Modelling repressor proteins docking to DNA
Patrick Aloy
Biomolecular Modelling Laboratory, Imperial Cancer Research Fund, London, United Kingdom
Institut de Biologia Fonamental and Departament de Bioquímica, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
Search for more papers by this authorGidon Moont
Biomolecular Modelling Laboratory, Imperial Cancer Research Fund, London, United Kingdom
Search for more papers by this authorHenry A. Gabb
Biomolecular Modelling Laboratory, Imperial Cancer Research Fund, London, United Kingdom
Search for more papers by this authorEnrique Querol
Institut de Biologia Fonamental and Departament de Bioquímica, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
Search for more papers by this authorFrancesc X. Aviles
Institut de Biologia Fonamental and Departament de Bioquímica, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
Search for more papers by this authorCorresponding Author
Michael J.E. Sternberg
Biomolecular Modelling Laboratory, Imperial Cancer Research Fund, London, United Kingdom
Biomolecular Modelling Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom.===Search for more papers by this authorPatrick Aloy
Biomolecular Modelling Laboratory, Imperial Cancer Research Fund, London, United Kingdom
Institut de Biologia Fonamental and Departament de Bioquímica, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
Search for more papers by this authorGidon Moont
Biomolecular Modelling Laboratory, Imperial Cancer Research Fund, London, United Kingdom
Search for more papers by this authorHenry A. Gabb
Biomolecular Modelling Laboratory, Imperial Cancer Research Fund, London, United Kingdom
Search for more papers by this authorEnrique Querol
Institut de Biologia Fonamental and Departament de Bioquímica, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
Search for more papers by this authorFrancesc X. Aviles
Institut de Biologia Fonamental and Departament de Bioquímica, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
Search for more papers by this authorCorresponding Author
Michael J.E. Sternberg
Biomolecular Modelling Laboratory, Imperial Cancer Research Fund, London, United Kingdom
Biomolecular Modelling Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom.===Search for more papers by this authorAbstract
The docking of repressor proteins to DNA starting from the unbound protein and model-built DNA coordinates is modeled computationally. The approach was evaluated on eight repressor/DNA complexes that employed different modes for protein/ DNA recognition. The global search is based on a protein-protein docking algorithm that evaluates shape and electrostatic complementarity, which was modified to consider the importance of electrostatic features in DNA-protein recognition. Complexes were then ranked by an empirical score for the observed amino acid /nucleotide pairings (i.e., protein-DNA pair potentials) derived from a database of 20 protein/DNA complexes. A good prediction had at least 65% of the correct contacts modeled. This approach was able to identify a good solution at rank four or better for three out of the eight complexes. Predicted complexes were filtered by a distance constraint based on experimental data defining the DNA footprint. This improved coverage to four out of eight complexes having a good model at rank four or better. The additional use of amino acid mutagenesis and phylogenetic data defining residues on the repressor resulted in between 2 and 27 models that would have to be examined to find a good solution for seven of the eight test systems. This study shows that starting with unbound coordinates one can predict three-dimensional models for protein/DNA complexes that do not involve gross conformational changes on association. Proteins 33:535–549, 1998. © 1998 Wiley-Liss, Inc.
REFERENCES
- 1 Rhodes, D., Schwabe, J.W.R., Chapman, L., Fairall, L. Towards an understanding of protein-DNA recognition. Philos. Trans. R. Soc. Lond. B Biol Sci. 351: 501–509, 1996.
- 2 Werner, M.H., Gronenborn, A.M., Clore, G.M. Intercalation, DNA kinking, and the control of transcription. Science 271: 778–784, 1996.
- 3 Vrielink, A., Freemont, P. Protein-nucleic acid recognition and interactions. In: “ Principles of Medical Biology.” Brittar, E.E., N. Brittar (eds.). Greenwich, CT: JAI Press, 1996: 85–115.
- 4 Raumann, B.E., Rould, M.A., Pabo, C.O., Sauer, R.T. DNA recognition by beta-sheets in the Arc repressor-operator crystal structure. Nature 367: 754–757, 1994.
- 5 Breg, J.N., van Opheusden, J.H.J., Burgering, M.J.M., Boelens, R., Kaptein, R. Structure of Arc repressor in solution: evidence for a family of beta-sheet DNA-dinging proteins. Nature 346: 586–589, 1990.
- 6 Mondragon, A., Harrison, S.C. The phage 434 Cro/OR1 complex at 2.5 Å resolution. J. Mol. Biol. 219: 321–334, 1991.
- 7 Marmorstein, R., Carey, M., Ptashne, M., Harrison, S.C. DNA recognition by GAL4: structure of a protein-DNA complex. Nature 356: 408–414, 1992.
- 8 Lewis, M., Chang, G., Horton, N.C., et al. Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science 271: 1247–1254, 1996.
- 9 Slijper, M., Bonvin, A.M.J.J., Boelens, R., Kaptein, R. Refind structure of Iacrepressor headpiece (1–56) determined by relaxation matrix calculations from 2D and 3D NOE data: change of tertiary structure upon binding to the lac operator. J. Mol. Biol. 259: 761–773, 1996.
