Modeling a Microstretch Thermoelastic Body with Two Temperatures
Abstract
We consider a theory of thermoelasticity constructed by taking into account the heat conduction in deformable bodies which depends on two temperatures. The first one is the conductive temperature, the second is the thermodynamic temperature, and the difference between them is proportional to the heat supply.
1. Introduction
In the classical uncoupled theory of thermoelasticity the equation of the heat conduction does not contain any elastic term. On the other hand, the heat equation is of parabolic type, which leads to infinite speeds of propagation for heat waves.
In view of eliminating these two phenomena which are not compatible with physical observations, some researchers proposed different generalizations of the classical theory. We restrict our attention to two such extensions. According to the model proposed by Lord and Shulman [1], the classical Fourier′s law of heat conduction is replaced by a wave type heat equation. This new equation ensures finite speeds of propagation for the heat and elastic waves.
It is important to remark that in this model the equation of motion and constitutive equations remain the same as those for the coupled and uncoupled theories.
Another generalization is known as the theory of temperature-rate-dependent thermoelasticity or the thermoelasticity with two relaxation times. This theory contains two constants that act as relaxation times and modify the heat equation and, also, the equation of motion and constitutive equations. This theory was first proposed by Green and Lindsay [2] and has aroused much interest in recent years. Unlike the coupled thermoelasticity theory, this theory includes temperature rate among the constitutive variables and consequently predicts a finite speed for the propagation of thermal signals. Since thermal signals propagating with finite speeds have actually been observed in solids, the theory of temperature-rate-dependent thermoelasticity is more general and physically more realistic than the coupled theory.
In [3], Chen et al. gave a theory of thermodynamics of nonsimple elastic materials with two temperatures For the linearized form, Iesan establish in [4] some general theorems.
For time-dependent problems, in particular for wave propagation, the conductive temperature is different from thermodynamic temperature, regardless of presence of a heat supply.
The two temperatures have representation in the form a travelling wave plus a response which occurs instantaneously through the body.
First studies dedicated to the theory of microstretch elastic bodies were published by Eringen [5, 6]. This theory is a generalization of the micropolar theory and a special case of the micromorphic theory. In the context of this theory each material point is endowed with three deformable directors. A body is a microstretch continuum if the directors are constrained to have only breathing-type microdeformations. Also, the material points of a microstretch solid can stretch and contract independently of their translations and rotations.
The purpose of this theory is to eliminate discrepancies between the classical elasticity and experiments, since the classical elasticity failed to present acceptable results when the effects of material microstructure were known to contribute significantly to the body′s overall deformations, for example, in the case of granular bodies with large molecules (e.g., polymers), graphite, or human bones (see [6]).
These cases are becoming increasingly important in the design and manufacture of modern day advanced materials, as small-scale effects become paramount in the prediction of the overall mechanical behaviour of these materials.
Other intended applications of this theory are to composite materials reinforced with chopped fibers and various porous materials.
In [7, 8], we find some basic results regarding thermoelastic microstretch bodies.
In [9], the governing equations are modified in the context of Lord and Shulman′s theory of generalized thermoelasticity to include the two temperatures.
2. Basic Equations
Let us summarize the basic equations of the theory of thermoelasticity of microstretch bodies with two temperatures. Let B be a bounded regular region of three-dimensional Euclidian space R3 occupied by a microstretch elastic body, referred to the reference configuration (at time t = 0). Let denote the closure of B and call ∂B the boundary of the domain B. We consider ∂B a piecewise smooth surface designated by ni the components of the outward unit normal to the surface ∂B. Letters in boldface stand for vector fields. We use the notation vi to designate the components of the vector v in the underlying rectangular Cartesian coordinates frame. A superposed dot stands for the material time derivative. We will employ the usual summation and differentiation conventions: the subscripts are understood to range over integer (1,2, 3). Summation over repeated subscripts is implied and subscripts preceded by a comma denote partial differentiation with respect to the corresponding Cartesian coordinate.
The spatial argument and time argument of a function will be omitted when there is no likelihood of confusion. We refer the motion of the body to a fixed system of rectangular Cartesian axes Oxi, i = 1,2, 3, and to the reference configuration.
