On Noncommutative Corrections of Gravitational Energy in Teleparallel Gravity
Abstract
We use the theory of teleparallelism equivalent to general relativity based on noncommutative spacetime coordinates. In this context, we write the corrections of the Schwarzschild solution. We propose the existence of a Weitzenböck spacetime that matches the corrected metric tensor. As an important result, we find the corrections of the gravitational energy in the realm of teleparallel gravity due to the noncommutativity of spacetime. Then we interpret such corrections as a manifestation of quantum theory in gravitational field.
1. Introduction
The notion of noncommutative spatial coordinates arose with Heisenberg, who wrote a letter to Peierls, in 1930, about the existence of an uncertain relation between coordinates in space-time as a possible solution to avoid the singularities in the self-energy terms of pontual particles. Based on such an advice, Peierls applied those ideas on the analysis of the Landau problem which can be described by an electric charge moving into a plane under the influence of a perpendicular magnetic field. Since then, Peierls commented about it with Pauli, who included Oppenheimer in the discussion. Oppenheimer presented the ideas to Hartrand Snyder, his former Ph.D. student [1–3]. Thus Snyder was the first to discuss the idea that spatial coordinates could not commutate to each other at small distances which is a change of perspective of tiny scales [4, 5]. It is worth recalling that the concept of noncommutativity itself is not new in Physics; in fact in Quantum Mechanics the uncertain principle, which is a noncommutative relation between coordinates and momenta, plays a fundamental role. Therefore at the beginning, with the pioneer works of Snyder, the idea was to use the noncommutativity between spacetime coordinates to control the ultraviolet divergences into the realm of quantum electrodynamic. Such an approach, however, got into oblivion due to the success achieved by the so-called renormalization process. More recently the interest of the physical community resurfaced with the application of noncommutative geometry in nonabelian theories [6], in gravitation [7–9], in standard model [10–12], and in the problem of the quantic Hall effect [13]. Certainly the discover that the dynamics of an open string can be explained by noncommutative gauge theories at specific limits [14] has contributed to this renewed interest of the scientific community in the topic.
An alternative theory of gravitation is the so-called teleparallel gravity which was introduced by Einstein, as an attempt to unify gravity and electromagnetic field [16], and Cartan, who developed the main part of the theory [17]. From the dynamics point of view, teleparallel gravity and general relativity predict the same results. On the other hand, teleparallel gravity allows for the definition of quantities that are physically of interest, such as the gravitational energy momentum and angular momentum tensors which are well behaved [18] when compared to attempts made in the context of general relativity [19, 20]. In addition, none of such expressions obtained in the realm of general relativity are dependant on the reference frame, which is certainly not a desirable feature for energy, momentum, and angular momentum.
The expressions for the energy momentum and angular momentum of the gravitational field, in the context of the Teleparallelism Equivalent to General Relativity (TEGR), are invariant under transformations of the coordinates of the three-dimensional spacelike surface; they are also dependent on the frame of reference, as is to be expected. They have been applied consistently over the years for many different systems [21–25]. The frame dependence is an expected condition for any expression due to the field since in special relativity the energy of a particle for a stationary observer is m (with c = 1), but it is γm for an observer under a Lorentz transformation boost (here γ is the Lorentz factor). There is no reason to abandon this feature once dealing with the gravitational field, and similar behaviour is expected for momentum and angular momentum.
Therefore we have two successful theories described above and a natural forward step is to combine both of them. Then here our aim is to study the Teleparallelism Equivalent to General Relativity in the noncommutative spacetime context. In Section 2 we introduce the concepts of teleparallel gravity, giving the definition of gravitational energy. In this way, in Section 3 we present the corrections of the Schwarzschild solution due to the noncommutativity of tetrad fields and the respective correction in the gravitational energy of the whole spacetime. Finally in last section we address our concluding remarks.
Notation. Spacetime indices μ, ν, … and SO(3,1) indices a, b, … run from 0 to 3. Time and space indices are indicated according to μ = 0, i, a = (0), (i). The tetrad field is denoted by and the determinant of the tetrad field is represented by .
2. Teleparallel Gravity
3. Noncommutative Corrections for the Gravitational Energy in Schwarzschild Spacetime
4. Conclusion
In this work we start with Schwarzschild spacetime, and then we give the corrections due to the noncommutativity of spacetime. Here it is introduced by replacing the normal product between tetrads by the Moyal product, rather than applying such a procedure in lagrangian density. This approach is well known in the literature to predict some noncommutative corrections in the metric tensor. The new metric tensor leads to a new tetrad field which is used to calculate the gravitational energy of spacetime. It is well known that the energy of Schwarzschild spacetime is equal to M; therefore we get a correction in the energy equal to ΔP(0). We stress out that the expression for the gravitational field has been developed and tested over the years in the context of TEGR. Since the noncommutative parameter is arbitrary (it should be given by experimental data), we speculate that such a correction in the gravitational energy can be associated to quantum effects in the realm of gravitational field. If the correction represents the energy of gravitons, then it should be proportional to the Planck′s constant. On the other hand the correction is proportional to the mass of the font, which could mean a new kind of quantization associated to the mass of a black hole or a star, for example. This has been expressed in [33]. Therefore the gravitational energy turns out to be of fundamental importance (experimental purposes), since it can tell if the spacetime is commutative or not. For future works we intend to investigate the corrections of the gravitational energy in the context of Kerr spacetime on the outer event horizon. We also want to study the solutions of the noncommutative equations that come from the lagrangian density replaced by the Moyal product.