- 10 Beamer, L.J., Pabo, C.O. Refind 1.8 A crystal structure of the l repressor-operator complex. J. Mol. Biol. 227: 177–196, 1992.
- 11 Somers, W.S., Phillips, S.E.V. Crystal structure of the met repressor-operator complex at 2.8A resolution reveals DNA recognition by b-strands. Nature 359: 387–393, 1992.
- 12 Schumacher, M.R., Choi, K.Y., Zalkin, H., Brennan, R.G. Crystal structure of LacI member, PurR, bound to DNA: minor groove binding by alpha helices. Science 266: 763–770, 1994.
- 13 Otwinowski, Z., Schevitz, R.W., Zhang, R.G., et al. Crystal structure of trp repressor/operator complex at atomic resolution (published erratum appears in Nature 335:837, 1988). Nature 335: 321–9, 1988.
- 14 Winkler, F.K., Banner, D.W., Oefner, C., et al. The crystal structure of EcoRV endonuclease and its complexes with cognate and non-cognate DNA segments. EMBO J. 12: 1781–1795, 1993.
- 15 Weston, S.A., Lahm, A., Suck, D. The X-ray structure of the DNase I -d(GGTATACC)2 complex at 2.3 angstrom resolution. J. Mol. Biol. 226: 1237–1256, 1992.
- 16 Knegtel, R.M.A., Antoon, J., Rullmann, C., Boelens, R., Kaptein, R. MONTY: a Monte Carlo approach to protein-DNA recognition. J. Mol. Biol. 235: 318–324, 1994.
- 17 Knegtel, R.M.A., Boelens, R., Kaptein, R. Monte Carlo docking of protein-DNA complexes: incorporation of DNA flexibility and experimental data. Protein Eng. 7: 761–767, 1994.
- 18 Campbell, G., Deng, Y., Glimm, J., et al. Analysis and prediction of hydrogen bonding in protein-DNA complexes using parallel processors. J. Comput. Chem. 17: 1712–1725, 1996.
- 19 Shoichet, B.K., Kuntz, I.D. Predicting the structure of protein complexes: a step in the right direction. Chem. Biol. 3: 151–156, 1996.
- 20 Janin, J. Protein-protein recognition. Prog. Biophys. Mol. Biol. 64: 145–166, 1995.
- 21 Sternberg, M.J.E., Gabb, H.A., Jackson, R.M. Predictive docking of protein-protein and protein-DNA complexes. Curr. Opin. Struct. Biol. 8: 250–256, 1998.
- 22 Gabb, H.A., Jackson, R.M., Sternberg, M.J.E. Modeling protein docking using shape complementarity, electrostatics and biochemical information. J. Mol. Biol. 272: 106–120, 1997.
- 23 Katchalski-Katzir, E., Shariv, I., Eisenstein, M., Friesem, A.A., Aflalo, C., Vakser, I.A. Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc. Natl. Acad. Sci. USA 89: 2195–2199, 1992.
- 24 Jones, D.T., Thornton, J.M. Potential energy functions for threading. Curr. Opin. Struct. Biol. 6: 210–216, 1996.
- 25 Vajda, S., Sippl, M., Nonotny, J. Empirical potentials and functions for protein folding and binding.Curr. Opin. Struct. Biol. 7: 222–228, 1997.
- 26 Bernstein, F.C., Koetzle, T.F., Williams, G., et al. The protein data bank: a computer-based archival file for macromolecular structures. J. Mol. Biol. 112: 535–542, 1977.
- 27 Arnott, S., Chandrasekharan, R., Birdsall, D.L., Leslie, A.G.W., Ratliff, R.L. Left-handed DNA helices. Nature 283: 743–745, 1980.
- 28 Lavery, R. Junctions and bends in nucleic acids: a new theoretical and modeling approach. In: “ Structure and Expression.” Olson, W.K., et al. (eds.). Schenectady, NY: Adenine Press, 1988: 1–211.
- 29 Weiner, S.J., Kollman, P.A., Case, D.A., et al. A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc. 106: 765–784, 1984.
- 30 Hingerty, B.E., Ritchie, R.H., Ferrell, T.L., Turner, J.E. Dielectric effects in bio-polymers—the theory of ionic saturation revisited. Biopolymers 24: 427–439, 1985.
- 31 Berman, H.M., Olson, W.K., Beveridge, D.L., et al. The nucleic acid database: a comprehensive relational database of three-dimensional structures of nucleic acids.Biophys. J. 63: 751–759, 1992.
- 32 Skolnick, J., Jaroszewski, L., Kolinski, A., Godzik, A. Derivation and testing of pair potentials for protein folding. When is the quasichemical approximation correct? Protein Sci. 6: 676–688, 1997.
- 33 Thomas, P.D., Dill, K.A. Statistical potentials extracted from protein structures: how accurate are they? J. Mol. Biol. 257: 457–469, 1996.
