Volume 27, Issue 5 pp. 340-e84
Scientific Paper
Full Access

Interaction of chlorhexidine with trisEDTA or miconazole in vitro against canine meticillin-resistant and -susceptible Staphylococcus pseudintermedius isolates from two UK regions

Siân-Marie Clark

Corresponding Author

Siân-Marie Clark

Department of Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA UK

Correspondence: Siân-Marie Clark, Department of Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK. E-mail: [email protected]Search for more papers by this author
Anette Loeffler

Anette Loeffler

Department of Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA UK

Search for more papers by this author
Vanessa M Schmidt

Vanessa M Schmidt

School of Veterinary Science, University of Liverpool, Chester High Road, Neston, CH64 7TE UK

Search for more papers by this author
Yu-Mei Chang

Yu-Mei Chang

Department of Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA UK

Search for more papers by this author
Alison Wilson

Alison Wilson

Department of Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA UK

Search for more papers by this author
Dorina Timofte

Dorina Timofte

School of Veterinary Science, University of Liverpool, Chester High Road, Neston, CH64 7TE UK

Search for more papers by this author
Ross Bond

Ross Bond

Department of Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA UK

Search for more papers by this author
First published: 13 July 2016
Citations: 17
Sources of Funding: The study was designed, conducted, analysed and reported by the authors; laboratory and technical costs were financed by Dechra Veterinary Products, Shropshire, UK. Siân-Marie Clark was supported by the Biotechnology and Biological Sciences Research Council, Swindon, UK (BBSRC) as an industrial CASE scholar in partnership with Dechra Veterinary Products Limited (grant number BB/K011952/1).
Conflict of Interest: The authors’ group has previously received funding from Dechra Veterinary Products in support of laboratory research and clinical teaching of undergraduate and postgraduate students.
This study was presented at the Congress of the European Society and European College of Veterinary Dermatology Annual Congress, Krakow, Poland, September 2015. Vet Dermatol 2015; 26: 310–311 (Abstract).

Abstract

en

Background

Topical therapy is an important alternative to systemic antibacterial therapy for treatment of canine superficial pyoderma in light of the emergence of multidrug-resistant staphylococci. Chlorhexidine is widely used in shampoo products alone or in combination with miconazole or tromethamine-ethylenediaminetetraacetic acid (trisEDTA). Comparisons of these combinations have not been made.

Hypothesis/Objectives

To determine minimum inhibitory concentrations (MICs) of combinations of chlorhexidine/miconazole and chlorhexidine/trisEDTA in vitro in a collection of Staphylococcus pseudintermedius (SP) from northern (NUK) and southeastern (SEUK) United Kingdom (UK) sources.

Methods

MICs of chlorhexidine, miconazole, trisEDTA and combinations of chlorhexidine/miconazole (1:1) or chlorhexidine/trisEDTA (80:16:1 and 80:5:1) were determined for 196 canine SP isolates from NUK [49 meticillin-resistant (MRSP), 50 meticillin-susceptible (MSSP)] and fom SEUK (48 MRSP, 49 MSSP) using agar dilution.

Results

TrisEDTA alone did not inhibit growth. Chlorhexidine/miconazole MICs (median = 0.5 mg/L) were lower than those of either drug alone (P < 0.05) and lower than chlorhexidine/trisEDTA MICs (median = 1 mg/L; P < 0.0005) in each bacterial type and from both regions, except for miconazole in NUK MSSP. An additive interaction was noted between chlorhexidine and miconazole or trisEDTA (80:16:1 ratio) in 79 and 43 isolates, respectively, whereas antagonism between chlorhexidine and trisEDTA was noted for three isolates. NUK isolates were more susceptible than SEUK isolates (P < 0.05), except MRSP exposed to chlorhexidine and the chlorhexidine/trisEDTA (80:16:1) combination.

Conclusions and Clinical Importance

These low MICs are likely to be exceeded by topical therapy. Evaluation of the mechanisms by which chlorhexidine combinations interact to reduce MICs is warranted, in view of increasing concerns of biocide tolerance in staphylococci.