As usual, we denote by tij the components of the stress tensor and by mij the components of the couple stress tensor over B. Also, we denote by λi the components of the internal hypertraction vector and by qi the components of the heat flux vector.
- (i)
the equations of motion:
() - (ii)
the balance of the equilibrated forces:
() - (iii)
the energy equation:
()
- (i)
Fi are the components of body force;
- (ii)
Gi are the components of body couple;
- (iii)
L is the generalized external body load;
- (iv)
ϱ is the reference mass density;
- (v)
Iij = Iji and J are the coefficients of inertia;
- (vi)
η is the entropy per unit volume measured from the entropy of the reference state;
- (vii)
r is heat supply per unit mass;
- (viii)
φ is the conductive temperature measured from a constant reference temperature φ0.
Also, the constants λ, λ0, μ, β, ν, α, γ, a0, b0, k, a and c, from the above relations, are the characteristic coefficients of the material and full characterize the mechanical properties of the body.
By a solution of the mixed initial boundary value problem of the theory of thermoelasticity of microstretch bodies with two temperatures in the cylinder Ω0 = B × [0, t0) we mean an admissible state which satisfies (4)–(7), the initial conditions (10) and the boundary conditions (11) for all (x, t) ∈ Ω0.
3. Main Results
Theorem 1. For an admissible state one has the following equality:
Proof. Taking into account, first the geometric equations (2) and then (4)–(6), we can write
Finally, from (21) and (22) we deduce the desired equality (18) and the proof of theorem is complete.
Based on equality (18) we can prove the uniqueness result of the solution in the following theorem.
Theorem 2. The mixed problem of the thermoelasticity of microstretch materials with two temperatures has at most one solution.
Proof. Suppose, by contrast, that our problem admits two solutions:
Of course, because of the linearity of the problem, the differences (24) satisfy the equations and conditions of the problem, but in their homogeneous form. If we write relation (18) for the differences (24) and take into account the hypothesis (9) we obtain
Clarly, from (25) taking into account that k > 0, φ0 > 0, and a > 0 we deduce
According to the homogeneous initial conditions for differences (24), this integral is null at time t = 0. On the other hand, this integral cannot be negative, such that we deduce that the integral vanishes for all time t > 0.
Thus we obtain
Using (28) and (29) and taking into account the fact that and satisfy the homogeneous boundary conditions, we obtain and Theorem 2 is concluded.
This theorem generalizes Iesan′s uniqueness result from the classical thermoelasticity with two temperatures.
Now, we give an alternative form of our mixed problem, by using the convolution of two functions.
In this way, we obtain the following result.
Theorem 3. An admissible state
We must outline that in this form of the mixed problem, the initial conditions are included in the field of equations.
In the following, we propose to find a result of Betti′s type regarding our mixed problem.
Theorem 4. Suppose that the thermoelastic body with two temperatures is subjected to two systems of loadings L(α), α = 1,2. Then between the corresponding thermoelastic configurations C(α), α = 1,2, there is the following reciprocity relation:
Proof. Taking into account the properties of the convolution, from the constitutive equations (7) and relation (8), we get
Taking into account the constitutive equations (7), relation (8), the geometric equations (2), and (34) and (35), we obtain
Using form (45) of the functional Lαβ, taking into account the symmetry relation (43), we obtain the desired result (39) that concludes the proof of Theorem 4.
Suppose that the above systems of thermoelastic loadings L(α) correspond to the problems P(α), α = 1,2.
Using the same procedure as in the proof of Theorem 4, we obtain the following result.
Theorem 5. Assume that the microstretch thermoelastic body with two temperatures is subjected to two thermoelastic bodies L(α), α = 1,2; then between the thermoelastic configurations C(α), α = 1,2, which correspond to the problems P(α), α = 1,2, there is the following reciprocity relation:
As an immediately consequence of Theorem 5, we indicate the following particular application. In fact, using the reciprocity relation (47) the problem of coupled thermoelasticity will be reduced to an associated problem of uncoupled thermoelasticity and to an integral equation.
Conflict of Interests
The authors declare that there is no conflict of interests regarding the publication of this paper.
Acknowledgments
The authors express gratitude to the referees for their criticism of the paper and for helpful suggestions. This paper was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah. The authors, therefore, acknowledge with thanks the DSR technical and financial support.