69 (13), 2238–2246.
- 239 Archenault, M., Gagnaire, H., Goure, J.P., and Jaffrezic-Renault, N. (1992) A simple intrinsic optical-fiber chemical sensor. Sens. Actuators, B, 8 (2), 161–166.
- 240 Mizaikoff, B., Goebel, R., Krska, R., Taga, K., Kellner, R., Tacke, M., and Katzir, A. (1995) Infrared fiber-optical chemical sensors with reactive surface coatings. Sens. Actuators, B, 29 (1–3), 58–63.
- 241 Ebeling, K.J. (1989) Integrated Optoelectronics, Waveguide Optics Photonics Semiconductors, Springer-Verlag., Berlin.
- 242 Schmidt, H. and Hawkins, A.R. (2008) Optofluidic waveguides: I. Concepts and implementations. Microfluid. Nanofluid., 4 (1–2), 3–16.
- 243 Adams, M.J. (1981) An Introduction to Optical Waveguide, John Wiley & Sons.
- 244 G.E. Boisde and A. Harmer (eds) (1996) Chemical and Biochemical Sensing Using Optical Fibers and Waveguides, Artech House, Norwood, Mass, p. 408.
- 245 Klein, R. and Voges, E. (1994) Integrated-optic ammonia sensor. Fresenius' J. Anal. Chem., 349 (5), 394–398.
- 246 Wilkinson, J.S. (2014) Optical Waveguide Spectroscopy, in Handbook of Spectroscopy (eds G. Gauglitz and D.S. Moore), Wiley-VCH, Weinheim, Germany.
- 247 EE 539B: Integrated Optics-From Micron Scale to Nanophotonics http://www.ee.washington.edu/people/faculty/lin_lih/EE539Sp08/Waveguide%20coupling.pdf (Accessed 14 July 2016).
- 248 Kretschmann, E. and Raether, H. (1968) Radiative decay of nonradiative surface plasmons excited by light. Z. Naturforsch. A, 23, 2135–2136.
- 249 Homola, J. (2003) Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem., 377 (3), 528–539.
- 250
Homola, J., Yee, S.S., and Myszka, D. (2008) Optical Biosensors, 2nd edn (eds F.S. Ligler and C.R. Taitt), Elsevier BV, Amsterdam, pp. 185–242.
10.1016/B978-044453125-4.50006-1 Google Scholar
- 251
Schasfoort, R.B.M. and Schuck, P. (2008) Handbook of Surface Plasmon Resonance (eds R.B.M. Schasfoort and A.J. Tudos), Royal Society of Chemistry, Cambridge, pp. 354–394.
10.1039/9781847558220-00354 Google Scholar
- 252 Toma, M., Toma, K., Adam, P., Homola, J., Knoll, W., and Dostalek, J. (2012) Surface plasmon-coupled emission on plasmonic Bragg gratings. Opt. Express, 20 (13), 14042–14053.
- 253 Shevchenko, Y., Francis, T.J., Blair, D.A.D., Walsh, R., DeRosa, M.C., and Albert, J. (2011) In situ biosensing with a surface plasmon resonance fiber grating aptasensor. Anal. Chem., 83 (18), 7027–7034.
- 254 Breault-Turcot, J. and Masson, J.-F. (2012) Nanostructured substrates for portable and miniature SPR biosensors. Anal. Bioanal. Chem., 403 (6), 1477–1484.
- 255 https://www.biacore.com/lifesciences/index.html (Accessed 15 September 2015).
- 256 Zeidan, E., Kepley, C.L., Sayes, C., and Sandros, M.G. (2015) Surface plasmon resonance: a label-free tool for cellular analysis. Nanomedicine, 10 (11), 1833–1846.
- 257 Sipova, H. and Homola, J. (2013) Surface plasmon resonance sensing of nucleic acids: A review. Anal. Chim. Acta, 773, 9–23.
- 258 Li, M., Cushing, S.K., and Wu, Nianqiang. (2015) Plasmon-enhanced optical sensors: a review. Analyst, 140 (2), 386–406.
- 259 Nguyen, H.H., Park, J., Kang, S., and Kim, M. (2015) Surface plasmon resonance: a versatile technique for biosensor applications. Sensors, 15 (5), 10481–10510.
- 260 Wong, C.L. and Olivo, M. (2014) Surface plasmon resonance imaging sensors: a review. Plasmonics, 9 (4), 809–824.
- 261 Mariani, S. and Minunni, M. (2014) Surface plasmon resonance applications in clinical analysis. Anal. Bioanal. Chem., 406 (9), 2303–2323.
- 262 Lukosz, W. and Tiefenthaler, K. (1983) Embossing technique for fabricating integrated optical components in hard inorganic waveguiding materials. Opt. Lett., 8 (10), 537–539.
- 263 Kunz, R.E. (1992) Totally integrated optical measuring sensors. Proc. SPIE 1587, Chemical, Biochemical, and Environmental Fiber Sensors III 98.
- 264 Kunz, R.E. (1997) Miniature integrated optical modules for chemical and biochemical sensing. Sens Actuators, B, 38 (1–3), 13–28.
- 265 Kunz, R.E. and Duebendorfer, J. (1997) Novel miniature integrated optical goniometers. Sens. Actuators, A, 60 (1–3), 23–28.
- 266 Clerc, D. and Lukosz, W. (1994) Integrated optical output grating coupler as biochemical sensor. Sens. Actuators, B, 19 (1–3), 581–586.
