Photodegradation of Sulfadiazine in Aqueous Solution and the Affecting Factors
Abstract
Knowledge about photochemical behavior of sulfonamides under UV light is limited. In this study, photodegradation of sulfadiazine in water by ultraviolet (UV) light was studied using a 300 W, 365 nm UV lamp. The degradation process followed well the first-order kinetics, with a half-life of 9.76 min in water with air saturation. The photodegradation was slower at acidic pH 4.52 than at pH 6.98 and pH 8.90. Addition of H2O2 and nitrate enhanced the photodegradation rate, while addition of ethanol, nitrite, sulfate, and bicarbonate depressed the reaction rate. This study suggested that sulfadiazine photodegradation under UV light is generally favored by the attack of hydroxyl radicals.
1. Introduction
Antibiotics are a sort of organic compounds synthesized by industry or generated by organisms including microorganisms, plants, and animals, in their life activities, which could selectively depress or influence functions of other organisms at low or even micro level concentrations. In the last six decades large quantities of antibiotics were employed worldwide for prevention or treatment of diseases of both humans and livestock, as well as for some nontherapeutic purposes such as promoting the growth of cattle [1]. Antibiotics can enter the environment through many ways like irrigation using sewage water, disposal of unused drugs, land application of biosolids, and animal manure [1] and have been found ubiquitously in different environmental media like water [2], sediments [3], soils [4], excrements of organisms [4], and so forth. The antibiotics in the environment could lead to various negative effects such as microbial resistances, which have been regarded as a global problem, changes of indigenous microbial composition [5], disturbances of plant growth [6], acute or chronic toxicities on aquatic species [7], and the potential adverse effects on humans through food chains [8]. Therefore, study on the fate of antibiotics in the environment has been receiving worldwide concerns [9, 10].
Sulfadiazine is one of the commonly used sulfonamide antibiotics. Sulfonamides are frequently employed as medicines to treat both human and livestock diseases. For example, the annual usages as veterinary medicine were 78 t in the European Union (1999) and 94 t in England (2000) [9]. Reported half-lives of such chemicals were <8 d to 30 d in manure [11] and >21 d to 100 d in water or sediments [10]. The environmental behaviors like sorption and biodegradation were already documented for some of these chemicals, but the removal efficiency of these chemicals from aqueous phase seemed to be quite limited or even ignorable [12–14]. Photodegradation is one important degradation process in natural environment. Photodegradation, both direct (reaction between substrates and photons) and indirect (reaction between substrates and reactive species formed by photons), of sulfadiazine under natural or simulated sunlight was investigated by previous studies [15, 16]. The expected environmental half-lives were 4.7–65.9 days in Kolkata, India, and Berlin, Germany, in different seasons [15] and 28–5200 h through various degradation pathways in near surface waters in Lake Josephine [16]. But in other ways, the photodegradation behavior under pure UV light has not yet been reported to our knowledge. UV occupies about 7 percent in the sunlight irradiation energy, and it is also used artificially to remove the microorganism toxicity of antibiotics, as a pretreatment method to make the activated sludge system in the following step run more efficiently. Therefore, results from UV photodegradation study not only will be useful to learn the behavior of photolysis by ultraviolet in water environment but also will be helpful to the design of the artificial wastewater treatment system through UV photolysis of such chemicals. This work is designed to study kinetics and possible mechanisms of sulfadiazine photodecomposition under pure UV, by investigating the influences of some common affecting factors.
2. Experimental
2.1. General
Sulfadiazine (99.6% purity) was purchased from Sigma, USA. Other chemicals were at least of analytical grade and used without further purification.
The photoreactor was designed according to Jiang et al. [17]. The ultraviolet lamp (365 nm; 300 W) used in our experiments was purchased from the Xujiang Electromechanical Plant, Nanjing, China.
The HPLC system used in this study was an Agilent 1200 series HPLC system, which consisted of a G1322 A degasser, a G1311 A Quat Pump, a G1329 A thermostatted autosampler, and a G1316A column oven. The column for separation was Agilent Eclipse XDB-C18 (5 μm; 4.6 × 250 mm).
2.2. Photodegradation Procedures and HPLC Analysis
About 11 mg·L−1 sulfadiazine solution was prepared by dissolving 5.5 mg sulfadiazine into 500 mL ultrapure water and was transferred into the glass reactor. To investigate the effects of affecting factors, additives were introduced, respectively, at the following concentrations: ethanol of 1% in volume of the solution, 43.8 mg·L−1 H2O2, sodium salts with 0.05 mM , 0.5 mM , 1 mM and 5 mM , and 0.5, 2.4, and 11.9 mM . The pH effect was studied by adding appropriate HCl or NaOH. The first sample (defined as time 0) was taken immediately after the addition of one of these chemicals to the reactor. The ultraviolet lamp in the central hollow was then turned on, and photodegradation process was started. All experimental processes were accompanied by vigorous stirring and air-pumping into the system at 1 mL·s−1, except that, in the case of nitrogen effect, N2 instead of air was pumped in. Sampling was performed at different time intervals. The samples were frozen at −20°C until analysis. The mobile phase used for HPLC analysis of sulfadiazine was methanol : water = 30 : 70 (v : v) isocratically running at a flow rate of 1 mL·min−1. Calibration curves were used to read the values of sulfadiazine for all samples, and the quality control of HPLC was carried out by injecting and analyzing the lowest and highest concentrations of standard sulfadiazine solutions at the beginnings and ends of all analytical circles. Control experiment without any irradiation was carried out under the same conditions. All experiments were performed at least in duplicate.
