Classification of Ordered Type Soliton Metric Lie Algebras by a Computational Approach
Abstract
We classify some soliton nilpotent Lie algebras and possible candidates in dimensions 8 and 9 up toisomorphy.We focus on 1 < 2 < ⋯<n type of derivations, where n is the dimension of the Lie algebras. We present algorithms to generate possible algebraic structures.
1. Introduction
In this paper, we compute and classify n-dimensional (n = 8, 9) nilsoliton metric Lie algebras with eigenvalue type 1 < 2 < ⋯<n, which will be called “ordered type of Lie algebra” throughout this paper. We use MATLAB to achieve this goal. In the literature, six-dimensional nilpotent Lie algebras have been classified by algorithmic approaches [1]. In dimension seven and lower, nilsoliton metric Lie algebras have been classified [2–9]. Summary and details of some other classifications can be found in [10]. In our paper, we focus on dimensions eight and nine. We note that we have found that our algorithm gives consistent results with the literature in lower dimensions. We use a computational procedure that is similar to the one that we have used in our previous paper [4].
In our previous paper, we classified all the soliton and nonsoliton metric Lie algebras where the corresponding Gram matrix is invertible and of dimensions 7 and 8 up to isomorphism. If corresponding Gram matrix is invertible, then the soliton metric condition Uv = [1] has a unique solution. So in this case, it is easy to check if the algebra is soliton or not. But in noninvertible case, there is more than one solution. Therefore it is hard to guess if one of the solutions provides the soliton condition without solving Jacobi identity which is nonlinear. On the other hand, it may be easy if we can eliminate some algebras which admit a derivation D that does not have ordered eigenvalues without solving the following soliton metric condition Uv = [1]. For this, we prove that if the nilpotent Lie algebra admits a soliton metric with corresponding Gram matrix of η being noninvertible, all the solutions of Uv = [1] have a unique derivation. This theorem allows us to omit several cases that come from nonordered eigenvalues without considering Jacobi identity.
This paper is organized as follows. In Section 2, we provide some preliminaries that we use for our classifications. In Section 3, we give specific Jacobi identity conditions for Lie algebras up to dimension nine. This allows us to decide whether the Lie algebra has a soliton metric or not. In Section 4, we give details of our classifications with specific examples and provide algorithmic procedures. Section 5 contains our concluding remarks.
2. Preliminaries
Now we define some combinatorial objects associated to a set of integer triples Λ ⊂ {(i, j, k)∣1 ≤ i, j, k ≤ n}. For 1 ≤ i, j, k ≤ n, define 1 × n row vector to be , where is the standard orthonormal basis for ℝn. We call the vectors in root vectors for Λ. Let y1, y2, …, ym (where m = |Λ|) be an enumeration of the root vectors in dictionary order. We define root matrix YΛ for Λ to be the m × n matrix whose rows are the root vectors y1, y2, …, ym. The Gram matrix UΛ for Λ is the m × m matrix defined by ; the (i, j) entry of UΛ is the inner product of the ith and jth root vectors. It is easy to see that U is a symmetric matrix. It has the same rank as the root matrix; that is, Rank(UΛ) = Rank(YΛ). Diagonal elements of U are all three, and the off-diagonal entries of U are in the set {−2, −1,0, 1,2}. For more information, see [11]. Let D have distinct real positive eigenvalues, and let Λ index the structure constants for η with respect to eigenvector basis B. If (i1, j1, k1) ∈ Λ and (i2, j2, k2) ∈ Λ, then . Thus U does not contain two as an entry [4].
Lemma 1. Let (η, Q) be an n-dimensional inner product space, and let μ be an element of Λ2η* ⊗ η. Suppose that ημ admits a symmetric derivation D having n distinct eigenvalues 0 < λ1 < λ2 < ⋯<λn with corresponding orthonormal eigenvectors X1, X2, …, Xn. Let denote the structure constants for η with respect to the ordered basis . Let 1 ≤ i < j ≤ n. Then
- (1)
if there is some k ∈ {1,2, …, n} such that λk = λi + λj, then [Xi, Xj] is a scalar multiple of Xk; otherwise Xi and Xj commute;
- (2)
if and only if Xk ∈ [ημ, ημ].