- 267 Brandenburg, A. and Gombert, A. (1993) Grating couplers as chemical sensors: a new optical configuration. Sens. Actuators, B, 17 (1), 35–40.
- 268 http://catalog2.corning.com/LifeSciences/en-US/Shopping/ProductDetails.aspx?productid=5050%28Lifesciences%29&categoryname=Epic+Products%28Lifesciences%29 (Accessed 15 September 2015).
- 269 Mennerick, S., Chisari, M., Shu, H.-J., Taylor, A., Vasek, M., Eisenman, L.N., and Zorumski, C.F. (2010) Diverse voltage-sensitive dyes modulate GABAA receptor function. J. Neurosci., 30, 2871–2879.
- 270 Chen, X. (2013) Optical fibre gratings for chemical and bio-sensing, in Current Developments in Optical Fiber Technology (eds S.W. Harun and H. Arof), pp. 205–235.
- 271
J.D. Joannopoulos, S.G. Johnson, and J.N. Winn (eds) (2008) Photonic Crystals: Molding the Flow of Light, Princeton University Press.
10.1515/9781400828241 Google Scholar
- 272 Nair, R.V. and Vijaya, R. (2010) Photonic crystal sensors: An overview. Progr. Quantum Electron., 34 (3), 89–134.
- 273 Lucklum, R., Zubtsov, M., and Oseev, A. (2013) Phoxonic crystals—a new platform for chemical and biochemical sensors. Anal. Bioanal. Chem., 405 (20), 6497–6509.
- 274 Cush, R., Cronin, J.M., Stewart, W.J., Maule, C.H., Molloy, J., and Goddard, N.J. (1993) The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions. Part I: principle of operation and associated instrumentation. Biosens. Bioelectron., 8 (7–8), 347–354.
- 275 Goddard, N.J., Pollard-Knight, D., and Maule, C.H. (1994) Real-time biomolecular interaction analysis using the resonant mirror sensor. Analyst, 119, 583–588.
- 276 De Tommasi, E., De Stefano, L., Rea, I., Di Sarno, V., Rotiroti, L., Arcari, P., Lamberti, A., Sanges, C., and Rendina, I. (2008) Porous Silicon Based Resonant Mirrors for Biochemical Sensing. Sensors, 8 (10), 6549–6556.
- 277 Brandenburg, A., Hinkov, V., and Konz, W. (1992) Sensors, vol. 6 (eds W. Göpel, J. Hesse, and J.N. Zemel), Wiley-VCH Verlag, Weinheim, pp. 399–420.
- 278 Lambeck, P.V. (2006) Integrated optical sensors for the chemical domain. Meas. Sci. Technol., 17, 93–116.
- 279 Drapp, B., Piehler, J., Brecht, A., Gauglitz, G., Luff, B.J., Wilkinson, J.S., and Ingenhoff, J. (1997) Integrated optical mach-zehnder interferometers as simazine immunoprobes. Sens. Actuators, B, 39, 277–282.
- 280 Sepúlveda, B., Sánchez del Río, J., Moreno, M., Blanco, F.J., Mayora, K., Domínguez, C., and Lechuga, L.M. (2006) Optical biosensor microsystems based on the integration of highly sensitive mach-zehnder interferometer devices. J. Opt. A: Pure Appl. Opt., 8 (7), 561–566.
- 281 Duval, D., Gonzalez-Guerrero, A.B., Dante, S., Dominguez, C., and Lechuga, L.M. (2012) Interferometric waveguide biosensors based on Si-technology for point-of-care diagnostic. Proc. SPIE 8431, Silicon Photonics and Photonic Integrated Circuits III, 84310P-84310P-11.
- 282 Lambeck, P.V., van Lith, J., and Hoekstra, H.J.W.M. (2006) Three novel integrated optical sensing structures for the chemical domain. Sens. Actuators, B, 113 (2), 718–729.
- 283 Sepúlveda, B., Armelles, G., and Lechuga, L.M. (2012) Magneto-optical phase modulation in integrated Mach-Zehnder interferometric sensors. Sens. Actuators, A, 134 (2), 339–347.
- 284 Ymeti, A., Kanger, J.S., Greve, J., Lambeck, P.V., Wijn, R., and Heideman, R.G. (2003) Realization of a multichannel integrated Young interferometer chemical sensor. Appl. Opt., 42 (28), 5649–5660.
- 285 Passaro, V.M.N., Dell'Olio, F., Casamassima, B., and De Leonardis, F. (2007) Guided-Wave Optical Biosensors. Sensors, 7 (4), 508–536.
- 286
Kashyap, R. (1999) Fiber Bragg gratings, Academic Press, San Diego.
10.1016/B978-012400560-0/50003-8 Google Scholar
- 287 Gagne, M. and Kashyap, R. (2012) New nanosecond Q-switched 213 and 224 nm lasers for fiber Bragg grating inscription in hydrogen-free fibers. Proc. SPIE 8243, Laser Applications in Microelectronic and Optoelectronic Manufacturing XVII, 824314/1-824314/6.
- 288 White, I.M., Zhu, H., Suter, J.D., Oveys, H., and Fan, X. (2006) Liquid core optical ring resonator label-free biosensor array for lab-on-a-chip development. Proc.SPIE 6380, Smart Medical and Biomedical Sensor Technology IV, 63800F/1-63800F/7.
