Mechanistic aspects of dihydrogen activation and transfer during asymmetric hydrogenation in supercritical carbon dioxide
Susanne Lange
Max-Planck-Institut für Kohlenforschung, Mülheim/Ruhr, Germany
Search for more papers by this authorAxel Brinkmann
Max-Planck-Institut für Kohlenforschung, Mülheim/Ruhr, Germany
Search for more papers by this authorPeter Trautner
Institut für Physikalische und Theoretische Chemie, Universität Bonn, Bonn, Germany
Search for more papers by this authorKlaus Woelk
Institut für Physikalische und Theoretische Chemie, Universität Bonn, Bonn, Germany
Search for more papers by this authorJoachim Bargon
Institut für Physikalische und Theoretische Chemie, Universität Bonn, Bonn, Germany
Search for more papers by this authorCorresponding Author
Walter Leitner
Max-Planck-Institut für Kohlenforschung, Mülheim/Ruhr, Germany
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim/Ruhr, GermanySearch for more papers by this authorSusanne Lange
Max-Planck-Institut für Kohlenforschung, Mülheim/Ruhr, Germany
Search for more papers by this authorAxel Brinkmann
Max-Planck-Institut für Kohlenforschung, Mülheim/Ruhr, Germany
Search for more papers by this authorPeter Trautner
Institut für Physikalische und Theoretische Chemie, Universität Bonn, Bonn, Germany
Search for more papers by this authorKlaus Woelk
Institut für Physikalische und Theoretische Chemie, Universität Bonn, Bonn, Germany
Search for more papers by this authorJoachim Bargon
Institut für Physikalische und Theoretische Chemie, Universität Bonn, Bonn, Germany
Search for more papers by this authorCorresponding Author
Walter Leitner
Max-Planck-Institut für Kohlenforschung, Mülheim/Ruhr, Germany
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim/Ruhr, GermanySearch for more papers by this authorAbstract
A new ”CO2-philic” chiral rhodium diphosphinite complex was synthesized and applied as catalyst precursor in the asymmetric hydrogenation of dimethyl itaconate in scCO2, scC2H6 and various liquid organic solvents. Deuterium labeling studies and parahydrogen-induced polarization (PHIP) NMR experiments were used to provide the first detailed mechanistic insight into the activation and transfer of the dihydrogen molecule during hydrogenation in scCO2. Chemical interactions between CO2 and reactive intermediates of the catalytic pathway could be excluded as possible explanations for the experimentally verified difference in the catalytic behavior in scCO2 and hexane. Chirality 12:450–457, 2000 © 2000 Wiley-Liss, Inc.
LITERATURE CITED
- 1a) Noyori R. Asymmetric catalysis in organic synthesis. New York: John Wiley & Sons; 1994. b) Brunner H. Hydrogenation. In: B Cornils, WA Herrmann, editors. Applied homogeneous catalysis with organometallic compounds. Weinheim: VCH; 1996. p 201–219.
- 2 PG Jessop, W Leitner (eds). Chemical synthesis using supercritical fluids. Weinheim: Wiley-VCH; 1999.
10.1002/9783527613687 Google Scholar
- 3a) Jessop PG, Ikariya T, Noyori R. Homogeneous catalysis in supercritical fluids. Science 1995; 269: 1065–1069. b) Jessop PG, Ikariya T, Noyori R. Homogeneous catalysis in supercritical fluids. Chem Rev 1999; 99: 475–493.
- 4Leitner W. Reactions in supercritical carbon dioxide (scCO2). Top Curr Chem 1999; 206: 107–133.
- 5Burk MJ, Feng S, Gross MF, Tumas W. Asymmetric catalytic hydrogenation reactions in supercritical carbon dioxide. J Am Chem Soc 1995; 117: 8277–8278.
- 6Xiao JL, Nefkens SCA, Jessop PG, Ikariya T, Noyori R. Asymmetric hydrogenation of α,β-unsaturated carboxylic acids in supercritical carbon dioxide. Tetrahedron Lett 1996; 37: 2813–2816.
10.1016/0040-4039(96)00436-4 Google Scholar
- 7For utilization of a chinchona-modified heterogeneous catalysts for asymmetric hydrogenation in supercritical fluids, see: Minder B, Mallat T, Pickel KH, Steiner K, Baiker A. Enantioselective hydrogenation of ethyl pyruvate in supercritical fluids. Cat Lett 1995; 34: 1–9.
