Essential spaces defined by NMR structure ensembles and molecular dynamics simulation show significant overlap
Roger Abseher
European Molecular Biology Laboratory, Heidelberg, Germany
Search for more papers by this authorLennard Horstink
NSR Center, Laboratory of Biophysical Chemistry, University of Nijmegen, Nijmegen, The Netherlands
Search for more papers by this authorCornelis W. Hilbers
NSR Center, Laboratory of Biophysical Chemistry, University of Nijmegen, Nijmegen, The Netherlands
Search for more papers by this authorCorresponding Author
Michael Nilges
European Molecular Biology Laboratory, Heidelberg, Germany
Meyerhofstraße 1, D-69117 Heidelberg, Germany===Search for more papers by this authorRoger Abseher
European Molecular Biology Laboratory, Heidelberg, Germany
Search for more papers by this authorLennard Horstink
NSR Center, Laboratory of Biophysical Chemistry, University of Nijmegen, Nijmegen, The Netherlands
Search for more papers by this authorCornelis W. Hilbers
NSR Center, Laboratory of Biophysical Chemistry, University of Nijmegen, Nijmegen, The Netherlands
Search for more papers by this authorCorresponding Author
Michael Nilges
European Molecular Biology Laboratory, Heidelberg, Germany
Meyerhofstraße 1, D-69117 Heidelberg, Germany===Search for more papers by this authorAbstract
Large concerted motions of proteins which span its “essential space,” are an important component of protein dynamics. We investigate to what extent structure ensembles generated with standard structure calculation techniques such as simulated annealing can capture these motions by comparing them to long-time molecular dynamics (MD) trajectories. The motions are analyzed by principal component analysis and compared using inner products of eigenvectors of the respective covariance matrices. Two very different systems are studied, the β-spectrin PH domain and the single-stranded DNA binding protein (ssDBP) from the filamentous phage Pf3. A comparison of the ensembles from NMR and MD shows significant overlap of the essential spaces, which in the case of ssDBP is extraordinarily high. The influence of variations in the specifications of distance restraints is investigated. We also study the influence of the selection criterion for the final structure ensemble on the definition of mobility. The results suggest a modified criterion that improves conformational sampling in terms of amplitudes of correlated motion. Proteins 31:370–382, 1998. © 1998 Wiley-Liss, Inc.
References
- 1 Pfeiffer, S., Karimi-Nejad, Y., Rüterjans, H. Limits of NMR structure determination using variable target function calculations: Ribonuclease T1, a case study. J. Mol. Biol. 266: 400–423, 1997.
- 2 Koning, T.M.G., Boelens, R., van der Marel, G.A., van Boom, J.H., Kaptein, R. Structure determination of a DNA octamer in solution by NMR spectroscopy. Effect of fast local motions. Biochemistry 30: 3787–3797, 1991.
- 3
Berndt, K.D.,
Güntert, P.,
Wüthrich, K.
Conformational sampling by NMR solution structures calculated with the program DIANA evaluated by comparison with long-time molecular dynamics calculations in explicit water.
Proteins
24: 304–313,
1996.
10.1002/(SICI)1097-0134(199603)24:3<304::AID-PROT3>3.0.CO;2-G CAS PubMed Web of Science® Google Scholar
- 4 Berendsen, H.J.C. Bio-molecular dynamics comes of age. Science 271: 954–955, 1996.
- 5 Amadei, A., Linssen, A.B.M., Berendsen, H.J.C. Essential dynamics of proteins. Proteins 17: 412–425, 1993.
- 6 Ichiye, T., Karplus, M. Collective motions in proteins: A covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. Proteins 11: 205–217, 1991.
- 7 van der Spoel, D., de Groot, B., Hayward, S., Berendsen, H.J.C., Vogel, H.J. Bending of the calmodulin central helix: A theoretical study. Protein Sci. 5: 2044–2053, 1996.
- 8 van Aalten, D.M.F., Amadei, A., Bywater, R., Findlay, J.B.C., Berendsen, H.J.C., Sander, C., Stouten, P.F.W. A comparison of structural and dynamic properties of different simulation methods applied to SH3. Biophys. J. 70: 684–692, 1996.
- 9 van Aalten, D.M.F., Jones, P.C., de Sousa, M., Findlay, J.B.C. Enginneering protein mechanics: Inhibition of concerted motions of the cellular retinol binding protein by site-directed mutagenesis. Protein Eng. 10: 31–37, 1997.
- 10 Macias, M.J., Musacchio, A., Ponstingl, H., Nilges, M., Saraste, M., Oschkinat, H. Structure of the pleckstrin homology domain from β-spectrin. Nature 369: 675–677, 1994.
- 11 Nilges, M., Macias, M., O'Donoghue, S.I., Oschkinat, H. Automated NOESY interpretation with ambiguous distance restraints: The refined NMR solution structure of the pleckstrin homology domain from β-spectrin. J. Mol. Biol. 269: 408–422, 1997.
- 12 Folmer, R.H.A., Nilges, M., Konings, R.N.H., Hilbers, C.W. Solution structure of the single-stranded DNA binding protein of the filamentous Pseudomonas phage Pf3: Similarity to other proteins binding to single-stranded nucleic acids. EMBO J. 14: 4132–4142, 1995.
- 13 Scheek, R.M., van Nuland, N.A.J., de Groot, B.L., Amadei, A. Structure from NMR and molecular dynamics: Distance restraining inhibits motion in the essential subspace. J. Biomol. NMR 5: 106–111, 1995.
- 14 Feher, V.A., Baldwin, E.P., Dahlquist, F.W. Access of ligands to cavities within the core of a protein is rapid. Nat. Struct. Biol. 3: 516–521, 1996.