Theorem 2 (see [11].)Let η be a vector space, and let be a basis for η. Suppose that a set of nonzero structure constants relative to B, indexed by Λ, defines a skew symmetric product on η. Assume that if (i, j, k) ∈ Λ, then i < j < k. Then the algebra is a Lie algebra if and only if whenever there exists m so that the inner product of root vectors for triples (i, j, l) and (l, k, m) or (k, l, m) in Λ, the equation
Theorem 3 (see [11].)Let (ημ, Q) be a metric algebra and a Ricci eigenvector basis for ημ. Let Y be the root matrix for ημ. Then the eigenvalues of the nil-Ricci endomorphism are given by
Theorem 4 (see [4], [11].)Let (η, Q) be a nonabelian metric algebra with Ricci eigenvector basis B. The following are equivalent.
- (1)
(ημ, Q) satisfies the nilsoliton condition with nilsoliton constant β.
- (2)
The eigenvalue vector VD for D = Ric − β Id with respect to B lies in the kernel of the root matrix for (ημ, Q) with respect to B.
- (3)
For noncommuting eigenvectors X and Y for the nil-Ricci endomorphism with eigenvalues κX and κY, the bracket [X, Y] is an eigenvector for the nil-Ricci endomorphism with eigenvalue κX + κY − β.
- (4)
for all (i, j, k) in Λ(ημ, B).
Theorem 5 (see [4].)Let η be an n-dimensional nonabelian nilpotent Lie algebra which admits a derivation D having distinct real positive eigenvalues. Let B be a basis consisting of eigenvectors for the derivation D, and let Λ index the nonzero structure constants with respect to B. Let U be the m × m Gram matrix. If U is invertible, then the following hold:
- (i)
|Λ| ≤ n − 1;
- (ii)
if (i1, j1, k1) ∈ Λ and (i2, j2, k2) ∈ Λ, then .
3. Theory
This section provides some theorems and their proofs that allow us to consider fewer cases for our algoritm. The following theorem gives a pruning method while Gram matrix is noninvertible.
Theorem 6. Let η be an n-dimensional nilsoliton metric Lie algebra, and U the corresponding Gram matrix which is noninvertible. Then Ker (YT) = Ker (U). Furthermore all of the solutions of Uv = [1] correspond to a unique derivation.
Proof . Since rank of a matrix is equal to the rank of its Gram matrix, then p = Rank(Y) = Rank(U). Let U : ℝp → ℝp and YT : ℝp → ℝn denote the linear functions (with respect to the standard basis) that correspond to the Gram matrix U and the transpose of the root matrix Y, respectively. Since Rank(U) = Rank(Y) = Rank(YT) and by rank-nullity theorem, we have
Lemma 7. If nilsoliton metric Lie algebra η has ordered type of derivations 1 < 2 < ⋯<n, then its index set Λ consists of triples (i, j, i + j).
Proof. If VD = (λ1, λ2, …, λn) T is the eigenvalue vector of D with eigenvector basis for η, then by Theorem 4, VD lies in the kernel of Y. Thus for each element (i, j, k) ∈ Λ, λi + λj − λk = 0; that is, λi + λj = λk. By Lemma 1, [Xi, Xj] = λXk for some λ ∈ ℝ. Since λi = i for all i ∈ {1,2, …, n}, k = i + j and [Xi, Xj] = λXi+j. Hence, the index set for ordered type of derivations is of form (i, j, i + j).
The next corollary describes the index triples (i, j, k) and the Jacobi identity for algebras with ordered type of derivations.