- 289 Olmsted, I.R., Xiao, Y., Cho, M., Csordas, A.T., Sheehan, J.H., Meiler, J., Soh, H.T., and Bornhop, D.J. (2011) Measurement of aptamer-protein interactions with back-scattering interferometry. Anal. Chem., 83 (23), 8867–8870.
- 290 Nolte, D.D. (2009) Invited review article: review of centrifugal microfluidic and bio-optical disks. Rev. Sci. Instrum., 80 (10), 101101/1-101101/22.
- 291 Wang, X., Zhao, M., Nolte, D.D., and Ratliff, T.L. (2011) Prostate specific antigen detection in patient sera by fluorescence-free BioCD protein array. Biosens. Bioelectron., 26 (5), 1871–1875.
- 292 Rothen, A. (1945) The ellipsometer, an apparatus to measure thickness of thin surface films. Rev. Sci. Instrum., 16 (2), 26–30.
- 293 R.M.A. Azzam and N.M. Bashara (eds) (1989) Ellipsometry and polarised light, North Holland, Amsterdam.
- 294
Gruska, B. and Hinrichs, K. (2011) UV-VIS-IR ellipsometry (ELL), in Surface and Thin Film Analysis, 2nd edn (eds G. Friedbacher and H. Bubert), pp. 393–405.
10.1002/9783527636921.ch25 Google Scholar
- 295 Hsuan, T-.C., Hu, Y.-C., Hsu, M.C., Zhan, D.-Z., Yu, S., Chien, C.-C., Chang, S.-J. et al. (2013) Advanced spectroscopic ellipsometry application for multi-layers SiGe at 28nm node and beyond. ECS Trans., 58 (7), 137–144.
- 296 Toudert, J. (2014) Spectroscopic ellipsometry for active nano- and meta-materials. Nanotechnol. Rev., 3 (3), 223–245.
- 297 Jin, G., Tengvall, P., Lundstrom, I., and Arwin, H. (1995) A biosensor concept based on imaging ellipsometry for visualization of biomolecular interactions. Anal. Biochem., 232 (1), 69–72.
- 298 Arwin, H. (2000) Ellipsometry on thin organic layers of biological interest: characterization and applications. Thin Solid Films, 377–378, 48–56.
- 299
Arwin, H. (2014) Adsorption of proteins at solid surfaces, in Ellipsometry of Functional Organic Surfaces and Films, vol. 52 (eds K. Hinrichs and K.-J. Eichhorn), Springer Series in Surface Sciences, pp. 29–46.
10.1007/978-3-642-40128-2_2 Google Scholar
- 300 Kozma, P., Kozma, D., Nemeth, A., Jankovics, H., Kurunczi, S., Horvath, R., Vonderviszt, F., Fried, M., and Petrik, P. (2011) In-depth characterization and computational 3D reconstruction of flagellar filament protein layer structure based on in situ spectroscopic ellipsometry measurements. Appl. Surf. Sci., 257 (16), 7160–7166.
- 301 Zhang, Y., Chen, Y., and Jin, G. (2011) Serum tumor marker detection on PEGylated lipid membrane using biosensor based on total internal reflection imaging ellipsometry. Sens. Actuators, B, 159 (1), 121–125.
- 302 Moirangthem, R.S., Chang, Y.-C., and Wei, P.-K. (2011) Investigation of surface plasmon biosensing using gold nanoparticles enhanced ellipsometry. Opt. Lett., 36 (5), 775–777.
- 303 Gauglitz, G. and Nahm, W. (1991) Observation of spectral interferences for the determination of volume and surface effects of thin films. Fresenius' J. Anal. Chem., 341 (3), 279–283.
- 304 Brecht, A., Gauglitz, G., and Nahm, W. (1992) Interferometric measurements used in chemical and biochemical sensors. Analysis, 20, 135–140.
- 305 Kraus, G. and Gauglitz, G. (1992) Application and Comparison of Algorithms for Evaluation of Interferograms. Fresenius' J. Anal. Chem., 344 (4), 153–157.
- 306 Fechner, P., Damdimopoulou, P., and Gauglitz, G. (2011) Biosensors Paving the Way to Understanding the Interaction between Cadmium and the Estrogen Receptor Alpha. PLoS One, 6 (8), e23048.
- 307 Kolarov, F., Niedergall, K., Bach, M., Tovar, G.E.M., and Gauglitz, G. (2012) Optical sensors with molecularly imprinted nanospheres: A promising approach for robust and label free detection of small molecules. Anal. Bioanal. Chem., 402 (10), 3245–3252.
- 308 Bleher, O., Ehni, M., and Gauglitz, G. (2012) Label-free quantification of cystatin C as an improved marker for renal failure. Anal. Bioanal. Chem., 402 (1), 349–356.
- 309 Hilbig, U., Bleher, O., Le Blanc, A., and Gauglitz, G. (2012) A biomimetic sensor surface to detect anti-β-2-glycoprotein antibodies as a marker for antiphospholipid syndrome. Anal. Bioanal. Chem., 403 (3), 713–717.
- 310 Krieg, A.K. and Gauglitz, G. (2014) An optical sensor for the detection of human pancreatic lipase. Sens. Actuators, B, 203, 663–669.
- 311 Kumeria, T., Kurkuri, M., Diener, K.R., Parkinson, L., and Losic, D. (2012) Label-free reflectometric interference microchip biosensor based on nanoporous alumina for detection of circulating tumour cells. Biosens. Bioelectron., 35 (1), 167–173.