- 8Kainz S, Brinkmann A, Leitner W, Pfaltz A. Iridium-catalyzed enantioselective hydrogenation of imines in supercritical carbon dioxide. J Am Chem Soc 1999; 121: 6421–6429.
- 9Kainz S, Koch D, Baumann W, Leitner W. Perfluoralkyl-substituted arylphosphanes as ligands for homogeneous catalysis in supercritical carbon dioxide. Angew Chem Int Ed Engl 1997; 36: 1628–1630.
- 10For an example where this substitution leads to a change in regioselectivity, see: Franciò G, Leitner W. Highly regio- and enantio-selective rhodium-catalysed asymmetric hydroformylation without organic solvents. Chem Commun 1999; 1663–1664.
- 11Jessop PG, Ikariya T, Noyori R. Homogeneous catalytic hydrogenation in supercritical carbon dioxide. Nature 1994; 368: 231–233.
- 12Sun Y, Landau RN, Wang J, LeBlond C, Blackmond DG. A re-examination of pressure effects on enantioselectivity in asymmetric catalytic hydrogenation. J Am Chem Soc 1996; 118: 1348–1353.
- 13Clifford AA. Physical properties as related to chemical reactions. In: PG Jessop, W Leitner (eds.). Chemical synthesis using supercritical fluids. Weinheim: Wiley-VCH; 1999. p. 54–66.
10.1002/9783527613687.ch3 Google Scholar
- 14Leitner W. The coordination chemistery of carbon dioxide and its relevance for catalysis: a critical study. Coord Chem Rev 1996; 153: 257–284.
- 15a) Leitner W. Carbon dioxide as a raw material—the synthesis of formic acid and its derivatives from CO2. Angew Chem Int Ed Engl 1995; 34: 2207–2221. b) Jessop PG, Ikariya T, Noyori R. Homogeneous hydrogenation of carbon-dioxide. Chem Rev 1995; 95: 259–272.
- 16For the only notable exception, see: a) Rathke JW, Klingler RJ, Krause TR. Propylene hycroformylation in supercritical carbon dioxide. Organometallics 10: 1350–1355, 1991; b) Klingler, RJ, Rathke, JW. High pressure NMR investigation of hydrogen-atom transfer and related dynamic processes in oxo catalysis. J Am Chem Soc 1994; 116: 4772–4785.
- 17Wittmann K, Franció G, Koch D, Mynott R, Wisniewksi W, Leitner W. In preparation.
- 18Kainz S, Luo Z, Curran DP, Leitner W. Synthesis of perfluoralkyl-substituted aryl bromides and their purification over fluorous reverse phase silica. Synthesis: 1998; 1425–1427.
- 19Harthun A, Kadyrov R, Selke R, Bargon J. Proof of chiral dihydride complexes including catalyst and substrate during the bis(phosphinite)rhodium(I)-catalyzed hydrogenation of dimethyl itaconate. Angew Chem Int Ed Engl 1997; 36: 1103–1105.
- 20Maul JJ, Ostrowski PJ, Ublacker GA, Linclau B, Curran DP. Benzotrifluorise and derivatives: useful solvents for organic synthesis and fluorous synthesis, Top Curr Chem 1999; 206: 61–79.
- 21Doucet H, Ohkuma T, Murata K, Yokozawa T, Kozawa M, Katayama E, England AF, Ikariya T, Noyori R. Trans-[RuCl2(phosphane)2(1,2-diamine)] and chiral trans-[RuCl2(diphosphane)(1,2-diamine): shelf-stable precatalysts for the rapid, productive, and stereoselective hydrogenation of ketones. Angew Chem Int Ed Engl 1998; 37: 1703–1707.
10.1002/(SICI)1521-3773(19980703)37:12<1703::AID-ANIE1703>3.0.CO;2-I CAS PubMed Web of Science® Google Scholar
- 22a) Eisenberg R, Eisenschmid TC, Chinn MS, Kirss RU. Parahydrogen-induced polarization and polarization transfer in hydrogenation and oxidative addition-reactions—a mechanistic probe. Adv Chem Ser 1992; 230: 47–74. b) Bargon J, Kandels J, Woelk K. Orthohydrogen and parahydrogen induced nuclear spin polarization. Z Phys Chem 1993; 180: 65–93. c) Bargon J. Parahydrogen labeling as new analytical method in homogeneous catalysis. In: B Cornils, WA Herrmann (ed.). Applied homogeneous catalysis with organometallic compounds. Weinheim: Wiley-VCH; 1996. p 672–683. d) Duckett SB, Sleigh CJ. Application of the parahydrogen phenomenon: a chemical perspective. Progr NMR Spectr 1999; 34: 71–92.