Corollary 8. The algebra η is a Lie algebra if and only if for all pairs of form (i, j, l) and (l, k, m) or (i, j, l) and (k, l, m) in ΛB with k ∉ {i, j} and for all m ≥ max {i + 3, j + 2,5}, the following equation holds:
If in addition λi = i for i = 1, …, n, then the algebra η is a Lie algebra if and only if for all pairs of form (i, j, i + j) and (i + j, k, i + j + k) or (i, j, i + j) and (k, i + j, i + j + k) in ΛB with k ∉ {i, j, i + j} and for all m = i + j + k ≥ max {2i + 2, j + 2,6}, the equation
Proof. By Theorem 7 of [11], the algebra ημ defined by μ is a Lie algebra if and only if whenever there exists m so that for triples (i, j, l) and (l, k, m) or (k, l, m) in ΛB, (2)
Suppose that for (i, j, l) ∈ ΛB and (l, k, m) or (k, l, m) in ΛB. By definition of ΛB, we have i < j. By Lemma 1, j < l, l < m, and k < m. Since i < j < l < m, we know that m ≥ i + 3. Similarly, j < l < m implies that j + 2 ≤ m. If i = k or j = k, then , and so i, j, and k must be distinct. Since i, j, k, and l are all distinct and less than m, we know that m ≥ 5. Thus an expression of form
Suppose that λi = i, and (i, j, l) and (l, k, m) are in the index set. Then from Lemma 7, l = i + j which implies that m = i + j + k. We know that 1 ≤ i < j < l < m. Then, since j ≥ i + 1 and k ≥ 1, we have 2i + 2 ≤ i + j + k = m. Since 2i + 2 ≤ m, m = 5 implies that i = 1. So there is no possible (i, j, k), where all i, j, k are distinct and i < j < m with i + j + k. Thus if m = 5, then . Therefore, if λi = i, an expression of form
By Lemma 1, X1 and X2 are in [ημ, ημ] ⊥, and so which implies that s ≥ 3 and r ≠ s, t ≠ s. Therefore all expressions in (10) with s < 3 or s ∈ {i, j, k} are identically zero and may be omitted from the summation for any m.
The next corollary describes some equations in the structure constants of a nilpotent metric Lie algebra that are equivalent to the Jacobi identity. Each of the terms in the following equations corresponds to each of −1 entry in the Gram matrix U. Therefore, the following equations are useful for noninvertible case since there is no −1 entry in the Gram matrix for the invertible case.
Corollary 9. Let (ημ, 〈⋯, ⋯〉) be an n-dimensional inner product space where n ≤ 9, and, μ be an element of Λ2η* ⊗ η. Suppose that the algebra ημ defined by μ admits a symmetric derivation D having n eigenvalues 1 < 2 < ⋯<n with corresponding orthonormal eigenvectors X1, X2, …, Xn. denote the structure constants for η with respect to the ordered basis , and let λB index the nonzero structure constants as defined in (2). The algebra ημ is a Lie algebra if and only if
Proof. Following Lemma 7, the index set consists of elements of form (i, j, i + j). Therefore the number s equals to i + j in the expression . From the previous corollary,
If m = 6, 2i + 2 ≤ m implies that i ≤ 2; that is, possible numbers for “i” are 1 and 2. Possible and not possible (i, j, k) triples, which are being used in
In the case (a), i + j = k, and then it is not a possible triple. In the case (b), i < j, i, j, k are distinct, and k ≠ i + j. So it is a possible triple. In the case (c), i = k, and so it is not a possible triple. In the case (d), i < j, and all i, j, k are distinct as i + j ≠ k. Thus it is a possible triple. In the case (e), k is not a natural number, and so it is not a possible triple. Therefore only possible (i, j, k) triples are (1,3, 2) and (2,3, 1). Triples (1,3, 2) and (2,3, 1) correspond to nonzero products and , respectively. Using the skew-symmetry, (2) turns into the following equation:
Case | i | j | k | PT |
---|---|---|---|---|
(a) | 1 | 2 | 3 | — |
(b) | 1 | 3 | 2 | ✓ |
(c) | 1 | 4 | 1 | — |
(d) | 2 | 3 | 1 | ✓ |
(e) | 2 | 4 | 0 | — |
As an illustration, we show how to use the results of this section in the following example.
