Oils from Microorganisms
Abstract
All microorganisms, bacteria, yeasts, fungi, and algae, produce lipids. The range of fatty acids that can be sourced from the lipids produced by the microbial world is vast. Some microbial species (described as oleaginous species) produce large amounts – sometimes up to 70% of the cell mass – of triacylglycerol oils, which can be produced in large volumes, be extracted and processed using techniques similar to those used for conventional and commercially produced plant seed oils. These microbial products are known as the single cell oils (SCO). They have, on occasion, been considered as alternative sources to plant-based oils. However, because of the high costs of fermentation technology needed to cultivate these microorganisms at a large scale, replacing commodity plant oils with SCO is uneconomical in the foreseeable future and only the highest valued microbial oils can be considered commercially viable. This article gives a brief background to microbial technology and gives examples of how SCOs were pioneered, as sources of gamma-linolenic acid, as alternatives to evening primrose oil and borage oil, and for the production of cocoa butter equivalent oils for use in chocolate confectionery. Current commercial productions of arachidonic acid (20:4, n−6) using the filamentous fungus, Mortierella alpina, and of docosahexaenoic acid (DHA; 22:6, n−3) by the marine dinoflagellate, Crypthecodinium cohnii, and by various chytrids, for example Schizochytrium spp., are described. The potential future microbial lipid production of oil rich in eicosapentaenoic acid (EPA; 20:5, n−3) using a photosynthetic microalga, Nannochloropsis spp., is also described. The article also covers the current developments for the production of EPA + DHA as facsimile fish oils and also for the production of SCO or oil-rich microbial biomass to support the continued expansion of the aquaculture industry. The article also gives a brief discussion of the economic impossibility of using microorganisms, whether phototrophs or heterotrophs, for the production of biodiesel.
References
- 1Ratledge, C. and Kristiansen, B. (2009). Basic Biotechnology, 3e. Cambridge: Cambridge University Press.
- 2Woodbine, M. (1959). Prog. Ind. Microbiol. 1: 179–245.
- 3Bunker, H.J. (1946). Proc. Soc. Appl. Bacteriol. 1: 10–14.
10.1111/j.1365-2672.1946.tb04036.x Google Scholar
- 4Wynn, J., Behrens, P., Sundararajan, A. et al. (ed. Z. Cohen and C. Ratledge) Single Cell Oils, 2e, 115–129. Champaign, IL: AOCS Press.
- 5Kosa, M. and Ragauskas, A.J. (2011). Trends Biotechnol. 29: 53–61.
- 6Sitepu, I.R., Sestric, R., Ignatia, L. et al. (2013). Bioresour. Technol. 144: 360–369.
- 7Donot, F., Fontana, A., Baccou, J.C. et al. (2014). Biomass Bioenergy 63: 135–150.
- 8Probst, K.V., Schulte, L.R., Durrett, T.P. et al. (2016). Crit. Rev. Biotechnol. 36: 942–955.
- 9Lamers, D., van Biezen, N., Martens, D. et al. (2016). BMC Biotechnol. 16: 45.
- 10Bellou, S., Triantaphyllidou, I.-E., Aggeli, D. et al. (2016). Curr. Opin. Biotechnol. 37: 24–35.
- 11Leu, S. and Boussiba, S. (2014). Int. Biotechnol. 10: 169–183.
- 12Slocombe, S.P., Zhang, Q.Y., Ross, M. et al. (2015). Sci. Rep. 5: 09844.
- 13Ratledge, C. and Wynn, J.P. (2002). Adv. Appl. Microbiol. 51: 1–51.
- 14Ratledge, C. (2014). Biotechnol. Lett. 36: 1557–1568.
- 15Beopoulos, A., Cescut, J., Haddouche, R. et al. (2009). Prog. Lipid Res. 48: 375–387.
- 16Beopoulos, A., Nicaud, J.M., and Gaillardin, C. (2011). Appl. Microbiol. Biotechnol. 90: 1193–1206.
- 17Zhang, H., Zhang, L., Chen, H. et al. (2013). Biotechnol. Lett. 35: 2091–2098.