Résumé

fr

Contexte

Les traitements topiques sont une alternative importante au traitement antibiotique systémique pour le traitement des pyodermites bactériennes superficielles à la vue de l’émergence des staphylocoques multirésistantes. La chlorhexidine est largement utilisée en shampooing seule ou en combinaison avec le miconazole ou le tris-EDTA (tromethamine-ethylenediaminetetraacetic acid). Les comparaisons de ces combinaisons n'ont pas été réalisées.

Hypothèses/Objectifs

Déterminer les concentrations minimales inhibitrices (MICs) des combinaisons chlorhexidine/miconazole et chlorhexidine/tris EDTA in vivo dans une collection de Staphylococcus pseudintermedius (SP) issus du Royaume Uni (UK) du nord (NUK) et du sud-est (SEUK).

Méthodes

Les MICS de chlorhexidine, miconazole, trisEDTA et les combinaisons de chlorhexidine/miconazole (1:1) ou chlorhexidine/trisEDTA (80:16:1 et 80:5:1) ont été déterminées pour 196 des souches de SP canines isolées de NUK [49 résistants à la méticilline (MRSP), 50 sensibles à la méticilline (MSSP)] et de SEUK (48 MRSP, 49 MSSP).

Résultats

Le TrisEDTA seul n'inhibait pas la croissance. Les MICS de chlorhexidine/miconazole (médiane = 0.5 mg/L) étaient plus faibles que pour chaque molécule seule (P < 0.05) et plus faibles que les MICs chlorhexidine/trisEDTA (médiane = 1 mg/L; P < 0.0005) pour chaque type de bactérie pour les deux régions à l'exception du miconazole pour les MSSP de NUK. Une interaction additionnelle a été notée entre la chlorhexidine et le miconazole ou le tris EDTA (80:16:1 ratio) pour 79 des 43 souches respectivement, tandis que les antagonismes entre la chlorhexidine et le tris EDTA a été noté pour trois souches. Les souches de NUK étaient plus sensibles que les souches de SEUK (P < 0.05), à l'exception des MRSP exposés à la chlorhexidine et la combinaison chlorhexidine/trisEDTA (80:16:1).

Conclusions et importance clinique

Ces MICs faibles sont probablement amenés à être dépassés par les traitements topiques. L’évaluation des mécanismes par lesquels les combinaisons de chlorhexidine interagissent pour réduire les MICs est nécessaire, vu des préoccupations grandissantes sur la tolérance des biocides par les staphylocoques.

Resumen

es

Introducción

La terapia tópica es una alternativa importante a la terapia antibacteriana sistémica para el tratamiento de la pioderma superficial canina en vista de la aparición de los estafilococos resistentes a múltiples fármacos. La clorhexidina es ampliamente utilizada en productos de champú solo o en combinación con miconazol o con ácido trometamina-etilendiaminotetraacético (trisEDTA). No se han realizado comparaciones de estas combinaciones.

Hipótesis/Objetivos

Determinar las concentraciones inhibitorias mínimas (CIM) de combinaciones de clorhexidina/miconazol y clorhexidina / trisEDTA in vitro en una colección de cepas de Staphylococcus pseudintermedius (SP) del norte (NUK) y sudeste (SEUK) del Reino Unido (UK).

Métodos

Se determinaron las MICs de clorhexidina, miconazol, trisEDTA y combinaciones de clorhexidina / miconazol (1: 1) o clorhexidina / trisEDTA (80: 16: 1 y 80: 5: 1) para 196 aislados de SP caninos de NUK [49 meticilina resistentes (MRSP), 50 meticilina susceptibles (MSSP)] y SEUK (48 MRSP, 49 MSSP) mediante dilución en agar.

Resultados

TrisEDTA solo no inhibió el crecimiento. Las MICs de clorhexidina / miconazol (mediana = 0,5 mg / L) fueron inferiores a los de cualquiera de los fármacos solos (P <0,05) y menor que la de clorhexidina / trisEDTA (mediana = 1 mg / L; P <0,0005) en cada tipo de bacterias y de ambas regiones, con excepción de miconazol solo en NUK MSSP. Una interacción aditiva se observó entre la clorhexidina y el miconazol o trisEDTA (proporción 80: 16: 1) en 79 y 43 aislados, respectivamente, mientras que no se observó antagonismo entre la clorhexidina y trisEDTA para tres aislados. Los aislados NUK fueron más susceptibles que los aislados SEUK (P <0,05), excepto MRSP expuesto a la clorhexidina y la combinación clorhexidina / trisEDTA (80: 16: 1).