Example 10. Let η be an 8-dimensional algebra with nonzero structure constants relative to eigenvector basis B indexed by
Computation shows that the structure vector [α2] is a solution to Uv = [1] 8 × 1 if and only if it is of form
Equation (13) from the previous corollary leads
4. Algorithm and Classifications
In this section, we describe our computational procedure and give the results in dimensions 8 and 9.
4.1. Algorithm
Now we describe the algorithm. The following algorithm can be used for both invertible and noninvertible cases.
Input. The input is the integer n which represents the dimension.
Output. The output is two 0 − 1 matrices Wsoliton and Uninv listing characteristic vectors for index sets Λ of Θn. The matrix Wsoliton has as its rows all possible characteristic vectors for canonical index sets Λ for nilpotent Lie algebras of dimension n with ordered type nonsingular nilsoliton derivation whose canonical Gram matrix U is invertible. The matrix Uninv has as its rows all possible characteristic vectors for canonical index sets Λ for nilpotent Lie algebras of dimension n with ordered type nonsingular nilsoliton derivation whose canonical Gram matrix U is noninvertible. In the dimensions 8 and 9, there is no example for invertible case. Thus Wsoliton is an empty matrix. Therefore we give the algorithm for the noninvertible case.
- (i)
Enter the dimension n.
- (ii)
Compute the matrix Zn.
- (iii)
Compute the matrix W.
- (iv)
Delete all rows of W containing abelian factor which is the row that represents direct sums of Lie algebras.
- (v)
Remove all rows of W such that the canonical Gram matrix U associated to the index set Λ is invertible.
- (vi)
Define eigenvalue vector vD = (1,2,3,…,n)T in dimension n.
- (vii)
Remove all rows of W if v(i) = v0(i) ≤ 0 where v is the general solution of UΛv = [1] m×1 and v0 is the vector that we have defined in the proof of Theorem 6.
- (viii)
Remove all the rows of W such that the corresponding algebra does not have a derivation of eigenvalue type 1 < 2 < ⋯<n.
- (ix)
Remove all the rows of W such that the corresponding algebra does not satisfy Jacobi identity condition, which is obtained in Corollary 9.
After this process, we solve nonlinear systems which follow from Jacobi identity. In order to see how the algorithm works, we give the following example for n = 6.
Example 11. Let n = 6. Then
4.2. Classifications
Lie bracket | Index | Nullity | |
---|---|---|---|
1 | , +, | 6 | 3 |
2 | 6 | 4 | |
3 | 6 | 3 |
Lie bracket | Index | Nullity | |
---|---|---|---|
1 | ) | 4 | 1 |
2 | () | 5 | 2 |
3 | (, ) | 5 | 2 |
4.2.1. Candidates of Nilsoliton Metrics
Table 5 illustrates how many possible candidates of Lie algebras appear in dimension 9 up to the nullity of its Gram matrix. The algebras illustrated in Table 4 are possible candidates of nilsoliton metric Lie algebras with ordered type of derivations in dimension 8. Here, as an example we give potential Lie algebra structures when the nullity of their corresponding Gram matrices are 3, 6 and 8 in Tables 6, 7, and 8 respectively for dimension nine.
