Relativity and the chemistry of UF6: A molecular Dirac—Hartree—Fock—CI study
Corresponding Author
W. A. De Jong
Laboratory for Chemical Physics and Materials Science Centre, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
Laboratory for Chemical Physics and Materials Science Centre, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The NetherlandsSearch for more papers by this authorW. C. Nieuwpoort
Laboratory for Chemical Physics and Materials Science Centre, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
Search for more papers by this authorCorresponding Author
W. A. De Jong
Laboratory for Chemical Physics and Materials Science Centre, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
Laboratory for Chemical Physics and Materials Science Centre, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The NetherlandsSearch for more papers by this authorW. C. Nieuwpoort
Laboratory for Chemical Physics and Materials Science Centre, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
Search for more papers by this authorAbstract
The electronic structure and bonding of UF6 and UF6− are studied within a relativistic framework using the MOLFDIR program package. A stronger bonding but more ionic molecule is found if one compares the relativistic with the nonrelativistic results. The first peak in the photoelectron spectrum of Karlsson et al. is assigned to the 12γ8u component of the 4t1u orbital, in agreement with other theoretical and experimental results. Good agreement is found between the experimental and theoretical 5f spectrum UF6−. Some properties, like the dissociation energy and electron affinity, are calculated and the necessity of a fully relativistic framework is shown. The Breit interaction has an effect on the core spinors and the spin-orbit splitting of these spinors but the influence on the valence spectrum is negligible. © 1996 John Wiley & Sons, Inc.
References
- 1
R. N. Zare,
Sci. Am.
Feb., 86
(1977).
10.1038/scientificamerican0277-86 Google Scholar
- 2 H. M. Seip, Acta Chem. Scand. 19, 1955 (1965).
- 3 G. L. DePoorter and C. K. Rofer-Depoorter, Spec. Lett. 8, 521 (1975).
- 4 R. McDiarmid, J. Chem. Phys. 65, 168 (1976).
- 5 W. B. Lewis, L. B. Asprey, L. H. Jones, R. S. McDowell, S. W. Rabideau, A. H. Zeltmann, and R. T. Paine, J. Chem. Phys. 65, 2707 (1976).
- 6 L. Karlsson, L. Mattsson, R. Jadmy, T. Bergmark, and K. Siegbahn, Phys. Scr. 14, 230 (1976).
- 7 R. Rianda, R. P. Frueholz, and A. Kuppermann, J. Chem. Phys. 70, 1056 (1979).
- 8 J. C. Miller, S. W. Allison, and L. Andrews, J. Chem. Phys. 70, 3524 (1979).
- 9 N. Mårtensson, P.-Å. Malmquist, and S. Svensson, Chem. Phys. Lett. 100, 375 (1983).
- 10 N. Mårtensson, P.-Å. Malmquist, S. Svensson, and B. Johansson, J. Chem. Phys. 80, 5458 (1984).
- 11 D. P. Armstrong, D. A. Harkins, R. N. Compton, and D. Ding, J. Chem. Phys. 100, 28 (1994).
- 12 M. Boring, J. H. Wood, and J. W. Moskowitz, J. Chem. Phys. 61, 3800 (1974).
- 13 D. H. Maylotte, R. L. St. Peters, and R. P. Messmer, Chem. Phys. Lett. 38, 181 (1976).
- 14 M. Boring and J. W. Moskowitz, Chem. Phys. Lett. 38, 185 (1976).
- 15 D. D. Koelling, D. E. Ellis, and R. J. Bartlett, J. Chem. Phys. 65, 3331 (1976).
- 16 A. Rosén, Chem. Phys. Lett. 55, 311 (1978).
- 17 M. Boring and J. H. Wood, J. Chem. Phys. 71, 32 (1979).
- 18 P. J. Hay, W. R. Wadt, L. R. Kahn, R. C. Raffenetti, and D. H. Phillips, J. Chem. Phys. 71, 1767 (1979).
- 19 D. C. Cartwright, S. Trajmar, A. Chutjian, and S. Srivastava, J. Chem. Phys. 79, 5483 (1983).
- 20 P. J. Hay, J. Chem. Phys. 79, 5469 (1983).
- 21 S. Larsson, J. S. Tse, J. L. Esquivel, and A. T. Kai, Chem. Phys. 89, 43 (1984).
- 22 S. Larsson and P. Pyykkö, Chem. Phys. 101, 355 (1986).
- 23 J. Onoe, K. Takeuchi, H. Nakamatsu, T. Mukoyama, R. Sekine, and H. Adachi, Chem. Phys. Lett. 196, 636 (1992).
- 24 J. Onoe, K. Takeuchi, H. Nakamatsu, T. Mukoyama, R. Sekine, B.-I. Kim, and H. Adachi, J. Chem. Phys. 99, 6810 (1993).
- 25 L. Visscher, O. Visser, P. J. C. Aerts, H. Merenga, and W. C. Nieuwpoort, Comp. Phys. Comm. 81, 120 (1994).
- 26 I. P. Grant and H. M. Quiney, Adv. At. Mol. Phys. 23, 37 (1988).
- 27 G. Breit, Phys. Rev. 34, 553 (1929).
- 28 J. A. Gaunt, Proc. R. Soc. A 122, 513 (1929).
- 29 J. Olsen, B. O. Roos, P. Jörgensen, and H. J. A. Jensen, J. Chem. Phys. 89, 2185 (1988).
- 30 L. Visscher, Thesis (University of Groningen, 1993).
- 31 K. G. Dyall, I. P. Grant, C. T. Johnson, E. P. Plummer, and F. Parpia, Comp. Phys. Comm. 50, 375 (1989).
- 32 K. Fægri, Personal communication (Theoretical Chemistry, University of Oslo, 1993).
- 33 ASCF Atomic Self Consistent Field code, developed by the theoretical chemistry group in Groningen.
- 34 O. Visser, P. J. C. Aerts, D. Hegarty, and W. C. Nieuwpoort, Chem. Phys. Lett. 134, 34 (1987).
- 35 L. Visscher, P. J. C. Aerts, O. Visser, and W. C. Nieuwpoort, Int. J. Quantum Chem. 25, 131 (1991).
- 36 L. Visscher and W. C. Nieuwpoort, Theor. Chim. Acta 88, 447 (1994).
- 37 R. N. Compton, J. Chem. Phys. 66, 4478 (1977).
- 38 R. Mulliken, J. Chem. Phys. 23, 1833 (1955).
- 39 J. H. Scofield, J. Elect. Spectrosc. 8, 129 (1976).
- 40
N. P. Galkin and
Y. N. Toumanov,
Russ. Chem. Rev.
40, 154
(1971).
10.1070/RC1971v040n02ABEH001902 Google Scholar
- 41 J. L. Beauchamp, J. Chem. Phys. 64, 928 (1976).
- 42 M. J. Reisfeld and G. A. Crosby, Inorg. Chem. 4, 65 (1964).