Conclusiones y relevancia clínica

Estas MICs tan bajas son posiblemente superadas en la terapia tópica. La evaluación de los mecanismos por los que las combinaciones de clorhexidina interactúan para reducir los MICs requiere mayor investigación en vista de la creciente preocupación de la tolerancia biocida en los estafilococos.

Zusammenfassung

de

Hintergrund

In Anbetracht des vermehrten Auftretens von multi-resistenten Staphylokokken ist die topische Therapie eine wichtige Alternative zur systemischen antibakteriellen Therapie bei der Behandlung der superfiziellen Pyodermie des Hundes. Chlorhexidin wird in Shampoo Produkten alleine oder in Kombination mit Miconazol oder Tromethamine-ethylendiamintetra Essigsäure (trisEDTA) weitreichend verwendet. Vergleiche dieser Kombinationen wurden bisher nicht gemacht.

Hypothese/Ziele

Eine Bestimmung der minimalen Hemmkonzentrationen (MICs) von Chlorhexidin/Miconazol Kombinationen und Chlorhexidin/trisEDTA Anwendungen in vitro in einer Sammlung von Staphylococcus pseudintermedius (SP) aus Quellen des nördlichen (NUK) und südöstlichen (SEUK) United Kingdom (UK).

Methoden

Mittels Agarverdünnung wurden die MICs von Chlorhexidin, Miconazol, trisEDTA und Kombinationen aus Chlorhexidin/Miconazol (1:1) oder Chlorhexidin/trisEDTA (80:16:1 und 80:5:1)für 196 SP Isolate von Hunden aus NUK [49 Methicillin-resistente (MRSP), 50 Methicillin empfindliche (MSSP)] und aus SEUK (48 MRSP, 49 MSSP) bestimmt.

Ergebnisse

TrisEDTA alleine konnte das Keimwachstum nicht verhindern. Die MICs von Chlorhexidin/Miconazol (Median = 0,5mg/L) waren niedriger als jene der individuellen Wirkstoffe (P<0,05) und niedriger als die MICs von Chlorhexidin/trisEDTA (Median = 1 mg/L; P < 0,0005) bei jedem Bakterientyp sowie aus beiden Regionen, außer Miconazol bei MSSP aus NUK. Eine zusätzliche Interaktion konnte zwischen Chlorhexidin und Miconazol oder trisEDTA (im Verhältnis 80:16:1) bei 79 bzw 43 Isolaten festgestellt werden, während zwischen Chlorhexidin und trisEDTA bei dreien der Isolate ein Antagonismus bemerkt wurde. Die Isolate aus NUK waren empfindlicher als die Isolate aus SEUK (P < 0,05), außer MRSP, der einer Chlorhexidin und einer Chlorhexidin/trisEDTA (80:16:1) Kombination ausgesetzt wurde.

Schlussfolgerungen und klinische Bedeutung

Es ist wahrscheinlich, dass diese niedrigen MICs durch eine topische Therapie übertroffen werden. Eine Untersuchung der Wirkungsmechanismen durch welche die Chlorhexidinkombinationen interagieren, um die MICs zu reduzieren ist angesagt, vor allem in Anbetracht der zunehmenden Bedenken bzgl Biozid Toleranz von Staphylokokken.