- 34 Knight, K.L., Sauer, R.T. Identification of functionally important residues in the DNA binding region of the met repressor.J. Biol. Chem. 264: 13706–13710, 1989.
- 35 Knight, K.L., Bowie, J.U., Vershon, A.K., Kelley, R.D., Sauer, R.T. The Arc and Met repressors. A new class of sequence-specific DNA-binding protein.J. Biol. Chem. 264: 3639–3642, 1989.
- 36 Knight, K.L., Sauer, R.T. DNA binding specificity of the Arc and Met repressors is determined by a short region of N-terminal residues.Proc. Natl. Acad. Sci. USA 86: 797–801, 1989.
- 37 Bowie, J.U., Sauer, R.T. Identifying determinants of folding and activity for a protein of unknown structure.Proc. Natl. Acad. Sci. USA 86: 2152–2156, 1989.
- 38 Anderson, J.E., Ptashne, M., Harrison, S.C. Structure of the repressor-operator complex of bacteriophage 434.Nature 326: 46–852, 1987.
- 39 Baleja, J.D., Marmorstein, R., Harrison, S.C., Wagner, G. Solution structure of the DNA-binding domain of Cd2-GAL4 from S. cerevisiae. Nature 356: 450–453, 1992.
- 40 Carey, M., Kakidani, H., Leatherwood, J., Mostashari, F., Ptashne, M. An amino-terminal fragment of GAL4 binds DNA as a dimer.J. Mol. Biol. 209: 423–432, 1989.
- 41 Chuprina, V.P., Rullmann, J.A., Lamerichs, R.M., van Boom, J.H., Boelens, R., Kaptein, R. Structure of the complex of lac repressor headpiece and an 11 base-pair half-operator determined by nuclear magnetic resonance spectroscopy and restrained molecular dynamics.J. Mol. Biol. 234: 446–462, 1993.
- 42 Markiewicz, P., Kleine, L.G., Cruz, C., Ehret, S., Miller, J.H. Genetic studies of the lac repressor. XIV. Analysis of 4000 altered Escherichia coli lac repressors reveals essential and non-essential residues, as well as “spacers” which do not require a specific sequence.J. Mol. Biol. 240: 421–433, 1994.
- 43 Sartorius, J., Lehming, N., Kisters-Woike, B., von Wilcken-Bergmann, B., Muller-Hill, B. The roles of residues 5 and 9 of the recognition helix of lac repressor in lac operator binding.J. Mol. Biol. 218: 313–321, 1991.
- 44 Nelson, H.C., Hecht, M.H., Sauer, R.T. Mutations defining the operator-binding sites of bacteriophage lambda repressor. Cold Spring Harbor Symp. Quant. Biol. 47: 441–449, 1983.
- 45 Hecht, M.H., Nelson, H.C., Sauer, R.T. Mutations in lambda repressor's amino-terminal domain: implications for protein stability and DNA binding.Proc. Natl. Acad. Sci. USA 80: 2676–2680, 1983.
- 46
Eliason, H.C.,
Hecht, M.H.,
Sauer, R.T.
Mutations defining the operator-binding sites of bacteriophage lambda repressor.Cold Spring Harbor Symp.
Quant. Biol.
47: 441–449,
1983.
10.1101/SQB.1983.047.01.052 Google Scholar
- 47 Eliason, J.L., Weiss, M.A., Ptashne, M. NH2-terminal arm of phage lamda repressor contributes energy and specificity to repressor binding and determines the effects of operator mutations. Proc. Natl. Acad. Sci. USA 82: 2339–2343, 1985.
- 48 Rafferty, J.B., Somers, W.S., Saint-Girons, I., Phillips, S.E.V. Three-dimensional crystal structures of Escherichia coli met repressor with and without corepressor. Nature 341: 705–710, 1989.
- 49 Phillips, S.E., Manfield, I., Parsons, I., et al. Cooperative tandem binding of met repressor of Escherichia coli.Nature 341: 711–715, 1989.
- 50 He, Y.Y., McNally, T., Manfied, I., et al. Probing met repressor-operator recognition in solution. Nature 359: 431–433, 1992.
- 51 Chakerain, A.E., Matthews, K.S. Charaterization of mutations in oligomerization domain of lac repressor protein.J. Biol. Chem. 266: 22206–22214, 1991.
- 52 Chang, W.I., Barrera, P., Matthews, K.S. Identification and characterization of aspartate residues that play key roles in the allosteric regulation of a transcription factor: aspartate 274 is essential for inducer binding in lac repressor.Biochemistry 33: 3607–3616, 1994.
- 53 Kelley, R.L., Yanofsky, C. TRP aporepressor production is controlled by autogenous regulation and inefficient translation.Proc. Natl. Acad. Sci. USA 79: 3120–3124, 1982.
- 54 Lustig, B., Jernigan, R.L. Consistencies of individual DNA base-amino acid interactions in structures and sequences. Nucleic Acids Res. 23: 4707–4711, 1995.