- 312 Rau, S., Hilbig, U., and Gauglitz, G. (2014) Label-free optical biosensor for detection and quantification of the non-steroidal anti-inflammatory drug diclofenac in milk without any sample pretreatment. Anal. Bioanal. Chem., 406 (14), 3377–3386.
- 313 Ewald, M., Le Blanc, A.F., Gauglitz, G., and Proll, G. (2013) A robust sensor platform for label-free detection of anti-Salmonella antibodies using undiluted animal sera. Anal. Bioanal. Chem., 405 (20), 6461–6469.
- 314 Ewald, M., Fechner, P., and Gauglitz, G. (2015) A multi-analyte biosensor for the simultaneous label-free detection of pathogens and biomarkers in point-of-need animal testing. Anal. Bioanal. Chem., 407 (14), 4005–4013.
- 315 Saemann, M., Furin, D., Thielmann, J., Pfaefflin, A., Proll, G., Harendt, C., Gauglitz, G., Schleicher, E., and Schubert, M.B. (2010) Amorphous silicon based p-i-i-n photodetectors for point-of-care testing. Phys. Status Solidi C, 7 (3–4), 1160–1163.
- 316 Rothmund, M., Brecht, A., Berthel, G., Gräfe, D., Schütz, A., and Gauglitz, G. (1997) Label free binding assay with spectroscopic detection for pharmaceutical screening. Fresenius' J. Anal. Chem., 359, 15–22.
- 317 Bleher, O., Schindler, A., Yin, M.-X., Holmes, A.B., Luppa, P.B., Gauglitz, G., and Proll, G. (2014) Development of a new, parallelized, optical biosensor platform for label-free detection of autoimmunity-related antibodies. Anal. Bioanal. Chem., 406 (14), 3305–3314.
- 318 http://www.fortebio.com (Accessed 17 September 2015).
- 319 http://www.fortebio.com/references.html (Accessed 17 September 2015).
- 320 http://biametrics.com/en/ (assessed 17 September 2015).
- 321 Jabonski, A. (1933) Efficiency of anti-Stokes fluorescence in dyes. Nature, 131, 839–840.
- 322 Kasha, M. (1950) Characterization of electronic transitions in complex molecules. Discuss. Faraday Soc., 9, 14–19.
- 323 Lakowicz, J.R. (2013) Principles of Fluorescence Spectroscopy, Springer, Heidelberg.
- 324 Lichtman, J.W. and Conchello, J.-A. (2005) Fluorescence microscopy. Nat. Meth., 2, 910–919.
- 325 Engvall, E. and Perlmann, P. (1971) Enzyme-linked immunosorbent assay (ELISA) Quantitative assay of immunoglobulin G. Immunochemistry, 8, 871–874.
- 326 Van Weemen, B.K. and Schuurs, A.H.W.M. (1971) Immunoassay using antigen—enzyme conjugates. FEBS Lett., 15, 232–236.
- 327 Wilson;, T. and Hastings, J.W. (1998) Bioluminescence. Annu. Rev. Cell Dev.l Biol., 14, 197–230.
- 328 White, E.H., Rapaport, E., Seliger, H.H., and Hopkins, T.A. (1971) The chemi-and bioluminescence of firefly luciferin: an efficient chemical production of electronically excited states. Bioorg. Chem., 1, 92–122.
- 329 White, E.H., Steinmetz, M.G., Miano, J.D., Wildes, P.D., and Morland, R. (1980) Chemi- and bioluminescence of firefly luciferin. J. Am. Chem. Soc., 102, 3199–3208.
- 330 Fan, F., Binkowski, B.F., Butler, B.L., Stecha, P.F., Lewis, M.K., and Wood, K.V. (2008) Novel genetically encoded biosensors using firefly luciferase. ACS Chem. Biol., 3, 346–351.
- 331 Peng, H., Zhang, L., Kjällman, T.H.M., and Soeller, C. (2007) DNA Hybridization Detection with Blue Luminescent Quantum Dots and Dye-Labeled Single-Stranded DNA. J. Am. Chem. Soc, 129, 3048–3049.
- 332 Löffler-Mang, M. (2011) Optische Sensorik: Lasertechnik, Experimente, Light Barriers; Vieweg+Teubner Verlag, Wiesbaden.
- 333 Morris, M.C. (2012) Fluorescence-Based Biosensors: From Concepts to Applications, 1st edn, Academic Press, London.
- 334 Harms, G.S., Cognet, L., Lommerse, P.H.M., Blab, G.A., and Schmidt, T. (2001) Autofluorescent Proteins in Single-Molecule Research: Applications to Live Cell Imaging Microscopy. Biophys. J., 80, 2396–2408.
- 335 Chalfie, M., Tu, Y., Euskirchen, G., Ward, W., and Prasher, D. (1994) Green fluorescent protein as a marker for gene expression. Science, 263, 802–805.
- 336 Lauf, U., Lopez, P., and Falk, M.M. (2001) Expression of fluorescently tagged connexins: a novel approach to rescue function of oligomeric DsRed-tagged proteins 1. FEBS Letters, 498, 11–15.
- 337 Kneen, M., Farinas, J., Li, Y., and Verkman, A.S. (1998) Green Fluorescent Protein as a Noninvasive Intracellular pH Indicator. Biophys. J., 74, 1591–1599.
- 338 Tian, M., Peng, X., Fan, J., Wang, J., and Sun, S. (2012) A fluorescent sensor for pH based on rhodamine fluorophore. Dyes Pigm., 95, 112–115.