要約

ja

背景

外用療法は多剤耐性ブドウ球菌の発生を考慮したイヌの表在性膿皮症の治療にとって、全身抗菌療法に代わる重要な代替療法である。クロルヘキシジンはシャンプー製品に単独でまたはミコナゾールやトロメタミン−エチレンジアミン四酢酸(TrisEDTA)との組み合わせで幅広く使用されている。これらの組み合わせの比較は今まで行われていない。

仮説/目的

イギリス(UK)の北部(NUK)および南東部(SEUK)からのStaphylococcus pseudintermedius (SP) の収集物において、in vitroでのクロルヘキシジン/ミコナゾールならびにクロルヘキシジン/TrisEDTAの組み合わせの最小阻止濃度(MICs)を決定すること。

方法

クロルヘキシジン、ミコナゾール、TrisEDTAおよびクロルヘキシジン/ミコナゾール(1:1)あるいはクロルヘキシジン/TrisEDTA(80:16:1および80:5:1)の組み合わせのMICを、NUK [49 株のメチシリン−耐性菌 (MRSP), 50株のメチシリン−感受性菌 (MSSP)]とSEUK(48 株のMRSP、49株のMSSP)からの196株のイヌのSP分離菌に対して寒天希釈法を用いて決定した。

結果

TrisEDTA単独では増殖を抑制しなかった。それぞれの細菌型、および両方の地域からの菌株において、NUK MSSEPにおけるミコナゾールを除いてクロルヘキシジン/ミコナゾールMIC(平均= 0.5 mg/L)はそれぞれの薬剤単独よりも低く(P < 0.05)、クロルヘキシジン/TrisEDTA MIC(平均1 mg/L; P < 0.0005)よりも低かった。それぞれ79分離菌株および43分離菌株において、クロルヘキシジンとミコナゾール間、あるいは クロルヘキシジンとTrisEDTA(80:16:1 ratio)間の添加剤の相乗作用が指摘された一方、クロルヘキシジンおよび TrisEDTA間の拮抗作用は3分離菌株で指摘された。NUK分離菌株は、クロルヘキシジンおよびクロルヘキシジン/TrisEDTA (80:16:1) の組み合わせに暴露したMRSPを除き、SEUK分離菌株より感受性が高かった(P < 0.05)。

結論および臨床的な重要性

これらの低いMICは外用療法によって上回る可能性が高い。ブドウ球菌における抗生剤耐性が増加する懸念から、クロルヘキシジンの組み合わせが相互作用することでMICを減少させるメカニズムの評価が必要とされる。

摘要

zh

背景

鉴于犬浅表脓皮病容易出现葡萄球菌多重耐药,外用药是替代全身抗生素治疗的重要疗法。氯己定广泛应用于香波产品中,常单独或联合咪康唑或氨丁三醇—乙二胺四乙酸(trisEDTA)使用。

假设/目的

从英国(UK)北部(NUK)和东南部(SEUK)的病例来源中,收集假中间型葡萄球菌(SP)进行体外试验,氯己定/咪康唑和氯己定/trisEDTA联合用药,并确定其最小抑菌浓度。

方法

从NUK[49株 甲氧西林耐药 (MRSP), 50 株甲氧西林敏感 (MSSP)]和SEUK (48株 MRSP, 49株 MSSP)取196株犬SP菌株,并使用琼脂稀释法进行试验,分别确定氯己定、咪康唑、trisEDTA、氯己定/咪康唑(1:1)或氯己定/trisEDTA(80:16:1 and 80:5:1)的最小抑菌浓度。

结果

单独使用TrisEDTA不能抑制细菌生长。无论何种细菌类型,氯己定/咪康唑的最小抑菌浓度(中值= 0.5 mg/L)低于单独使用其他药物(P < 0.05),同时也低于氯己定/trisEDTA的最小抑菌浓度(中值= 1 mg/L; P < 0.0005);除咪康唑对于NUK MSSP外,氯己定/咪康唑对于两个区域的葡萄球菌最小抑菌浓度均低于其他药物。氯己定/咪康唑或氯己定/trisEDTA (80:16:1比例)分别作用于79和43株菌株,均表现出协同作用,然而氯己定和咪康唑在3株菌株中出现拮抗作用。NUK菌株比SEUK菌株更敏感(P < 0.05),接种于氯己定和氯己定/trisEDTA (80:16:1)中的MRSP除外。

总结和临床意义

外用疗法可能这些低MICs还要更低。鉴于葡萄球菌耐药性的日益增长,通过氯己定联合其他药物进行治疗,进而减少MICs的机制很有意义。

Resumo

pt

Contexto

Terapia tópica é uma importante alternativa à antibioticoterapia sistêmica para o tratamento da piodermite superficial em cães, tendo em vista a emergência de estafilococos multirresistentes. A clorexidina é amplamente utilizada em xampus, de forma única, ou em associação com miconazol ou tris-EDTA. Comparações destas associações não foram ainda realizadas.