Lie bracket | Index | Nullity | |
---|---|---|---|
1 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.34, 1.17 + 1.26 + 1.35) | 6 | 4 |
2 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25, 1.17 + 1.26 + 1.35) | 6 | 4 |
3 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25 + 1.34, 1.17 + 1.26) | 6 | 4 |
4 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25 + 1.34, 1.17 + 1.26 + 1.35) | 6 | 5 |
Nullity | Number of Lie algebras |
---|---|
3 | 98 |
4 | 81 |
5 | 45 |
6 | 22 |
7 | 7 |
8 | 1 |
Lie bracket | Index | Nullity | |
---|---|---|---|
1 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.27 + 1.36 + 1.45) | 6 | 6 |
2 | (0, 0, 1.12, 1.13, 1.14, 1.15, 1.16 + 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.27 + 1.36 + 1.45) | 7 | 6 |
3 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.34, 1.17 + 1.35, 1.18 + 1.27 + 1.36 + 1.45) | 7 | 6 |
4 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.36 + 1.45) | 7 | 6 |
5 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.34, 1.17 + 1.26, 1.18 + 1.27 + 1.36 + 1.45) | 7 | 6 |
6 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.27 + 1.45) | 7 | 6 |
7 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.27 + 1.36) | 7 | 6 |
8 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25 + 1.34, 1.17 + 1.35, 1.18 + 1.36 + 1.45) | 7 | 6 |
9 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25, 1.17 + 1.35, 1.18 + 1.27 + 1.36 + 1.45) | 7 | 6 |
10 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25 + 1.34, 1.17, 1.18 + 1.27 + 1.36 + 1.45) | 7 | 6 |
11 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25 + 1.34, 1.17 + 1.35, 1.18 + 1.27 + 1.45) | 7 | 6 |
12 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25 + 1.34, 1.17 + 1.35, 1.18 + 1.27 + 1.36) | 7 | 6 |
13 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25, 1.17 + 1.26 + 1.35, 1.18 + 1.36 + 1.45) | 7 | 6 |
14 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.36 + 1.45) | 7 | 6 |
15 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.45) | 7 | 6 |
16 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.36) | 7 | 6 |
17 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25, 1.17 + 1.26, 1.18 + 1.27 + 1.36 + 1.45) | 7 | 6 |
18 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25, 1.17 + 1.26 + 1.35, 1.18 + 1.27 + 1.45) | 7 | 6 |
19 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25, 1.17 + 1.26 + 1.35, 1.18 + 1.27 + 1.36) | 7 | 6 |
20 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.27 + 1.45) | 7 | 6 |
21 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.27 + 1.36) | 7 | 6 |
22 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.27) | 7 | 6 |
23 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.27 + 1.36 + 1.45) | 7 | 8 |
Lie bracket | Index | Nullity | |
---|---|---|---|
1 | (0, 0, 0, 0, 1.23, 1.24, 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18, 1.27 + 1.36 + 1.45) | 4 | 3 |
2 | (0, 0, 1.12, 0, 1.23, 1.24, 1.16 + 1.25 + 1.34, 1.17, 1.18 + 1.27 + 1.36 + 1.45) | 5 | 3 |
3 | (0, 0, 1.12, 0, 1.23, 1.24, 1.16 + 1.25 + 1.34, 1.17 + 1.35, 1.18 + 1.27 + 1.45) | 5 | 3 |
4 | (0, 0, 1.12, 0, 1.23, 1.24, 1.16 + 1.25 + 1.34, 1.17 + 1.35, 1.18 + 1.27 + 1.36) | 5 | 3 |
5 | (0, 0, 1.12, 0, 1.23, 1.24, 1.16 + 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.36 + 1.45) | 5 | 3 |
6 | (0, 0, 1.12, 0, 1.23, 1.24, 1.16 + 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.45) | 5 | 3 |