- 339 Gjetting, S.K., Ytting, C.K., Schulz, A., and Fuglsang, A.T. (2012) Live imaging of intra- and extracellular pH in plants using pHusion, a novel genetically encoded biosensor. J. Exp. Bot., 63(8), 3207–3218.
- 340 Qi, J., Liu, D., Liu, X., Guan, S., Shi, F., Chang, H., He, H., and Yang, G. (2015) Fluorescent pH Sensors for Broad-Range pH Measurement Based on a Single Fluorophore. Anal. Chem., 87, 5897–5904.
- 341 Hanson, G.T., Aggeler, R., Oglesbee, D., Cannon, M., Capaldi, R.A., Tsien, R.Y., and Remington, S.J. (2004) Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J. Biol. Chem., 279, 13044–13053.
- 342 Lukyanov, K.A. and Belousov, V.V. (2014) Genetically encoded fluorescent redox sensors. Biochim.t Biophys. Acta, –Gen. Subj., 1840, 745–756.
- 343 Brach, T., Soyk, S., Müller, C., Hinz, G., Hell, R., Brandizzi, F., and Meyer, A.J. (2009) Non-invasive topology analysis of membrane proteins in the secretory pathway. Plant J., 57, 534–541.
- 344 Wierer, S., Peter, S., Elgass, K., Mack, H.-G., Bieker, S., Meixner, A.J., Zentgraf, U., and Schleifenbaum, F. (2012) Determination of the in vivo redox potential by one-wavelength spectro-microscopy of roGFP. Anal. Bioanal. Chem., 403, 737–744.
- 345 Lakowicz, J.R. and Weber, G. (1973) Quenching of protein fluorescence by oxygen. Detection of structural fluctuations in proteins on the nanosecond time scale. Biochemistry, 12, 4171–4179.
- 346 Lakowicz, J.R. (2007) Principles of Fluorescence Spectroscopy. Stryer, L. (1978) Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem., 47, 819–846.
- 347 Jares-Erijman, E.A. and Jovin, T.M. (2003) FRET imaging. Nat. Biotech. ( 21), 1387–1395; Selvin, P.R. (2000) The renaissance of fluorescence resonance energy transfer. Nat. Struc. Biol., 7, 730–734.
- 348 Tramier, M., Zahid, M., Mevel, J.-C., Masse, M.-J., and Coppey-Moisan, M. (2006) Sensitivity of CFP/YFP and GFP/mCherry pairs to donor photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells. Microsc. Res. Tech., 69, 933–939.
- 349 Cahalan, M.D., Parker, I., Wei, S.H., and Miller, M.J. (2002) Two-photon tissue imaging: seeing the immune system in a fresh light. Nat. Rev. Immunol., 2, 872–880.
- 350 von Bültzingslöwen, C., McEvoy, A.K., McDonagh, C., and MacCraith, B.D. (2003) Lifetime-based optical sensor for high-level pCO2 detection employing fluorescence resonance energy transfer. Anal. Chim. Acta, 480, 275–283.
- 351 Heo, Y.J. and Takeuchi, S. (2013) Towards Smart Tattoos: Implantable Biosensors for Continuous Glucose Monitoring. Adv. Healthcare Mater., 2, 43–56.
- 352 Pickup, J.C., Hussain, F., Evans, N.D., Rolinski, O.J., and Birch, D.J.S. (2005) Fluorescence-based glucose sensors. Biosens. Bioelectron., 20, 2555–2565.
- 353 Lee, M.H., Kim, H.J., Yoon, S., Park, N., and Kim, J.S. (2008) Metal Ion Induced FRET OFF–ON in Tren/Dansyl-Appended Rhodamine. Organic Lett., 10, 213–216.
- 354 Sen, T., Sadhu, S., and Patra, A. (2007) Surface energy transfer from rhodamine 6G to gold nanoparticles: A spectroscopic ruler. Appl. Phys. Lett., 91, 043104.
- 355 You, L., Zha, D., and Anslyn, E.V. (2015) Recent Advances in Supramolecular Analytical Chemistry Using Optical Sensing. Chem. Rev., 115 (15), 7840–7892.
- 356 Biedermann, F., Nau, W.M., and Schneider, H.-J. (2014) The Hydrophobic Effect Revisited-Studies with Supramolecular Complexes Imply High-Energy Water as a Noncovalent Driving Force. Angew. Chem., Int. Ed., 53 (42), 11158–11171.
- 357 Biedermann, F. and Nau, W.M. (2014) Noncovalent Chirality Sensing Ensembles for the Detection and Reaction Monitoring of Amino Acids, Peptides, Proteins, and Aromatic Drugs. Angew. Chem., Int. Ed., 53 (22), 5694–5699.
- 358
Lechner, M.D., Gehrke, G.E., and Nordheimer, H. (1996) Makromolekulare Chemie, Birkhäuser Verlag, Berlin, 2. Auflage.
10.1007/978-3-0348-6011-6 Google Scholar
- 359 Kraus, G., Brecht, A., Vasic, V., and Gauglitz, G. (1994) Polymer-based RIFS sensing: an approach to the indirect measurement of organic pollutants in water. Fresenius J. Anal. Chem., 348 (8–9), 598–601.
- 360 Nopper, D. and Gauglitz, G. (1998) Enhanced stability of RIfS-sensors for the determination of hydrocarbons in water by covalent immobilisation. Fresenius' J. Anal. Chem., 362, 114–119.