Hipótese/Objetivos

Determinar as concentrações inibitórias mínimas (MIC) das combinações clorexidina/miconazol e clorexidina/trisEDTA in vitro em uma coleção de Staphylococcus pseudintermedius (SP) oriundos norte (NUK) e do sudeste (SEUK) do Reuno Unido (UK).

Métodos

MICs de clorexidina, miconazol e trisEDTA e das combinações clorexidina/miconazol (1:1) e clorexidina/trisEDTA (80:16:1 e 80:5:1) foram determinados para 196 SP isolados de cães de NUK [49 resistentes à meticilina (MRSP) e 50 susceptíveis à meticilina (MSSP)] e de SEUK (48 MRSP, 69 MSSP), utilizando diluição em ágar.

Resultados

TrisEDTA isoladamente não inibiu o crescimento das bactérias. Os MICs de clorexidina/miconazol (mediana = 0,5 mg/L) foram mais baixos que os de cada droga isoladamente (P < 0,05) e mais baixos que os MICs de clorexidina/trisEDTA (mediana = 1mg/L; P < 0,0005) em cada tipo bacteriano, para ambas as regiões geográficas, exceto para miconazol em NUK MSSP. Interação aditiva foi observada entre clorexidina e miconazol ou trisEDTA (proporção80:16:1) em 79 e 43 isolados, respectivamente, enquanto que o antagonismo entre clorexidina e trisEDTA foi observado em três amostras. Isolados de NUK foram mais suscetíveis que os isolados de SEUK (P<0,05), exceto MRSP expostos à clorexidina e à combinação de clorexidina/trisEDTA (80:16:1).

Conclusões e importância clínica

É provável que estes MICs baixos sejam excedidos em terapia tópica. Tendo-se em vista a preocupação crescente com a tolerância de estafilococos a antimicrobianos, é justificada a avaliação dos mecanismos de interação pelos quais as combinações de clorexidina atuam para reduzir os MICs.

Introduction

In the light of the emergence of multidrug-resistant (MDR) staphylococci, especially meticillin-resistant Staphylococcus pseudintermedius (MRSP) in veterinary medicine,1 the role of antiseptics is becoming increasingly important. Improved treatment strategies for staphylococcal skin disease are needed to limit the spread of MRSP and to reduce selective pressure from repeated systemic antimicrobial therapy. Topical therapy, in particular with chlorhexidine, has been recommended as an option for treatment of canine superficial pyoderma.2

Previous studies have shown that chlorhexidine shampoo is an effective monotherapy in canine superficial pyoderma,3, 4 and in vitro data indicate that chlorhexidine is effective against MRSP as well as its meticillin-susceptible counterpart (MSSP), and the predominant human commensal (S. aureus; both meticillin-resistant and susceptible strains).5, 6 Genes that encode drug efflux proteins in S. aureus, including qacA/B and smr which confer low level and high level chlorhexidine resistance, respectively,7, 8 have rarely been described in S. pseudintermedius.9, 10 However, the clinical relevance of this has not been assessed. The development of biocide resistance in S. pseudintermedius might well be minimized by combining chlorhexidine with other agents with additive or synergistic effects. Current products used for canine superficial skin infections include shampoos containing chlorhexidine alone, or in combination with miconazole or tromethamine + ethylenediaminetetraacetic acid (trisEDTA). Minimum inhibitory concentrations (MICs) have been established for miconazole and chlorhexidine in combination, with synergistic and additive interactions being shown.5 A shampoo formulation of chlorhexidine and miconazole was shown to significantly reduce coagulase-positive staphylococcal counts on seborrhoeic canine skin when determined by cup-scrub in a blinded study design.11 It was reported that chlorhexidine and trisEDTA was more active than chlorhexidine alone against S. aureus,12 although fractional inhibitory concentration (FIC) indices were not used to assess the interaction between the drugs. TrisEDTA has been shown to enhance the efficacy of marbofloxacin and gentamicin13 against Pseudomonas aeruginosa, and has been shown to act synergistically with cefalexin, oxytetracycline, ampicillin, streptomycin and sulfadimethoxine against S. aureus.14 This is thought to be due to EDTA damaging the outer cell wall, causing the bacteria to become more permeable to the antimicrobial agents that act intracellularly.13