7 | (0, 0, 1.12, 0, 1.23, 1.24, 1.16 + 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.36) | 5 | 3 |
8 | (0, 0, 1.12, 0, 1.23, 1.24, 1.16 + 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.27 + 1.45) | 5 | 3 |
9 | (0, 0, 1.12, 0, 1.23, 1.24, 1.16 + 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.27 + 1.36) | 5 | 3 |
10 | (0, 0, 1.12, 0, 1.23, 1.24, 1.16 + 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.27) | 5 | 3 |
11 | (0, 0, 1.12, 0, 1.14 + 1.23, 0, 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.27 + 1.36 + 1.45) | 5 | 3 |
12 | (0, 0, 1.12, 0, 1.14 + 1.23, 0, 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.27 + 1.45) | 5 | 3 |
13 | (0, 0, 1.12, 0, 1.14 + 1.23, 0, 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.27 + 1.36) | 5 | 3 |
14 | (0, 0, 1.12, 0, 1.14 + 1.23, 1.24, 1.25 + 1.34, 1.17, 1.18 + 1.27 + 1.36 + 1.45) | 5 | 3 |
15 | (0, 0, 1.12, 0, 1.14 + 1.23, 1.24, 1.25 + 1.34, 1.17 + 1.35, 1.18 + 1.27 + 1.36) | 5 | 3 |
16 | (0, 0, 1.12, 0, 1.14 + 1.23, 1.24, 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.36 + 1.45) | 5 | 3 |
17 | (0, 0, 1.12, 0, 1.14 + 1.23, 1.24, 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.45) | 5 | 3 |
18 | (0, 0, 1.12, 0, 1.14 + 1.23, 1.24, 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.45) | 5 | 3 |
19 | (0, 0, 1.12, 0, 1.14 + 1.23, 1.24, 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.27 + 1.45) | 5 | 3 |
20 | (0, 0, 1.12, 0, 1.14 + 1.23, 1.24, 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.27 + 1.36) | 5 | 3 |
21 | (0, 0, 1.12, 0, 1.14 + 1.23, 1.24, 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.27) | 5 | 3 |
22 | (0, 0, 1.12, 0, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.17, 1.18 + 1.27 + 1.36 + 1.45) | 5 | 3 |
23 | (0, 0, 1.12, 0, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.35, 1.18 + 1.27 + 1.45) | 5 | 3 |
24 | (0, 0, 1.12, 0, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.35, 1.18 + 1.27 + 1.36) | 5 | 3 |
25 | (0, 0, 1.12, 0, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.36 + 1.45) | 5 | 3 |
26 | (0, 0, 1.12, 0, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.45) | 5 | 3 |
27 | (0, 0, 1.12, 0, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.27 + 1.45) | 5 | 3 |
28 | (0, 0, 1.12, 0, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.27 + 1.36) | 5 | 3 |
29 | (0, 0, 1.12, 0, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.27) | 5 | 3 |
30 | (0, 0, 1.12, 0, 1.14 + 1.23, 1.24, 1.16 + 1.34, 1.17 + 1.35, 1.18 + 1.27 + 1.45) | 4 | 3 |
31 | (0, 0, 1.12, 0, 1.14 + 1.23, 1.24, 1.16 + 1.34, 1.17 + 1.35, 1.18 + 1.27 + 1.36) | 4 | 3 |
32 | (0, 0, 1.12, 0, 1.14 + 1.23, 1.24, 1.16 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.45) | 4 | 3 |
33 | (0, 0, 1.12, 0, 1.14 + 1.23, 1.24, 1.16 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.36) | 4 | 3 |
34 | (0, 0, 1.12, 0, 1.14 + 1.23, 1.24, 1.16 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.27) | 4 | 3 |
35 | (0, 0, 1.12, 1.13, 1.23, 0, 1.16 + 1.25, 1.17 + 1.26 + 1.35, 1.27 + 1.36 + 1.45) | 4 | 3 |
36 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.25 + 1.34, 1.26 + 1.35, 1.18 + 1.27 + 1.45) | 5 | 3 |
37 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.25 + 1.34, 1.26 + 1.35, 1.18 + 1.27 + 1.36) | 5 | 3 |
38 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.25 + 1.34, 1.17 + 1.26, 1.27 + 1.36 + 1.45) | 5 | 3 |
39 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.27 + 1.45) | 5 | 3 |