- 361
Maier, G. (1998) Polymermembranen zur Gastrennung. Angew. Chem., 110, 3128–3143.
10.1002/(SICI)1521-3757(19981102)110:21<3128::AID-ANGE3128>3.0.CO;2-G Google Scholar
- 362 Wessa, T., Barié, N., Rapp, M., and Ache, H. (1998) Polyimide, a new shielding layer for sensor applications. Sens. Actuators, B, 53, 63–68.
- 363 Buchhold, R., Nakladal, A., Gerlach, G., Herold, M., Gauglitz, G., Sahre, K., and Eichhorn, K.-J. (1999) Swelling behavior of thin anisotropic polymer layers. Thin Solid Films, 350, 178–185.
- 364 Wulff, G. and Sarhan, A. (1972) Use of polymers with enzyme-analogous structures for resolution of recamates. Angew. Chem., Int. Ed., 11 (4), 341.
- 365 Arshady, R. and Mosbach, K. (1981) Synthesis of substrate-selective polymers by host-guest polymerization. Macromol. Chem. Phys., 182 (2), 687–692.
- 366 Wulff, G. (1995) Molcular imprinting in cross-linked materials with the aid of molecular templates - a way towards artificial antibodies. Angew. Chem., Int. Ed., 34 (17), 1812–1832.
- 367 Wullf, G. and Knorr, K. (2001) Stoichiometric noncovalent interaction in molecular imprinting. Bioseparation, 10 (6), 257–276.
- 368 Tovar, G.E.M., Krauter, I., and Gruber, C. (2003) Molecularly imprinted polymer nanosperes as fully synthetic affinity receptors. Colloid Chem., II, 227, 125–144.
- 369 Kandimalla, V.B. and Ju, H.X. (2004) Molecular imprinting: a dynamic technique for diverse applications in analytical chemistry. Anal. Bioanal. Chem., 380 (4), 587–605.
- 370 Moreno-Bondi, M.C. et al. (2008) Molecularly imprinted polymers as selective recognition elements in optical sensing. Curr. Ana. Chem., 4 (4), 316–340.
- 371 Valcárel, M., Simonet, B.M., Cárdenas, S., and Suárz, B. (2005) Present and future applications of carbon nanotubes to analytical science. Anal. Bioanal. Chem., 382, 1783–1790.
- 372 Li, A., Bogdanovich, A.E., and Bradford, P.D. (2015) Aligned carbon nanotube sheet piezoresistive strain sensors. Smart Mater. Struct., 24 (9), 1–10.
- 373 Chatterjee, S., Castro, M., and Feller, J.F. (2015) Tailoring selectivity of sprayed carbon nanotube sensors (CNT) towards volatile organic compounds (VOC) with surfactants. Sens. Actuators, B, 220, 840–849.
- 374 Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A. (2004) Electric field effect in atomically thin carbon films. Science, 306 (5696), 666–669.
- 375 Wisitsoraat, A. and Tuantranont, A. (2013) Graphene-Based Chemical and Biosensors, Springer Series on Chemical Sensors and Biosensors 14 (Applications of Nanomaterials in Sensors and Diagnostics) 103–141.
- 376 Vashist, S.K. and Venkatesh, A.G. (2013) Advances in graphene-based sensors and devices. J. Nanomed. Nanotechnol., 4 (1), 1000e127/1-1000e127.
- 377 Weller, M.G. (2012) A Unifying Review of Bioassay-Guided Fractionation, Effect-Directed Analysis and Related Techniques. Sensors, 12 (7), 9181–9209.
- 378 Harris, L.J., Larson, S.B., Hasel, K.W., and McPherson, A. (1997) Refined structure of an intact IgG2a monoclonal antibody. Biochemistry, 36 (7), 1581–1597.
- 379 Trilling, A.K., Beekwilder, J., and Zuilhof, H. (2013) Antibody orientation on biosensor surfaces: a minireview. Analyst, 138, 1619–1627.
- 380 Smith, G.P. (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science, 228 (4705), 1315–1317.
- 381 McCafferty, J., Griffiths, A., Winter, G., and Chiswell, D. (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature, 348 (6301), 552–554.
- 382 Dolk, E., Van Der Vaart, M., Lutje Hulsik, D., Vriend, G., De Haard, H., Spinelli, S., Cambillau, C., Frenken, L., and Verrips, T. (2005) Isolation of llama antibody fragments for prevention of dandruff by phage display in shampoo. Appl. Environment. Microbiol., 71 (1), 442–450.
- 383 Stanfield, R., Dooley, H., Flajnik, M., and Wilson, I. (2004) Crystal structure of a shark single-domain antibody V region in complex with lysozyme. Science, 305 (5691), 1770–1773.
- 384 Van Der Linden, R., Frenken, L., De Geus, B., Harmsen, M., Ruuls, R., Stok, W., De Ron, L., Wilson, S., Davis, P., and Verrips, C.T. (1999) Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies. Biochim. Biophys. Acta, 1431 (1), 37–46.
- 385 Liu, Q., Wang, J., and Boyd, B.J. (2015) Peptide-based biosensors. Talanta, 136, 114–127.
- 386 Volk, E.L., Pankuch, J.J., Chave, K.J., Coward, J.K., and Schneider, E. (2003) A rapid assay for the quantitation of gamma-glutamyl hydrolase using a fluorogenic peptide as substrate. Biotechniques, 35 (5), 926–932.