- 23a) Brown JM, Chaloner PA. The mechanism of asymmetric homogeneous hydrogenation. Rhodium(I) complexes of dehydroamino acids containing asymmetric ligands related to bis(1,2-diphenylphosphino) ethane J Am Chem Soc 1980; 102: 3040–3048. b) Landis CR, Halpern J. Asymmetric hydrogenation of methyl-(Z)-alpha-acetamidocinnamate catalyzed by (1,2-bis((phenyl-ortho-anisoyl)phosphino)ethane)-rhodium(I)—kinetics, mechanism, and origin of enantioselection. J Am Chem Soc 1987; 109: 1746–1754.
- 24 Parahydrogen was enriched up to 51% by passing hydrogen gas through an activated-charcoal reactor chilled with liquid nitrogen (77K). A continuous flow of enriched parahydrogen was obtained up to 50 mL/min. Details of the enrichment procedure are described in [22b].
- 25a) Woelk K, Klingler RJ, Rathke JW. The toroid cavity NMR detector. J Magn Reson A 1994; 109: 137–146. b) Rathke JW, Klingler RJ, Gerald II RE, Kramarz KW, Woelk K. Toroids in NMR spectroscopy. Progr NMR Spectr 1997; 30: 209–253.
- 26 A detailed report on the new toroid cavity probe design will be given separately.
- 27 Parahydrogen obtained according to [24] was pressurized 30 bar above the scCO2 pressure using an ISCO DM 100 syringe pump and added through the one-way ball valve of the toroid cavity.
- 28a) Leitner W, Brown JM, Brunner H. Mechanistic aspects of the rhodium-catalyzed enantioselective transfer hydrogenation of alpha, beta-unsaturated carboxylic acids using formic-acid triethylamine (5:2) as the hydrogen source. J Am Chem Soc 1993; 115: 152–159. b) This particular addition is specific to the formate system and is not observed during hydrogenation of 5 using gaseous hydrogen with the same rhodium catalyst: Lange S, Mynott R, Wirtz C, Leitner W. manuscript in preparation.
- 29Burgemeister T, Kastner F, Leitner W. CO2 activation. 2. [(PP)2RhH] and [(PP)2Rh] [O2CH] complexes as models for the catalytically active intermediates in the Rh-catalyzed hydrogenation of CO2 to HCOOH. Angew Chem Int Ed Engl 1993; 32: 739–741.
- 30 For other possible reactions of catalytically active organometallics with compressed CO2, see: a) Ref. 14 b) Mason MG, Ibers JA. Reactivity of some transition-metal systems toward liquid carbon-dioxide. J Am Chem Soc 1982; 104: 5153–5157. c) Kreher U, Schebesta S, Walther D. Organometallics of transition metals in supercritical carbon dioxide: solubilities, reactions, catalysis. Z Anorg Allg Chem 1998; 624: 602–612. d) Six C, Gabor B, Görls H, Mynott R, Philipps P, Leitner W. Inter- and intramolecular thermal activation of sp(3) C−H bonds with ruthenium bisallyl complexes. Organometallics 1999; 18: 3316–3326.
- 31Butters T, Winter W. Synthese von Triphenylphosphan-en-inen und Phosphindolen sowie Roentgenstrukturanalyse von zwei Phosphindolen. Chem Ber 1984; 117: 990–1002.
- 32a) Brookhart M, Grant B, Volpe AF. [(3,5-(CF3)2C6H3)4B]-[H(OEt2)2]: a convenient reagent for generation and stabilization of cationic, highly electrophilic organometallic complexes. Organometallics 1992; 11: 3920–3922. b) Nishida H, Takada N, Yoshimura M, Sonoda T, Kobayashi H. Tetrakis[3,5-bis(trifluoromethyl)phenyl]borate. Highly lipophilic stable anionic agent for solvent-extraction of cations. Bull Chem Soc Jpn 1984; 57: 2600–2604.