40 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.27 + 1.36) | 5 | 3 |
41 | (0, 0, 1.12, 1.13, 1.14, 0, 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.27 + 1.36 + 1.45) | 5 | 3 |
42 | (0, 0, 1.12, 1.13, 1.14, 0, 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.27 + 1.45) | 6 | 3 |
43 | (0, 0, 1.12, 1.13, 1.14, 0, 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.27 + 1.36) | 6 | 3 |
44 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.36 + 1.45) | 6 | 3 |
45 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.45) | 6 | 3 |
46 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.27 + 1.45) | 6 | 3 |
47 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.27 + 1.36) | 6 | 3 |
48 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.27) | 6 | 3 |
49 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.26 + 1.35, 1.27 + 1.45) | 5 | 3 |
50 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.26 + 1.35, 1.27 + 1.36) | 5 | 3 |
51 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.35, 1.18 + 1.27 + 1.45) | 5 | 3 |
52 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.35, 1.18 + 1.27 + 1.36) | 5 | 3 |
53 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.26 + 1.35, 1.18 + 1.45) | 5 | 3 |
54 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.26 + 1.35, 1.18 + 1.36) | 5 | 3 |
55 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.26 + 1.35, 1.18 + 1.27) | 5 | 3 |
56 | (0, 0, 1.12, 1.13, 1.14, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.26, 1.27 + 1.36 + 1.45) | 5 | 3 |
57 | (0, 0, 1.12, 1.13, 1.14, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.27 + 1.45) | 5 | 3 |
58 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.17, 1.27 + 1.36 + 1.45) | 5 | 3 |
59 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.35, 1.27 + 1.45) | 5 | 3 |
60 | (0, 0, 1.12, 1.13, 1.14, 0, 1.16 + 1.25 + 1.34, 1.17, 1.18 + 1.27 + 1.36 + 1.45) | 6 | 3 |
61 | (0, 0, 1.12, 1.13, 1.14, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.35, 1.18 + 1.27 + 1.45) | 6 | 3 |
62 | (0, 0, 1.12, 1.13, 1.14, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.35, 1.18 + 1.27 + 1.36) | 6 | 3 |
63 | (0, 0, 1.12, 1.13, 1.14, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.27 + 1.45) | 6 | 3 |
64 | (0, 0, 1.12, 1.13, 1.14, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.27 + 1.36) | 6 | 3 |
65 | (0, 0, 1.12, 1.13, 1.14, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.27) | 6 | 3 |
66 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.17, 1.18 + 1.36 + 1.45) | 6 | 3 |
67 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.35, 1.18 + 1.45) | 6 | 3 |
68 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.35, 1.18 + 1.45) | 6 | 3 |
Lie bracket | Index | Nullity | |
---|---|---|---|
69 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.17, 1.18 + 1.27 + 1.45) | 6 | 3 |
70 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.17, 1.18 + 1.27 + 1.36) | 6 | 3 |
71 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.35, 1.18 + 1.27) | 6 | 3 |
72 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.45) | 6 | 3 |
73 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18) | 6 | 3 |
74 | (0, 0, 1.12, 1.13, 1.14, 1.15, 1.25 + 1.34, 1.26, 1.18 + 1.27 + 1.36 + 1.45) | 6 | 3 |
75 | (0, 0, 1.12, 1.13, 1.14, 1.15, 1.25 + 1.34, 1.26 + 1.35, 1.18 + 1.27 + 1.45) | 6 | 3 |
76 | (0, 0, 1.12, 1.13, 1.14, 1.15, 1.25 + 1.34, 1.26 + 1.35, 1.18 + 1.27 + 1.36) | 6 | 3 |