- 387 Beyer, M., Nesterov, A., Block, I., 1, König, K., Felgenhauer, T., Fernandez, S., Leibe, K., Torralba, G., Hausmann, M., Trunk, U., Lindenstruth, V., Bischoff, F.R., Stadler, V., and Breitling, F. (2007) Combinatorial synthesis of peptide arrays onto a microchip. Science, 318 (5858), 1888.
- 388 Fechner, P., Gauglitz, G., and Gustafsson, J.A. (2010) Nuclear receptors in analytics - a fruitful joint venture or a wasteful futility? Trends Anal. Chem., 29 (4), 297–305.
- 389 Taylor, R.F., Marenchic, I.G., and Cook, E.J. (1988) An acetylcholine receptor-based biosensor for the detection of cholinergic agents. Anal. Chim. Acta, 213, 131–138.
- 390 Wang, X., Lu, X., and Chen, J. (2014) Development of biosensor technologies for analysis of environmental contaminants. Trends Environ. Anal. Chem., 2, 25–32.
- 391 Di Gennaro, P., Bruzzese, N., Anderlini, D., Aiossa, M., Papacchini, M., and Campanella, L. (2011) Development of microbial engineered whole-cell systems for environmental benzene determination. Ecotoxicol. Environ. Saf., 74, 542–549.
- 392 Labuda, J., Brett, A.M.O., Evtugyn, G., Fojta, M., Mascini, M., and Ozsoz, M. (2010) Electrochemical nucleic acid-based biosensors: concepts, terms, and methodology (IUPAC Technical Report) Pure Appl. Chem., 82, 1161–1187.
- 393 Barthelmebs, L., Hayat, A., Limiadi, A.W., Marty, J.L., and Noguer, T. (2011) Electrochemical DNA aptamer-based biosensor for OTA detection, using superparamagnetic nanoparticles. Sensor. Actuator, B, 156, 932–937.
- 394 Song, K.M., Lee, S., and C., Ban. (2012) Aptamers and their biological applications. Sensors, 12, 612–631.
- 395 Ellington, A.D. and Szostak, J.W. (1990) In vitro selection of RNA molecules that bind specific ligands. Nature, 346, 818–822.
- 396 Tuerk, C. and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 249, 505–510.
- 397 Gebauer, M. and Skerra, A. (2009) Engineered protein scaffolds as next-generation antibody therapeutics. Curr. Opin. Chem. Biol., 13 (3), 245–255.
- 398 Woodman, R., Yeh, J.T., Laurenson, S., and Ko Ferrigno, P. (2005) Design and validation of a neutral protein scaffold for the presentation of peptide aptamers. J. Mol. Biol., 352 (5), 1118–1133.
- 399 Tanaka, T. and Robey, F.A. (1983) A New Sensitive Assay for the Calcium dependent binding of C-reactive protein to Phosphorylcholine. J. Immunol. Meth., 65, 333–341.
- 400 Olofsson, S., Johansson, G., and Baltzer, L. (1995) Design, synthesis and solution structure of a helix-loop-helix dimer-a Template for the rational design of catalytically active polypeptides. J. Chem. Soc., Perkin Trans., 2, 2047–2056.
- 401 Christopeit, T., Gossas, T., and Danielson, U.H. (2009) Characterization of Ca2+ and phosphocholine interactions with C-reactive protein using a surface plasmon resonance biosensor. Anal. Biochem., 391, 39–44.
- 402 Crew, A., Lonsdale, D., Byrd, N., Pittson, R., and Hart, J.P. (2011) A screen-printed, amperometric biosensor array incorporated into a novel automated system for the simultaneous determination of organophosphate pesticides. Biosens. Bioelectron., 26 (6), 2847–2851.
- 403 Meng, X., Wei, J., Ren, X., Ren, J., and Tang, F. (2013) A simple and sensitive fluorescence biosensor for detection of organophosphorus pesticides using H2O2-sensitive quantum dots/bi-enzyme. Biosens. Bioelectron., 47, 402–407.
- 404 Oprea, A., Courbat, J., Bârsan, N., Briand, D., de Rooij, N.F., and Weimar, U. (2009) Temperature, humidity and gas sensors integrated on plastic foil for low power applications. Sens. Actuators, B, 140, 227–232.
- 405 Massart, D.L., Vandeginste, B.G.M., Deming, S.N., Michotte, Y., and Kaufman, L. (1988) Chemometrics: a textbook in Data Handling in Science and Technology, vol. 2 Elsevier, Amsterdam.
- 406
Danzer, K., Hobert, H., Fischbacher, C., and Jagemann, K.U. (2001) Chemometrik: Grundlagen und Anwendungen, Springer Verlag., Berlin, Heidelberg, New York.
10.1007/978-3-642-56584-7 Google Scholar
- 407 Menditto, A., Patriarca, M., and Magnusson, B. (2007) Understanding the meaning of accuracy, trueness and precision. Accred. Qual. Assur., 12, 45–47.
- 408 Kruve, A., Rebane, R., Kipper, K., Oldekop, M.-L., Evard, H., Herodes, K., Ravio, P., and Leito, I. (2015) Tutorial review on validation of liquid chromatography–mass spectrometry methods: Part II. Anal. Chim. Acta, 870, 8–28.
- 409 (2014) Estimation of measurement uncertainty in chemical analysis, on-line course https://sisu.ut.ee/measurement/uncertainty University of Tartu (Accessed 7 October 2015).
- 410 International Vocabulary of Metrology-Basic and General Concepts and Associated Terms (VIM), JCGM 200:2012.