3. Results and Discussion
3.1. Effect of Ethanol
Control experiment under dark conditions showed ignorable disappearance of sulfadiazine in the solution (data not shown), indicating that the compound was stable in the dark; that is, hydrolysis of sulfadiazine was not significant, which is in agreement with the observations of Boreen et al. [18], who found that most sulfa drugs were stable in solutions of various pH values.
Under radiation, sulfadiazine in pure water was degraded by 99 percent in one hour with a half-life of 9.76 min (Figure 1). The first-order kinetic model (Ct/C0 = e−kt) was used to describe the degradation process under various conditions, resulting in a relationship of the ratio of remaining sulfadiazine (y) versus time (x) as y = e−0.071x (R2 = 0.98, Figure 1 and Table 1). Sulfadiazine in natural water might be degraded by irradiation through both direct and indirect ways. The UV-Vis absorption spectrum of sulfadiazine has a tailing band in the region of wavelength over 290 nm [15], which suggests that the way of direct photolysis for this compound cannot be preexcluded [15]. When ethanol, a hydroxyl scavenger, was added to the solution, k value decreased to 0.009 (R2 = 1.00). This indicates that the dominant mechanism for sulfadiazine degradation might be the attack of hydroxyl radicals and therefore that degradation of sulfadiazine through the direct absorption of light was limited to a very small extent. The photolysis of water by UV irradiation may involve 25–30 reactions and 14 different species including H∙, , and ∙OH [19]. Under the radiation of a xenon lamp, sulfadiazine in pure water had a rather longer half-life (32 h) with k value of 0.0094 [15].
Condition | k | R2 |
---|---|---|
Without addition (only sulfadiazine in H2O) | 0.071 | 0.98 |
Plus 1% (V : V) ethanol | 0.009 | 1.00 |
With nitrogen instead of air | 0.045 | 1.00 |
Plus 43.8 mg⋅L−1 H2O2 | 0.13 | 1.00 |
Plus 0.05 mM | 0.034 | 0.84 |
Plus 0.5 mM | 0.1 | 0.95 |
Plus 1 mM | 0.054 | 0.95 |
Plus 5 mM | 0.057 | 0.96 |
Plus 0.5 mM | 0.017 | 0.89 |
Plus 2.4 mM | 0.042 | 0.93 |
Plus 11.9 mM | 0.046 | 0.96 |
At pH 4.52 | 0.046 | 0.91 |
At pH 6.98 | 0.065 | 0.98 |
At pH 8.20 | 0.057 | 0.94 |

3.2. Effect of N2/H2O2
When N2 instead of air was pumped into the solution, degradation of sulfadiazine was obviously slowed down and the kinetic equation varied to Ct/C0 = e−0.045t (R2 = 1.00, Table 1). The important role of oxygen was also observed in TiO2 photocatalytic degradation of 2,4-dichlorophenol and cyclohexane [20, 21]. The involvement of air might also be one reason for the much higher rate of sulfadiazine photodegradation observed by us than that by Sukul et al. [15], supporting again that this reaction was favored mainly by ∙OH in the system.
3.3. Effect of Nitrate and Nitrite
3.4. Effects of Sulfate
3.5. Effects of Bicarbonate
All rate constants in the presence of bicarbonate were lower than those in the presence of sulfate, suggesting that bicarbonate has a higher quenching effect on hydroxyl radical than sulfate. However, the least bicarbonate addition in this study resulted in the lowest rate constant. Although most studies demonstrated that the rate constant decreased with increasing concentration of bicarbonate [36, 37], as expected from the scavenging mechanism, some different phenomena were also reported in some studies. Zhang et al. [38] found that the photodegradation rate of reactive brilliant orange K-R catalyzed by P25 TiO2 decreased significantly when the conductivity increased from 0.5 to 3.1 or 12.3 mS·cm−1 owing to the existence of bicarbonate but did not further decrease significantly when the conductivity arrived at 24.1 mS·cm−1 or at 47.2 mS·cm−1. The results might imply that increasing bicarbonate amounts generated more carbonate radicals which compensate the loss of the hydroxyl radicals, since both sulfur atom and benzene ring exist commonly in the molecular structure of sulfadiazine and reactive brilliant orange K-R [38]. This might explain the less extent inhibition of higher levels of bicarbonate observed in our study.
3.6. Effects of pH Value
As shown in Table 1, the initial pH 4.52 resulted in lowest k of 0.046 (R2 = 0.91), while at pH 6.98 and pH 8.20 k was 0.065 (R2 = 0.98) and 0.057 (R2 = 0.94), respectively. Sulfadiazine can be dissociated to both cationic and anionic forms with pKa values of 1.57 and 6.50, respectively [39]. In our study, sulfadiazine existed mostly as neutral and anionic forms at pH 4.52 and pH 8.20, respectively, and as a mixture of both species but dominated by the anionic form, at pH 6.98. Therefore, different reaction rates of ∙OH with various existence form of sulfadiazine may be one explanation for the lower rate constant under pH 4.52. However, the discrepancy was not significant, suggesting that the solution acidity played a less important role in this photodegradation.
4. Conclusions
Sulfadiazine was photolyzed at a high rate by irradiation of UV 365 nm (300 W), with a half-life of 9.76 min as air was introduced in. The existence of nitrogen, , , and inhibited this reaction, while H2O2, enhanced the reaction rate. The neutral pH value was most beneficial for this photolytic reaction. These phenomena suggest that this reaction is possibly mediated mainly by hydroxyl radicals. Results of this study will also provide valuable reference for the design and running of the system of pretreatment by UV photodegradation of such chemicals.
Competing Interests
The authors declare that there are no competing interests regarding the publication of this paper.