Optical rotation per refractive index unit, or enantiomeric (e) factor, for screening enantioselective catalysts through asymmetric activation or carbohydrates
Corresponding Author
Koichi Mikami
Tokyo Institute of Technology, Tokyo, Japan
Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, JapanSearch for more papers by this authorCorresponding Author
Koichi Mikami
Tokyo Institute of Technology, Tokyo, Japan
Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, JapanSearch for more papers by this authorAbstract
A super high-throughput screening (SHTS) system can be constructed by combining high-performance liquid chromatography (HPLC), optical rotation (OR), and refractive index unit (RIU) to determine not only the enantioselectivity of the addition of diethylzinc to an aliphatic aldehyde catalyzed by a binaphthol-zinc complex through asymmetric activation with chiral Schiff bases, but also the enantiopurity of a carbohydrate. The enantiomeric (e) factor, which we define here as optical rotation per refractive index unit, is linearly related to the percent enantiomeric excess (%ee) and is independent of concentration. Chirality 12:544–547, 2000. © 2000 Wiley-Liss, Inc.
LITERATURE CITED
- 1a) Jacobsen EN, Pfaltz A, Yamamoto H. Comprehensive asymmetric catalysis, vol. I–III. Berlin: Springer; 1999. b) Gawley RE, Aube J. Principles of asymmetric synthesis. London: Pergamon; 1996. c) Doyle MP. Advances in catalytic processes, Vol. I–II. London: JAI Press; 1995, 1998. d) Noyori R. Asymmetric catalysis in organic synthesis. New York: Wiley; 1994. e) Brunner H, Zettlmeier W. Handbook of enantioselective catalysis. Weinheim: VCH; 1993. f) Ojima I. Catalytic asymmetric synthesis. New York: VCH; 1993 and 2000. g) Kagan HB. Comprehensive organic chemistry, vol. 8. Oxford: Pergamon; 1992. h) Bosnich B. Asymmetric catalysis. Dordrecht: Martinus Nijhoff; 1986.
- 2a) Mikami K, Matsukawa S. Asymmetric synthesis by enantiomer-selective activation of racemic catalysts. Nature 1997; 385: 613–615.
b) Volk T, Korenaga T, Matsukawa S, Terada M, Mikami K. Asymmetric activation of chiral BINOL-zirconium catalysts: effect of a product-like activator. Chirality 1998; 10: 717–721.
c) Matsukawa S, Mikami K. Chiral drugging: chiral activator-induced enantiomer selective activation of racemic catalyst for asymmetric amplifying catalysis. Enantiomer 1996; 1: 69–73.
d) Ohkuma T, Doucet H, Pham T, Mikami K, Korenaga T, Terada M, Noyori R. Asymmetric activation of racemic ruthenium(II) complexes for enantioselective hydrogenation. J Am Chem Soc 1998; 120: 1086–1087.
e) Mikami K, Korenaga T, Terada M, Ohkuma T, Pham T, Noyori R. Conformationally flexible biphenylphosphane ligands for Ru-catalyzed enantioselective hydrogenation. Angew Chem Int Ed Engl 1999; 38: 495–497.
10.1002/(SICI)1521-3773(19990215)38:4<495::AID-ANIE495>3.0.CO;2-O CAS PubMed Web of Science® Google Scholar
- 3a) Special issue on combinatorial library. No. 3. Acc Chem Res 29:1996.
b) Reviews: Jandeleit B, Schaefer DJ, Powers TS, Turner HW, Weinberg WH. Combinatorial materials science and catalysis. Angew Chem Int Ed Engl 1999; 38: 2494–2532.
10.1002/(SICI)1521-3773(19990903)38:17<2494::AID-ANIE2494>3.0.CO;2-# CAS PubMed Web of Science® Google Scholarc) Balkenhohl F, von dem Bussche-Hunnefeld C, Lansky A, Zechel C. Combinatorial synthesis of small organic molecules. Angew Chem Int Ed Engl 1996; 35: 2288–2337. d) Gennari C, Nestler HP, Piarulli U, Salom B. Combinatorial libraries: studies in molecular recognition and the quest for new catalysts. Lie-bigs Ann 1997; 637. e) Wilson SR, Czarink AW. Combinatorial chemistry: synthesis and application. New York: Wiley; 1997. f) Miertus S, Fassina G. Combinatorial chemistry and technology. New York: Marcel Dekker; 1997.
- 4Devlin JP. High throughput screening. New York: Marcel Dekker; 1997.
