Applications of a local grid method for modeling chemical dynamics at a mean-field level
S. Adhikari
Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Calcutta-700 032 India
Search for more papers by this authorP. Dutta
Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Calcutta-700 032 India
Search for more papers by this authorCorresponding Author
S.P. Bhattacharyya
Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Calcutta-700 032 India
Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Calcutta-700 032 IndiaSearch for more papers by this authorS. Adhikari
Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Calcutta-700 032 India
Search for more papers by this authorP. Dutta
Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Calcutta-700 032 India
Search for more papers by this authorCorresponding Author
S.P. Bhattacharyya
Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Calcutta-700 032 India
Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Calcutta-700 032 IndiaSearch for more papers by this authorAbstract
A local grid method proposed earlier is used to model chemical dynamical events in more than one dimension. Two different mean-field routes are applied to model problems representing dynamics of isomerization, H+-ion transfer, energy transfer, etc. The methods are seen to work with equal facility for both time-dependent and time-independent potentials. © 1996 John Wiley & Sons, Inc.
References
- 1 M. Dantus, R. M. Bowman, and A. H. Zewail, Nature 343, 737 (1990).
- 2 N. Sathyamurthy, Chem Rev. 83, 601 (1985) and references cited therein.
- 3 N. Bloembergen and A. H. Zewail, J. Phys. Chem. 88, 5459 (1984).
- 4 P. Brumer and M. Shapiro, Adv. Chem. Phys. 60, 371 (1985).
- 5 S. Chelkowski and A. D. Bandrauk, Chem. Phys. Lett. 186, 264 (1991); S. A. Rice, Science 258, 412 (1992).
- 6 M. Dantus, M. J. Rosker, and A. H. Zewail, J. Chem. Phys. 87, 2395 (1987); J. Chem. Phys. 89, 6128 (1989).
- 7 R. Heather and H. Mefiu, J. Chem. Phys. 88, 5495 (1988).
- 8 S. Shi, A. Woody, and H. Rabitz, J. Chem. Phys. 88, 6870 (1988).
- 9 W. Domcke and H. Köppel, Chem. Phys. Lett. 140, 133 (1987).
- 10 H. Kono and Y. Fujimura, J. Chem. Phys. 91, 5960 (1989).
- 11 A. D. Mclachalan, Mol. Phys. 8, 39 (1964).
- 12 H. Guo, K. Q. Lao, G. C. Schatz, and A. D. Hammerich, J. Chem. Phys. 94, 6562 (1991).
- 13 N. Makri and W. H. Miller, J. Chem. Phys. 87, 5781 (1987).
- 14 M. Messina and R. D. Coalson, J. Chem. Phys. 92, 5287 (1990); J. Chem. Phys. 92, 7123 (1990).
- 15 R. Alimi and R. B. Gerber, Phys. Rev. Lett. 64, 1453 (1990) and references cited therein.
- 16 R. D. Coalson, Chem. Phys. Lett. 165, 443 (1990).
- 17 R. Waldeck, J. Campos-Martiner, and R. D. Coalson, J. Chem. Phys. 94, 2773 (1991).
- 18 N. Makri, Chem. Phys. Lett. 169, 541 (1990) and references cited therein.
- 19 J. Kucar, H. D. Meyer, and L. S. Cederbaum, Chem. Phys. Lett. 140, 525 (1987).
- 20 Z. Kotler, A. Nitzan, and R. Kosloff, Chem. Phys. Lett. 153, 483 (1988).
- 21 H. D. Meyer, V. Manthe, and L. S. Cederbaum, Chem. Phys. Lett. 165, 73 (1990).
- 22 R. Kosloff, J. Phys. Chem. 92, 2087 (1988); R. Kosloff and H. Tal-Ezer, Chem. Phys. Lett. 127, 223 (1986).
- 23 M. D. Feit and J. A. Fleck, Jr., J. Chem. Phys. 78, 301 (1983).
- 24 C. C. Marston and G. G. Balint-Kurti, J. Chem. Phys. 91, 3571 (1989).
- 25 G. G. Balint-Kurti, C. L. Ward, and C. C. Marston, Comput. Phys. Commun. 67, 285 (1991).
- 26 R. Kosloff, A. D. Hammerich, and M. A. Ratuer, in Large Finite Systems: Proceedings of the 20th Jerusalem Symposium on Quantum Chemistry and Bio-Chemistry J. Jortner, A. Pullman, and B. Pullnan eds. (Reider Dordred, 1987).
- 27 P. Dutta, S. Adhikari, and S. P. Bhattacharyya, Chem. Phys. Lett. 212, 677 (1993).
- 28 S. Adhikari, P. Dutta, and S. P. Bhattacharyya, Chem. Phys. Lett. 199, 574 (1992); S. Adhikari and S. P. Bhattacharyya, Phys. Lett. A 172, 155 (1992).
- 29 S. Adhikari and S. P. Bhattacharyya, Proc. Ind. Acad. Sci. (Chem. Sci.) 106, 553 (1994).
- 30 J. C. Light, I. P. Hamilton, and J. V. Lill, J. Chem. Phys. 82, 1400 (1985).
- 31 E. A. McCullough and R. E. Wyatt, J. Chem. Phys. 51, 1253 (1969); J. Chem. Phys. 54, 3578 (1971).
- 32 P. A. M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930); J. Frenkel, Wave Mechanics (Oxford University Press, Oxford, 1934).
- 33
J. Stoer and
R. Bullrach,
Introduction to Numerical Analysis
(Springer, New York,
1980)
(sec. 7.2.14).
10.1007/978-1-4757-5592-3 Google Scholar
- 34 N. De Leon and B. J. Berne, J. Chem. Phys. 75, 3495 (1981); S. K. Gray and S. A. Rice, J. Chem. Phys. 86, 2020 (1987).
- 35 E. Bosch, M. Moreno, J. M. Liuch, and J. Bertran, J. Chem. Phys. 93, 5685 (1990).
- 36 V. A. Benderskii, D. E. Markov, and P. G. Grinevich, Chem. Phys. 170, 275 (1993).
- 37 R. A. Pullen and A. R. Edmond, J. Phys. A (Math. and Gen.) 14, L 477 (1981)