- 18Xue, Z., Sharpe, P.L., Hong, S.P., and Yadav, N.S. (2013). Nat. Biotechnol. 31: 734–740.
- 19Tang, W., Zhang, S., Tan, H., and Zhao, Z.K. (2010). Mol. Biotechnol. 45: 121–128.
- 20Gill, C.O., Hall, M.J., and Ratledge, C. (1977). Appl. Environ. Microbiol. 33: 231–239.
- 21Hassan, M., Blanc, P.J., Granger, L.M. et al. (1993). Appl. Microbiol. Biotechnol. 40: 483–488.
- 22Ykema, A., Verbree, E.C., Kater, M.M., and Smit, H. (1988). Appl. Microbiol. Biotechnol. 29: 211–218.
- 23Tai, M. and Stephanopoulos, G. (2013). Metab. Eng. 15: 1–9.
- 24Wynn, J.P. and Ratledge, C. (2005). In: Bailey's Industrial Oil and Fat Products, 6e, vol. 3 (ed. F. Shahidi), 121–153. Hoboken, NJ: Wiley.
- 25Ratledge, C. (2006). In: Handbook of Functional Lipids (ed. A.A. Akoh), 19–45. Boca Raton, FL: Taylor & Francis.
- 26Knauf, V.C., Shewmaker, C., Flider, F. et al. (2011). Safflower with elevated gamma-linolenic acid, US Patent, 7893321 B2.
- 27Nykiforuk, C.L., Shewmaker, C., Harry, I. et al. (2012). Transgenic Res. 21: 367–381.
- 28Davies, R.J. (1992). In: Industrial Applications of Single Cell Oils (ed. D.J. Kyle and C. Ratledge), 196–218. Champaign, IL: AOCS Press.
- 29Ratledge, C. and Lippmeier, C. (2017). In: Fatty Acids: Chemistry, Synthesis and Applications (ed. M.U. Ahmad), 237–278. London, UK: AOCS Press/Elsevier Inc.
10.1016/B978-0-12-809521-8.00006-4 Google Scholar
- 30Sinclair, A. and Jayasooriya, A. (2010). In: Single Cell Oils, 2e (ed. Z. Cohen and C. Ratledge), 351–368. Champaign, IL: AOCS Press.
10.1016/B978-1-893997-73-8.50020-7 Google Scholar
- 31Hadley, K.B., Ryan, A.S., Forsyth, S. et al. (2016). Nutrients 8: 216.
- 32Forsyth, S., Gautier, S., and Salem, N. (2017). Proc. Nutr. Soc. 76: 568–573.
- 33Boswell, K., Koskelo, E.-K., Carl, L. et al. (1996). Food Chem. Toxicol. 34: 585–593.
- 34Ratledge, C. (2013). In: Microbial Production of Food Ingredients, Enzymes and Nutraceuticals (ed. B. McNeil, D. Archer, I. Giavasis and L. Harvey), 531–558. Oxford: Woodhead Publishing Co.
10.1533/9780857093547.2.531 Google Scholar
- 35Totani, N., Suzaki, K., and Kudo, T. (1986). Process for the production of arachidonic acid containing lipids. European patent 0223960B1.
- 36Shinmen, Y., Shimizu, S., and Hideaki, Y. (1988). Process for production of arachidonic acid. European Patent 0276541.
- 37Calder, P.C. (2013). Br. J. Clin. Pharmacol. 75: 645–662.
- 38Lee, J.H., O'Keefe, J.H., Lavie, C.L., and Harris, W.S. (2009). Nat. Rev. Cardiol. 6: 753–758.
- 39Bentsen, H. (2017). Microb. Ecol. Health Dis. 28 (Suppl. 1): 1281916.
10.1080/16512235.2017.1281916 Google Scholar
- 40Streekstra, H. (1997). J. Biotechnol. 56: 153–165.
- 41Lewis, K.D., Huang, W., Zheng, X. et al. (2016). Food Chem. Toxicol. 96: 133–144.
- 42Aki, T., Nagahata, Y., Ishihara, K. et al. (2001). J. Am. Oil Chem. Soc. 78: 599–604.