- 411 IUPAC Orange Book, see electronic version “Compendium of Analytical Nomenclature” at http://www.iupac.org/publications/analytical_compendium/ (Accessed 9 October .2015).
- 412 Schierbaum, K.D., Gerlach, A., Haug, M., and Goepel, W. (1992) Selective detection of organic molecules with polymers and supramolecular compounds: application of capacitance, quartz microbalance and calorimetric transducers. Sens. Actuators, A, 31, 130–137.
- 413 Knake, R., Jacquinot, P., Hodgson, A.W.E., and Hauser, P.C. (2005) Amperometric sensing in the gas-phase. Anal. Chim. Acta, 549, 1–9.
- 414 Barsan, N., Stetter, J.R., Findlay J Jr., M., and Gopel, W. (1999) High performance gas sensing of CO: Comparative tests for semiconducting (SnO2-based) and for amperometric gas sensors. Anal. Chem., 71, 2512–2517.
- 415 ENISO norms in Beuth Verlag, Am DIN-Platz, Burggrafenstraße 6, 10787 Berlin.
- 416 Comparison Chart of FDA and EPA Good Laboratory Practice (GLP) Regulations and the OECD Principles of GLP http://www.fda.gov/ICECI/EnforcementActions/BioresearchMonitoring/ucm135197.htm (Accessed 9 October 2015).
- 417 Leitlinie zur Methodenvalidierung http://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/2832.pdf (Accessed 9 October 2015).
- 418 Lavin, B.K. and Workman, J. (2002) Chemometrics. Anal. Chem., 74, 2763–2770.
- 419 Meyers, R.H. and Montgomery, D.C., (1995) Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Wiley-Interscience, New York ((please edit))
- 420 Bruker, animation to PCA - http://research.med.helsinki.fi/corefacilities/proteinchem/pca_introduction_basics.pdf (Accessed 14 July 2016).
- 421 Martens, H. and Martens, M. (2000) Multivariate Analysis of Quality - An Introduction, John Wiley & Sons Inc., New York.
- 422 Esbensen, K.H. (2001) Multivariate Data Analysis Practice, 5th edn, Camo Process AS, Norway.
- 423 Zupan, J., Novic, M., and Ruisánchez, I. (1997) Kohonen and counterpropagation artificial neural networks in analytical chemistry. J. Chem. Intell. Lab. Syst., 38, 1–23.
- 424 Zupan, J. and Gasteiger, J. (1999) Neural networks in chemistry and drug design, 2nd edn, Wiley-VCH, Weinheim.
- 425 Patterson, D. (1996) Artificial Neural Networks, Theory and Applications, Prentice Hall Inc., Upper Saddle River.
- 426 Despagne, F. and Massart, D.L. (1998) Neural networks in multivariate calibration. Analyst, 123, 157R–178R.
- 427 Attik, M., Bougrain, L., and Alexandre, F. (2005) Neural Network Topology Optimization, in Artificial Neural Networks: Formal Models and Their Applications-ICANN 2005, Volume 3697 of the series Lecture Notes in Computer Science pp 53–58.
- 428 Vinod, V. and Ghose, S. (1996) Growing nonuniform feedforward networks for continuous mappings. Neurocomputing, 10, 55–69.
- 429 Pungor, E. and Toth, K. (1970) Ion-selective membrane electrodes-A review. Analyst, 95, 625–648.
- 430 Briot, P. and Primet, M. (1991) Catalytic oxidation of methane over palladium supported on alumina : Effect of aging under reactants. Appl. Catal., 68, 30.
- 431 Harrick, N.J. (1979) Internal Reflection Spectroscopy, Harrick Scientific Corporation, New York.
- 432 Liedberg, B., Nylander, C., and Lunström, I. (1983) Surface plasmon resonance for gas detection and biosensing. Sens. Actuators, 4, 299–304.
- 433 Kim, H.M., Jin, S.M., Lee, S.K., Kim, M.-G., and Shin, Y.-B. (2009) Detection of biomolecular binding through enhancement of localized surface plasmon resonance (LSPR) by gold nanoparticles. Sensors, 9 (4), 2334–2344.
- 434 Horrer, A. et al. (2015) Plasmonic vertical dimer arrays as elements for biosensing. Anal. Bioanal. Chem., 407 (27), 8225–8231.
- 435 Kempen, L.U. and Kunz, R.E. (1997) Replicated Mach-Zehnder interferometers with focusing grating couplers for sensing applications. Sens. Actuators, B, 38–39, 295–299.
- 436 Grimaldi, I.A., Testa, G., and Bernini, R. (2015) Flow through ring resonator sensing platform. RSC Advances, 5 (86), 70156–70162.
- 437 Brecht, A. and Gauglitz, G. (1995) Optical Probes and Transducers. Biosens. Bioelectron., 10, 923–936.
- 438 Hänel, C. and Gauglitz, G. (2002) Comparison of reflectometric interference spectroscopy with other instruments for label-free optical detection. Anal. Bioanal. Chem., 372 (1), 91–100.
- 439 Mitschke, F.M. (2005) Glasfasern: Physik und Technologie, Elsevier, Spektrum Akademischer Verlag, Heidelberg, pp. 249–257.
- 440 Haug, M., Schierbaum, K., Gauglitz, G., and Göpel, W. (1993) Chemical sensors based upon polysiloxanes: comparison between optical, quartz microbalance, calorimetric and capacitance sensors. Sens. Actuator, B, 11, 383–391.