Evidence of new cadmium binding sites in recombinant horse L-chain ferritin by anomalous Fourier difference map calculation
Corresponding Author
Thierry Granier
Unité de Biophysique Structurale, CNRS, Université Bordeaux I, Talence Cedex, France
Unité de Biophysique Structurale, UPRES A 5471 – CNRS, Université Bordeaux I, Avenue des Facultés, Bât. B8, 33405 Talence, Cedex, France===Search for more papers by this authorGérard Comberton
Unité de Biophysique Structurale, CNRS, Université Bordeaux I, Talence Cedex, France
Search for more papers by this authorBernard Gallois
Unité de Biophysique Structurale, CNRS, Université Bordeaux I, Talence Cedex, France
Search for more papers by this authorBéatrice Langlois d'Estaintot
Unité de Biophysique Structurale, CNRS, Université Bordeaux I, Talence Cedex, France
Search for more papers by this authorAlain Dautant
Unité de Biophysique Structurale, CNRS, Université Bordeaux I, Talence Cedex, France
Search for more papers by this authorRobert R. Crichton
Unité de Biochimie, Université Catholique de Louvain, Bât. Lavoisier, Louis Pasteur, Louvain-la-Neuve, Belgium
Search for more papers by this authorGilles Précigoux
Unité de Biophysique Structurale, CNRS, Université Bordeaux I, Talence Cedex, France
Search for more papers by this authorCorresponding Author
Thierry Granier
Unité de Biophysique Structurale, CNRS, Université Bordeaux I, Talence Cedex, France
Unité de Biophysique Structurale, UPRES A 5471 – CNRS, Université Bordeaux I, Avenue des Facultés, Bât. B8, 33405 Talence, Cedex, France===Search for more papers by this authorGérard Comberton
Unité de Biophysique Structurale, CNRS, Université Bordeaux I, Talence Cedex, France
Search for more papers by this authorBernard Gallois
Unité de Biophysique Structurale, CNRS, Université Bordeaux I, Talence Cedex, France
Search for more papers by this authorBéatrice Langlois d'Estaintot
Unité de Biophysique Structurale, CNRS, Université Bordeaux I, Talence Cedex, France
Search for more papers by this authorAlain Dautant
Unité de Biophysique Structurale, CNRS, Université Bordeaux I, Talence Cedex, France
Search for more papers by this authorRobert R. Crichton
Unité de Biochimie, Université Catholique de Louvain, Bât. Lavoisier, Louis Pasteur, Louvain-la-Neuve, Belgium
Search for more papers by this authorGilles Précigoux
Unité de Biophysique Structurale, CNRS, Université Bordeaux I, Talence Cedex, France
Search for more papers by this authorAbstract
We refined the structure of the tetragonal form of recombinant horse L-chain apoferritin to 2.0 Å and we compared it with that of the cubic form previously refined to the same resolution. The major differences between the two structures concern the cadmium ions bound to the residues E130 at the threefold axes of the molecule. Taking advantage of the significant anomalous signal (f′′ = 3.6 e−) of cadmium at 1.375 Å, the wavelength used here, we performed anomalous Fourier difference maps with the refined model phases. These maps reveal the positions of anomalous scatterers at different locations in the structure. Among these, some are found near residues that were known previously to bind metal ions, C48, E57, C126, D127, E130, and H132. But new cadmium binding sites are evidenced near residues E53, E56, E57, E60, and H114, which were suggested to be involved in the iron loading process. The quality of the anomalous Fourier difference map increases significantly with noncrystallographic symmetry map averaging. Such maps reveal density peaks that fit the positions of Met and Cys sulfur atoms, which are weak anomalous scatterers (f′′ = 0.44 e−). Proteins 31:477–485, 1998. © 1998 Wiley-Liss, Inc.
References
- 1 Theil, E.C. Ferritin: Structure, gene regulation and cellular function in animals, plants and microorganisms. Ann. Rev. Biochem. 56: 289–315, 1987.
- 2 Crichton, R.R. Proteins of iron storage and transport. Adv. Protein Chem. 40: 281–361, 1990.
- 3 Harrison, P.M., Andrews, S.C., Artymiuk, P.J., et al. Probing structure–function relations in ferritin and bacterioferritin. Adv. Inorg. Chem. 36: 449–486, 1991.