- 43Singh, A. and Ward, O.P. (1997). Appl. Microbiol. Biotechnol. 48: 1–5.
- 44Shinmen, Y., Yamada, H., and Shimizu, S. (1990). Process for production of arachidonic acid. US Patent 5204250A.
- 45Sakuradani, E., Ando, A., Ogawa, J., and Shimizu, S. (2010). In: Single Cell Oils, 2e (ed. Z. Cohen and C. Ratledge), 29–49. Champaign, IL: AOCS Press.
10.1016/B978-1-893997-73-8.50006-2 Google Scholar
- 46Streekstra, H. (2010). In: Single Cell Oils, 2e (ed. Z. Cohen and C. Ratledge), 97–114. Champaign, IL: AOCS Press.
10.1016/B978-1-893997-73-8.50009-8 Google Scholar
- 47Kyle, D.J. (1996). Lipid Technol. 8: 107–110.
- 48Higashiyama, K., Yaguchi, T., Akimoto, K. et al. (1998). J. Am. Oil Chem. Soc. 75: 1815–1819.
- 49Totani, N., Yamaguchi, A., Yawata, M., and Ueda, T. (2002). J. Oleo Sci. 51: 531–538.
- 50Bresson, J.L., Engel, K.H., Heinonen, M. et al. (2008). EFSA J. 6 (770): 1–15.
- 51Hornstra, G. (2000). Am. J. Clin. Nutr. 71: 1262S–1269S.
- 52Lichtenstein, A.H., Appel, L.J., Brands, M. et al. (2006). Circulation 114: 82–96.
- 53Krauss, W.E. and Pruitt, J.D. (2014). In: Handbook of Clinical Nutrition and Aging, 3e (ed. C.W. Bales, J.L. Locher and E. Saltzman), 207. New York: Humana Press.
- 54Moran, C.A., Morlacchini, M., and Fusconi, G. (2017). J. Appl. Anim. Nut. 5: e11.
10.1017/jan.2017.9 Google Scholar
- 55Shepard, C.J. and Jackson, A.J. (2013). J. Fish Biol. 83: 1046–1066.
- 56 FAO (2016). The State of the World Fisheries and Aquaculture. Contributing to Food Security and Nutrition for All, vol. 92. Rome: FAO.
- 57Beach, D.H. and Holz, G.G. (1973). Biochim. Biophys. Acta 36: 56–65.
- 58Harrington, G.W., Beach, D.H., Dunham, J.E., and Holtz, G.G. (1970). J. Protozool. 17: 213–219.
- 59Henderson, R.J. (1999). Lipid Technol. 11: 5–10.
- 60Marchan, L.F., Chang, K.J.L., Nichols, P.D. et al. (2017). Biotechnol. Adv. 29: 2831–2843.
- 61Innis, S.M. and Hansen, J.W. (1996). Am. J. Clin. Nutr. 64: 159–167.
- 62Conquer, J.A. and Holub, B.J. (1997). Lipids 32: 341–345.
- 63Tam, P.S.Y., Umeda-Sawada, R., Yaguchi, T. et al. (2000). Lipids 35: 71–75.
- 64Tsappis, A. (2017). Aquafeed 8: 22–25.
- 65Miller, M.R., Nichols, P.D., and Carter, C.G. (2007). Comput. Biochem. Physiol. A Physiol. 148: 382–392.
- 66Sprague, M., Walton, J., Campbell, P.J. et al. (2015). Food Chem. 185: 413–421.
- 67Kousoulaki, K., Ostbye, T.K., Torgersen, J.S. et al. (2015). J. Nutr. Sci. 4: e24.
- 68Kousolaki, K., Morkore, T., Nengas, I. et al. (2016). Aquaculture 451: 47–57.
- 69Sprague, M., Betancor, M.B., and Tocher, D.R. (2017). Biotechnol. Lett. 39: 1599–1609.
- 70Barclay, W.R. (1994). Process for growing thraustochytrium and schizochytrium using non-chloride salts to produce a microfloral biomass having omega-3-highly unsaturated fatty acids. US Patent 5, 340, 742.