- 15 Hyvönen, M., Macias, M.J., Nilges, M., Oschkinat, H., Saraste, M., Wilmanns, M. Structure of the binding site for inositol phosphates in a PH domain. EMBO J. 14: 4676–4685, 1995.
- 16 Folmer, R.H.A., Nilges, M., Folkers, P.J.M., Konings, R.N.H., Hilbers, C.W. A model of the complex between single-stranded DNA and the single-stranded DNA binding protein encoded by gene V of filamentous bacteriophage M13. J. Mol. Biol. 240: 341–357, 1994.
- 17 Folmer, R.H.A., Nilges, M., Papavoine, C.H.M., Harmsen, B.J.M., Konings, R.N.H., Hilbers, C.W. Refined structure, DNA binding studies, and dynamics of the bacteriophage Pf3 encoded single-stranded DNA binding protein. Biochemistry 36: 9120–9135, 1997.
- 18 Nilges, M., Gronenborn, A.M., Brünger, A.T., Clore, G.M. Determination of three-dimensional structures of proteins by simulated annealing with interproton distance restraints: Application to crambin, potato carboxypeptidase inhibitor and barley serine protease inhibitor 2. Protein Eng. 2: 27–38, 1988.
- 19 Nilges, M., Kuszewski, J., Brünger, A.T. Sampling properties of simulated annealing and distance geometry. In: J.C. Hoch, F.M. Poulsen, C. Redfield (eds). “ Computational Aspects of the Study of Biological Macromolecules by Nuclear Magnetic Resonance Spectroscopy.” New York: Plenum Press, 1991: 451–455.
- 20 Brünger, A. “ X-PLOR. A System for X-ray Crystallography and NMR.” New Haven: Yale University Press, 1992.
- 21 Nilges, M. Calculation of protein structures with ambiguous distance restraints. Automated assignment of ambiguous NOE crosspeaks and disulphide connectivities. J. Mol. Biol. 245: 645–660, 1995.
- 22 Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., Karplus, M. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comp. Chem. 4: 187–217, 1983.
- 23 van Gunsteren, W.F., Berendsen, H.J.C. Algorithms for macromolecular dynamics and constraint dynamics. Mol. Phys. 34: 1311–1327, 1977.
- 24 Loncharich, R.J., Brooks, B.R. The effects of truncating long-range forces on protein dynamics. Proteins 6: 32–45, 1989.
- 25 Darden, T., York, D., Pedersen, L. Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 98: 10089–10092, 1993.
- 26 Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.S., Cheatham, T.E. III, Ferguson, D.M., Seibel, G.L., Chandra Singh, U., Weiner, P.K., Kollman, P.A. AMBER 4.1. San Francisco: University of California, 1995.
- 27 Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Jr., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117: 5179–5197, 1995.
- 28 Madura, J.D., Briggs, J.M., Wade, R.C., Davis, M.E., Luty, B.A., Ilin, A., Antosiewicz, J., Gilson, M.K., Bagheri, B., Scott, L.R., McCammon, J.A. Electrostatics and diffusion in solution: Simulations with the University of Houston Brownian dynamics program. Comp. Phys. Comm. 91: 57–85, 1995.
- 29 Berendsen, H.J.C., Postma, J.P.M., DiNola, A., Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81: 3684–3690, 1984.
- 30 Vriend, G. WHATIF: A molecular modelling and drug design program. J. Mol. Graph. 8: 52–56, 1990.
- 31 de Groot, B.L., van Aalten, D.M.F., Amadei, A., Berendsen, H.J.C. The consistency of large concerted motions in proteins in molecular dynamics simulations. Biophys. J. 71: 1707–1713, 1996.
- 32 van Aalten, D.M.F., de Groot, B.L., Findlay, J.B.C., Berendsen, H.J.C., Amadei, A. A comparison of techniques for calculating protein essential dynamics. J. Comp. Chem. 18: 169–181, 1997.
- 33 Kraulis, P.J. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24: 946–950, 1991.
- 34 Widmer, H., Widmer, A., Braun, W. Extensive distance geometry calculations with different NOE calibrations: New criteria for structure selection applied to Sandostatin and BPTI. J. Biomol. NMR 3: 307–324, 1993.
- 35 Kabsch, W., Sander, C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22: 2577–2637, 1983.
- 36 Ramachandran, G.N., Ramakrishnan, C., Sasisekharan, V. Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 7: 95–99, 1963.
- 37 Nilges, M., Clore, G.M., Gronenborn, A.M. Determination of three-dimensional structures of proteins by hybrid distance geometry-dynamical simulated annealing calculations. FEBS Lett. 229: 317–324, 1988.
- 38 Nilges, M. A calculation strategy for the structure determination of symmetric dimers by 1H NMR. Proteins 17: 297–309, 1993.
- 39 Bonvin, A.M.J.J., Brünger, A.T. Conformational variability of solution nuclear magnetic resonance structures. J. Mol. Biol. 250: 80–93, 1995.
- 40 Torda, A.E., Scheek, R.M., van Gunsteren, W.F. Time-dependent distance restraints in molecular dynamics simulation. Chem. Phys. Lett. 157: 289–294, 1989.
- 41 Torda, A.E., Scheek, R.M., van Gunsteren, W.F. Time-averaged nuclear Overhauser effect distance restraints applied to tendamistat. J. Mol. Biol. 214: 223–235, 1990.
- 42 Chillemi, G., Falconi, M., Amadei, A., Zimatore, G., Desideri, A., Di Nola, A. The essential dynamics of Cu, Zn superoxide dismutase: Suggestion of intersubunit communication. Biophys. J. 73: 1007–1018, 1997.