- 4 Harrison, P.M., Arosio, P. The ferritins: Molecular properties, iron storage function and cellular regulation. Biochem. Biophys. Acta 1275: 161–203, 1996.
- 5 Clegg, G.A., Stansfield, R.F.D., Bourne, P.E., Harrison, P.M. Helix packing and subunit conformation in horse spleen ferritin. Nature (London) 288: 298–300, 1980.
- 6 Lawson, D.M., Artymiuk, P.J., Yewdall, S.J., et al. Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature (London) 349: 541–544, 1991.
- 7 Frolow, F., Kalb, A.J., Yariv, J. Structure of a unique twofold symmetric haem-binding site. Nat. Struct. Biol. 1: 453–460, 1994.
- 8 Hempstead, P.D., Hudson, A.J., Artymiuk, P.J., et al. Direct observation of the iron binding sites in a ferritin. FEBS Letters 350: 258–262, 1994.
- 9 Trikha, J., Theil, E.C., Allewell, N.M. High-resolution crystal structures of amphibian red cell L-ferritin: potential roles for structural plasticity and solvation in function. J. Mol. Biol. 248: 949–967, 1995.
- 10 Ford, G.C., Harrison, P.M., Rice, D.W., et al. Ferritin: Design and formation of an iron storage molecule. Phil. Trans. R. Soc. (London) B304: 551–565, 1984.
- 11 Harrison, P.M., Ford, G.C., Rice, D.W., Smith, J.M.A., Treffry, A., White, J.L. The three-dimensional structure of apoferritin: A framework controlling ferritins iron storage and release. In: ‘Frontiers in Bioinorganic Chemistry.’ A. Xavier (ed.). Weinheim, Germany: VCH Publishers, 1986: 268–277.
- 12 Harrison, P.M., Andrews, S.C., Artymiuk, P.J., et al. Probing structure–function relations in ferritin and bacterioferritin. Adv. Bioinorg. Chem. 36: 449–486, 1991.
- 13 Harrison, P.M., Artymiuk, P.J., Ford, G.C., et al. Ferritin: Function and structural design of an iron storage protein. In: ‘ Biomineralisation: Chemical and Biochemical Perspectives.’ S. Mann, J. Webb, R.J.P. Williams (eds.). Weinheim, Germany: VCH Publishers, 1989: 257–294.
- 14 Macara, I.G., Hoy T.G., Harrison, P.M. The formation of ferritin from apoferritin. Biochem. J. 126: 151–162, 1972.
- 15 Levi, S., Yewdall, S.J., Harrison P.M., et al. Evidence that H- and L-chain have cooperative roles in the iron-uptake mechanism of human ferritin. Biochem. J. 228: 591–596, 1992.
- 16 Wade, V.J., Levi, S., Arosio, P., Treffry, A., Harrison, P.M., Mann, S. Influence of site-directed modifications on the formation of iron cores in ferritin. J. Mol. Biol. 221: 1443–1452, 1991.
- 17 Crichton, R.R., Herbas, A., Chavez-Alba, O., Roland, F. Identification of catalytic residues involved in iron uptake by L-chain ferritins. J. Biol. Inorg. Chem. 6: 567–574, 1997.
- 18 Zipper P., Kriechbaum, M., Durchschlag, H. Small-angle X-ray scattering studies on the polydispersity of iron micelles in ferritin. J. Physique IV Colloque C8 3: 245–248, 1993.
- 19 Fischbach, S.C., Harrison, P.M., Hoy, T.G. The structure relationship between ferritin protein and its mineral core. J. Mol. Biol. 39: 235–238, 1969.
- 20
Michaux, M.A.,
Dautant A.,
Gallois B.,
Granier T.,
Langlois d'Estaintot, B.,
Précigoux, G.
Structural investigation of the complexation properties between horse spleen apoferritin and metalloporphyrins.
Proteins
24: 314–321,
1996.
10.1002/(SICI)1097-0134(199603)24:3<314::AID-PROT4>3.0.CO;2-G CAS PubMed Web of Science® Google Scholar
- 21 Granier, T., Gallois, B., Dautant, A., Langlois d'Estaintot, B., Précigoux, G. Comparison of the structures of the cubic and tetragonal forms of horse spleen apoferritin. Acta Cryst. D53: 580–587, 1997.