There has been limited investigation into the potential synergistic activity of different ratios of trisEDTA amongst chlorhexidine products; furthermore MICs for chlorhexidine/miconazole have not yet been compared to chlorhexidine/trisEDTA. We therefore determined MICs of chlorhexidine, miconazole, trisEDTA and the combination of chlorhexidine with either miconazole or trisEDTA in two ratios, in a large collection of MRSP and MSSP isolates obtained from the northern and southeastern regions of the United Kingdom.

Materials and methods

Bacterial isolates

One hundred and ninety six S. pseudintermedius isolated from dogs were tested; of these, 49 MRSP and 50 MSSP were from northern UK (NUK; the southern border of which were SY, ST, DE, S and YO postcodes) and 48 MRSP and 49 MSSP from the southeastern UK (SEUK; from CB, AL, UB and London postcodes). All NUK isolates were collected from clinical cases obtained in 2011–2015. The SEUK isolates were from a collection stored at −80°C in brain–heart infusion broth with 20% glycerol (obtained in 2010-2015); 44 MSSP were skin and mucosal carriage isolates and five MSSP and 48 MRSP were collected from clinical cases.

All isolates had been identified to species level through phenotypic methods, either by a diagnostic microbiology laboratory (NUK isolates) or for a previous study (SEUK isolates).15 Briefly, colony morphology and haemolytic properties were assessed through growth on a blood agar base containing 5% sheep blood; coagulase positive staphylococci were identified by clumping factor activity using dog plasma and DNase production.16 Phenotypic identification of S. pseudintermedius was confirmed by demonstration of the species-specific thermonuclease gene (nuc) by PCR.17 Meticillin resistance was confirmed genotypically by demonstrating the presence of mecA by PCR and phenotypically through growth on mannitol salt agar containing 6 mg/L oxacillin.18

MIC determination

MICs were determined by agar dilution according to CLSI guidelines.19 Prior to MIC determination, isolates were subcultured twice on blood agar base (CM0271, Oxoid; Basingstoke, UK) containing 5% sheep blood (TCS Biosciences; Buckingham, UK) at 35°C for 24 h. Stock solutions of antimicrobials were prepared at 10× final concentration in phosphate-buffered saline (chlorhexidine digluconate C9394, tromethamine PHR1347 and ethylenediaminetetraacetic acid (EDTA) EDS, Sigma-Aldrich; Dorset, UK) or 1% DMSO (miconazole nitrate PHR1163; Sigma-Aldrich) adjusted for drug potency.19 Serial two-fold dilutions were prepared in molten Mueller–Hinton agar, pH 7.2 (conforming to CLSI protocols)19 (CM0337, Oxoid). In the first instance, an 80:16:1 combination of chlorhexidine digluconate, tromethamine and EDTA was tested, alongside a 1:1 chlorhexidine digluconate and miconazole nitrate combination, and each drug alone. Final concentrations of the active fraction ranged from 0.125 to 16 mg/L of chlorhexidine digluconate, 0.25 to 64 mg/L of miconazole nitrate, 0.06 to 8 mg/L of a 1:1 combination of chlorhexidine digluconate and miconazole nitrate, 0.25 to 512 mg/L of a 16:1 combination of tromethamine and EDTA, and 0.03 to 16 mg/L of a 80:16:1 combination of chlorhexidine digluconate, tromethamine and EDTA. The study was extended using 185 of the original isolates (NUK MRSP n = 49, NUK MSSP n = 50, SEUK MRSP n = 45, SEUK MSSP n = 41) to compare an 80:5:1 combination of chlorhexidine digluconate, tromethamine and EDTA (0.125–16 mg/L), as used in a commercial product, with the 1:1 combination of chlorhexidine digluconate and miconazole nitrate (0.125–4 mg/L) repeated for internal control purposes. Start and end control plates of Mueller–Hinton agar alone were also inoculated in each experiment. Plates were held at 4°C in plastic bags until used within 7 days.