77 | (0, 0, 1.12, 1.13, 1.14, 1.15, 1.25 + 1.34, 1.17, 1.18 + 1.27 + 1.36 + 1.45) | 6 | 3 |
78 | (0, 0, 1.12, 1.13, 1.14, 1.15, 1.25 + 1.34, 1.17 + 1.35, 1.18 + 1.27 + 1.36) | 6 | 3 |
79 | (0, 0, 1.12, 1.13, 1.14, 1.15, 1.16 + 1.25 + 1.34, 1.26, 1.27 + 1.36 + 1.45) | 7 | 3 |
80 | (0, 0, 1.12, 1.13, 1.14, 1.15, 1.16 + 1.25 + 1.34, 1.26 + 1.35, 1.27 + 1.45) | 7 | 3 |
81 | (0, 0, 1.12, 1.13, 1.14, 1.15, 1.16 + 1.25 + 1.34, 1.26 + 1.35, 1.27 + 1.36) | 7 | 3 |
82 | (0, 0, 1.12, 1.13, 1.14, 1.15, 1.16 + 1.25 + 1.34, 1.35, 1.18 + 1.27 + 1.45) | 7 | 3 |
83 | (0, 0, 1.12, 1.13, 1.14, 1.15, 1.16 + 1.25 + 1.34, 1.35, 1.18 + 1.27 + 1.36) | 7 | 3 |
84 | (0, 0, 1.12, 1.13, 1.14, 1.15, 1.16 + 1.25 + 1.34, 1.26, 1.18 + 1.27 + 1.45) | 7 | 3 |
85 | (0, 0, 1.12, 1.13, 1.14, 1.15, 1.16 + 1.25 + 1.34, 1.26, 1.18 + 1.27 + 1.36) | 7 | 3 |
86 | (0, 0, 1.12, 1.13, 1.14, 1.15, 1.16 + 1.25 + 1.34, 1.26 + 1.35, 1.18 + 1.27) | 7 | 3 |
87 | (0, 0, 1.12, 1.13, 1.14, 1.15, 1.16 + 1.25 + 1.34, 1.17, 1.27 + 1.36 + 1.45) | 6 | 3 |
88 | (0, 0, 1.12, 1.13, 1.14, 1.15, 1.16 + 1.25 + 1.34, 1.17 + 1.35, 1.27 + 1.45) | 6 | 3 |
89 | (0, 0, 1.12, 1.13, 1.14, 1.15, 1.16 + 1.25 + 1.34, 1.17 + 1.35, 1.27 + 1.36) | 6 | 3 |
90 | (0, 0, 1.12, 1.13, 1.14, 1.15, 1.16 + 1.25 + 1.34, 1.17, 1.18 + 1.27 + 1.45) | 7 | 3 |
91 | (0, 0, 1.12, 1.13, 1.14, 1.15, 1.16 + 1.25 + 1.34, 1.17, 1.18 + 1.27 + 1.36) | 7 | 3 |
92 | (0, 0, 1.12, 1.13, 1.14, 1.15, 1.16 + 1.25 + 1.34, 1.17 + 1.35, 1.18 + 1.27) | 7 | 3 |
93 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.34, 1.17 + 1.35, 1.18) | 7 | 3 |
94 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.34, 1.17 + 1.26, 1.18) | 7 | 3 |
95 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25, 1.17, 1.18 + 1.45) | 7 | 3 |
96 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25, 1.17, 1.18 + 1.36) | 7 | 3 |
97 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25, 1.17 + 1.35, 1.18) | 7 | 3 |
98 | (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25 + 1.34, 1.17, 1.18) | 7 | 3 |
5. Conclusion
In this work, we have focused on nilpotent metric Lie algebras of dimensions eight and nine with ordered type of derivations. We have given specific Jacobi identity conditions for Lie algebras which allowed us to simplify the Jacobi identity condition. We have classified nilsoliton metric Lie algebras for the corresponding Gram matrix U being invertible and noninvertible. For dimension 8, we have focused on nilsoliton metric Lie algebras with noninvertable Gram matrix which leads to more than one solution for Uv = [1]. We have proved that if the nilpotent Lie algebra admits a soliton metric with corresponding Gram matrix being noninvertible, all the solutions of Uv = [1] correspond to a unique derivation. This theorem has allowed us to omit several cases that come from nonordered eigenvalues without considering Jacobi condition. Moreover, we have classified some nilsoliton metric Lie algebras with derivation types 1 < 2 < ⋯<n and provided some candidates that may be classified. We are currently working on an algorithm that provides a full list of classifications for dimensions eight and nine.
Conflict of Interest
Author declares that she has no competing interest.
Acknowledgment
Hülya Kadıoğlu would like to thank the Idaho State University Department of Mathematics, in particular department chair Professor Dr. Robert Fisher Jr. and Professor Dr. Tracy L. Payne for their advices and technical supports during her research.