- 22 Gallois, B., Langlois d'Estaintot, B., Michaux, M.A., et al. X-ray structure of recombinant horse L-chain apoferritin at 2.0-Å resolution: Implications for stability and function. J. Biol. Inorg. Chem. 2: 360–367, 1997.
- 23 Hempstead, P.D., Yewdall, S.J., Fernie, A.R., et al. Comparison of the three-dimensional structures of recombinant human H and horse L ferritins at high resolution. J. Mol. Biol. 268: 424–448, 1997.
- 24 Otwinowski, Z. DENZO: An Oscillation Data Processing Program for Macromolecular Crystallography. New Haven, CT: Yale Univ. Press, 1993.
- 25 Collaborative Computational Project, Number 4. Acta Cryst. D50: 760–763, 1994.
- 26 Kraut, J. Bijvöet-difference Fourier function. J. Mol. Biol. 35: 511–512, 1968.
- 27 Lehmann, M.S., Pebay-Peyroula, E. Location of the sulfur atoms from the phased anomalous map using native protein data can be very helpful in tracing the peptide chain. Acta Cryst. B48: 115–116, 1992.
- 28 Sheriff, S., Hendrickson, W.A. Location of iron and sulfur atoms in myohemerythrin from anomalous scattering measurements. Acta Cryst. B43: 209–212, 1987.
- 29 Kadziola, A., Larsen, S. Crystal structure of the dihaem cytochrome c4 from Pseudomonas stutzeri determined at 2.2-Å resolution. Structure 2: 203–216, 1997.
- 30 Einspahr, H., Suguna, K., Suddath, F.L., Ellis, G., Helliwell, J. R., Papiz, M. Z. The location of manganese and calcium ion cofactors in pea lectin crystals by use of anomalous dispersion and tuneable synchrotron X-radiation. Acta Cryst. B41: 336–341, 1985.
- 31 Kitagawa, Y., Tanaka, N., Hata, Y., Katsube, Y. Distinction between Cu2+ and Zn2+ ions in a crystal of spinach superoxide dismutase by use of anomalous dispersion and tuneable synchrotron radiation. Acta Cryst. B43: 272–275, 1987.
- 32 Higuchi, Y., Okamoto, T., Fujimoto, K., Misaki, S. Location of active sites of NiFe hydrogenase determined by the combination of multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Acta Cryst D50: 781–785, 1994.
- 33 Granier, T., Gallois, B., Dautant, A., Langlois d'Estaintot, B., Précigoux, G., Acta Cryst. D52: 594–596, 1996.
- 34 Kraulis, J. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24: 946–950, 1991.
- 35 Navaza, J. AMoRe: An automated package for molecular replacement. Acta Cryst. A50: 157–163, 1994.
- 36 Brünger, A.T. X-PLOR, Version 3.1: A System for X-Ray Crystallography and NMR. New Haven: Yale University Press, 1992.
- 37 Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26: 283–291, 1993.
- 38 Jones, T.S., Zou, J.Y., Cowan, S.W., Kjeldgaard, M., Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Cryst. A47: 110–119, 1991.
- 39 Merritt, E. A., Murphy, M. E. Raster 3D, Version 2.0: A program for photorealistic molecular graphics. Acta Cryst. D50: 869–873, 1994.
- 40 Bacon, D.J., Anderson, W.F. A fast algorithm for rendering space filling molecule pictures. J. Mol. Graphics 6: 219–220, 1988.
- 41 Roussel, A., Fontecilla-Camps, J.C., Cambillau, C. Turbo-Frodo: A new program for protein crystallography and modeling. Acta Cryst. A 46: C66–C67, 1990.
- 42 Lee, M., Arosio, P., Cozzi A., Chasteen N.D. Identification of the EPR-active iron nitrosyl complexes in mammalian ferritins. Biochem. 33: 3679–3687, 1994.
- 43 Pead, S., Durrant, E., Webb, B., et al. Metal ion binding to apo, holo, and reconstituted horse spleen ferritin. J. Inorg. Biochem. 59: 15–27, 1995.
- 44 Crichton, R.R., Sorucco, J.A., Roland, F., et al. Remarkable ability of horse spleen apoferritin to dematallate hemin and to metallate protoporphyrin IX as a function of pH. Biochemistry 36: 15042–15054, 1997.