- 71Barclay, W.R. (1992). Process for the heterotrophic production of microbial products with high concentrations of omega-3 highly unsaturated fatty acids. US Patent 5, 130, 242.
- 72Behrens, P.W. and Kyle, D.J. (1996). J. Food Lipids 3: 259–272.
- 73Barclay, W.R., Abril, R., Abril, P. et al. (1998). World Rev. Nutr. Diet. 83: 61–76.
- 74Becker, C.C. and Kyle, D.J. (1998). Food Technol. 52: 68–71.
- 75Peet, M. and Stokes, C. (2005). Drugs 65: 1051–1059.
- 76Riediger, N.D., Othaman, R.A., and Suh, M. (2009). J. Am. Diet. Assoc. 109: 668–679.
- 77Lin, P.Y., Huang, S.Y., and Su, K.P. (2010). Biol. Psychiatry 68: 140–147.
- 78Sublette, M.E., Ellis, S.P., Geant, A.L., and Mann, J.J. (2011). J. Clin. Psychiatry 72: 1577–1584.
- 79Chua, E.T. and Schenk, P.M. (2017). Bioresour. Technol. 244: 1416–1424.
- 80Bellou, S., Baeshen, M.N., Elazzazy, A.M. et al. (2014). Biotechnol. Adv. 32: 1476–1493.
- 81Zaslavskaia, L.A., Lippmeier, J.C., Shih, C. et al. (2001). Science 292: 2073–2075.
- 82Liu, J., Song, Y., and Qiu, W. (2017). Renew. Sustain. Energy Rev. 72: 154–162.
- 83Kagan, M.L., Sullivan, D.W., Gad, S.C., and Ballou, C.M. (2014). Int. J. Toxicol. 33: 459–474.
- 84Zhu, Q. and Jackson, E.N. (2015). Curr. Opin. Biotechnol. 36: 65–72.
- 85Kagan, M.L., Levy, A., and Leikin-Frenkel, A. (2015). Food Funct. 6: 185–191.
- 86Kagan, M.L., West, A.L., Zante, C., and Calder, P.C. (2013). Lipids Health Dis. 12: 102.
- 87Xue, Z., Sharpe, P.L., Hong, S.P. et al. (2013). Nat. Biotechnol. 31: 734–740.
- 88Xie, D., Jackson, E.N., and Zhu, Q. (2015). Appl. Microbiol. Biotechnol. 99: 1599–1610.
- 89Hong, S.Y., Seip, J., Sharpe, P.L. et al. (2014). Recombinant microbial host cells for high eicosapentaenoic acid production. US Patent 8, 703, 473.
- 90Gillies, P.J., Harris, W.S., and Kris-Etherton, P.M. (2011). Curr. Atheroscler. Rep. 13: 467–473.
- 91Yokoyama, R., Salleh, B., and Honda, D. (2007). Mycoscience 48: 329–341.
- 92Kenny, P. and Flynn, K.J. (2017). J. Appl. Phycol. 29: 2713–2727.
- 93Ruiz-Lopez, N., Haslam, R.P., Usher, S.L. et al. (2015). Plant Biotechnol. J. 13: 1264–1275.
- 94Usher, S., Haslam, R.P., Ruiz-Lopez, N. et al. (2015). Metab. Eng. Commun. 2: 93–98.
- 95Petrie, J.R., Shestha, P., Belide, S. et al. (2014). PLoS One 9: e85061.
- 96Betancor, M.B., Sprague, M., Montero, D. et al. (2016). Lipids 51: 1171–1191.
- 97Betancor, M.B., Sprague, M., Sayanova, O. et al. (2016). PLoS One 11: e0159934.
- 98Betancor, M.B., Li, K., Sprague, M. et al. (2017). PLoS One 12: e01 75415.
- 99Shahidi, F. and Ambigaipalan, P. (2018). Annu. Rev. Food Sci. Technol. 9: 345–381.
- 100Barclay, W., Weaver, C., Metz, J., and Hansen, J. (2010). In: Single Cell Oils, 2e (ed. Z. Cohen and C. Ratledge), 75–96. Champaign, IL: AOCS Press.
10.1016/B978-1-893997-73-8.50008-6 Google Scholar