- 5a) Burgess K, Lim H-J, Porte AM, Sulikowski GA. New catalysts and conditions for a C-H insertion reaction identified by high throughput catalyst screening. Angew Chem Int Ed Eng 1996; 35: 220–222.
b) Porte AM, Reibenspies J, Burgess K. Design and optimization of new phosphine oxazoline ligands via high-throughput catalyst screening. J Am Chem Soc 1998; 120: 9180–9187.
c) Cole BM, Shimizu KD, Krueger CA, Harrity JPA, Snapper ML, Hoveyda AH. Discovery of chiral catalysts through ligand diversity: Ti-catalyzed enantioselective addition of TMSCN to meso epoxides. Angew Chem Int Ed Eng 1996; 35: 1668–1671.
d) Shimizu KD, Cole BM, Krueger CA, Kuntz KW, Snapper ML, Hoveyda AH. Search for chiral catalysts through ligand diversity: substrate-specific catalysts and ligand screening on solid phase. Angew Chem Int Ed Eng 1997; 36: 1703–1707.
e) Krueger CA, Kuntz KW, Dzierba CD, Wirschun WG, Gleason JD, Snapper ML, Hoveyda AH. Ti-catalyzed enantioselective addition of cyanide to imines. A practical synthesis of optically pure α-amino acids. J Am Chem Soc 1999; 121: 4284–4285.
f) Sigman MS, Jacobsen EN. Schiff base catalysts for the asymmetric Strecker reaction identified and optimized from parallel synthetic libraries. J Am Chem Soc 1998; 120: 4901–4902.
g) Francis MB, Jacobsen EN. Discovery of novel catalysts for alkene epoxidation from metal-binding combinatorial libraries. Angew Chem Int Ed Eng 1999; 38: 937.
10.1002/(SICI)1521-3773(19990401)38:7<937::AID-ANIE937>3.0.CO;2-O CAS PubMed Web of Science® Google Scholarh) Liu GA, Ellman J. A general solid-phase synthesis strategy for the preparation of 2-pyrrolidinemethanol ligands. J Org Chem 1995; 60: 7712–7713.
- 6a) Reetz MT, Zonta A, Schimossek K, Liebeton K, Jaeger K-E. Creation of enantioselective biocatalysts for organic chemistry by in vitro evolution. Angew Chem Int Ed Eng 1997; 36: 2830–2832.
b) Klein G, Reymond J-L. Enantioselective fluorogenic assay of acetate hydrolysis for detecting lipase catalytic antibodies. Helv Chim Acta 1999; 82: 400–406.
10.1002/(SICI)1522-2675(19990310)82:3<400::AID-HLCA400>3.0.CO;2-C CAS Web of Science® Google Scholar
- 7In homogeneous catalysis: Reetz MT, Becker MH, Kuhling KM, Holzwarth A. Time-resolved IR-thermographic detection and screening of enantioselectivity in catalytic reactions. Angew Chem Int Ed Eng 1998; 37: 2647–2650.
10.1002/(SICI)1521-3773(19981016)37:19<2647::AID-ANIE2647>3.0.CO;2-I CAS PubMed Web of Science® Google Scholar
- 8a) Guo J, Wu J, Siuzdak G, Finn MG. Measurement of enantiomeric excess by kinetic resolution and mass spectrometry. Angew Chem Int Ed Eng 1999; 38: 1755–1758.
10.1002/(SICI)1521-3773(19990614)38:12<1755::AID-ANIE1755>3.0.CO;2-Q CAS PubMed Web of Science® Google Scholarb) Reetz MT, Becker MH, Klein H-W, Steckigt DA. A method for high-throughput screening of enantioselective catalysts. Angew Chem Int Ed Eng 1999; 38: 1758–1761.10.1002/(SICI)1521-3773(19990614)38:12<1758::AID-ANIE1758>3.0.CO;2-8 CAS PubMed Web of Science® Google Scholar
- 9Ding K, Ishii A, Mikami K. Super high throughput screening (SHTS) of chiral ligands and activators: asymmetric activation of chiral diol-zinc catalysts by chiral nitrogen activators for the enantioselective addition of diethylzinc to aldehydes. Angew Chem Int Ed Eng 1999; 38: 497–501.
10.1002/(SICI)1521-3773(19990215)38:4<497::AID-ANIE497>3.0.CO;2-G CAS PubMed Web of Science® Google Scholar
- 10a) Kuhn W. The physical significance of optical rotatory power. Trans Faraday Soc 1930; 26: 293–308. b) Lowry TM, French HS. The rotatory dispersive power of organic compounds. Part XX. Rotatory dispersion and circular dichroism of camphor-β-sulphonic acid in the region of absorption. J Chem Soc 1932; 2654–2656.
- 11Drake AF, Gould JM, Mason SF. Simultaneous monitoring of light-absorption and optical activity in the liquid chromatography of chiral substances. J Chromatogr 1980; 202: 239–245.
- 12a) Salvadori P, Bertucci C, Rosini C. Circular dichroism detection in HPLC. Chirality 1991; 3: 376–385. b) Salvadori P, Bertucci C, Rosini C. In: K Nakanishi, N Berova, RW Woody, editors. Circular dichroism. Principles and application. Weinheim: VCH; 1994. p 541–560.