A MIC was recorded as the lowest concentration of antimicrobial agent which completely inhibited colony formation, disregarding single colonies or a faint haze of growth.19 Discrepancy between duplicate MICs was accepted provided that the duplicates varied by only one dilution; in such cases, the higher value was identified as the final MIC, as a conservative interpretation. For quality control purposes three reference strains [S. pseudintermedius LMG 22219 (Belgian Co-ordinated Collections of Micro-organisms; Ghent, Belgium), S. aureus American Type Culture Collection (ATCC) 25923 and S. aureus ATCC 29663; American Type Culture Collection; Teddington, UK] and one MSSA isolate previously reported with high MIC values for miconazole (B122)5 were included.

Fractional inhibitory concentration (FIC) indices

The FIC index (FICi) was calculated to analyse drug interaction of chlorhexidine and either miconazole or trisEDTA (16:1) when used in combination, using the formula ΣFIC = FICA + FICB = (MICAB/MICA) + (MICAB/MICB), where MICA and MICB are the MICs of the drugs when used alone, and MICAB is the MIC of the two drugs in combination. FICi were interpreted according to EUCAST guidelines, wherein FICi ≤0.5 represented synergy, >0.5–1 indicated additivity, >1 to <2 represented indifference and ≥2 indicated antagonism.20

Statistical analysis

MICs were compared using a linear mixed effect model (SPSS v.20, IBM United Kingdom Ltd; Portsmouth, UK) after log2 transformation, comparing drug, region (NUK and SEUK) and bacterial group (MRSP and MSSP), while accounting for repeated measures. Significance was set at P < 0.05.

Results

TrisEDTA (16:1 ratio) alone did not inhibit growth (MIC ≥ 512 mg/L, n = 196) and thus was omitted from analysis in the linear mixed effect model. MICs of the 1:1 combination of chlorhexidine and miconazole in the initial MIC determination ranged from 0.25 to 2 mg/L (Table 1), with 90.3% (177 of 196) of isolates having an MIC of 0.25 or 0.5 mg/L. Values were very closely similar in the repeat analysis of 185 isolates with a range of 0.25–1 mg/L and 75% of isolates (139 of 185) having an MIC of 0.25 or 0.5 mg/L (Table 3). For the whole collection of 196 isolates, chlorhexidine/miconazole MICs (MIC90 = 0.5 mg/L) were significantly lower than chlorhexidine alone (P < 0.0005; MIC90 chlorhexidine = 2 mg/L), chlorhexidine/trisEDTA 80:16:1 combination (P < 0.0005; MIC90 80:16:1 2 mg/L) and miconazole alone (P < 0.005; MIC90 miconazole = 1 mg/L; except in NUK MSSP). Miconazole MICs were significantly lower than chlorhexidine alone or in 80:16:1 combination with trisEDTA (P < 0.005, Table 1).

Table 1. Minimal inhibitory concentrations (MICs) of chlorhexidine (alone), miconazole (alone), chlorhexidine and miconazole in a 1:1 combination and chlorhexidine, tromethamine and ethylenediaminetetraacetic acid (EDTA) (trisEDTA) in an 80:16:1 ratio for 196 Staphylococcus pseudintermedius isolates from dogs
Drug Bacterial Type MIC/mg/L MIC50 MIC90
0.03 0.06 0.125 0.25 0.5 1 2 4 8 16 32 64
Chlorhexidine NUK MRSP Not tested Not tested 0 0 0 16 25 8 0 0 Not tested Not tested 2 4
NUK MSSP Not tested Not tested 0 0 0 36 14 0 0 0 Not tested Not tested 1 2
SEUK MRSP Not tested Not tested 0 0 0 21 24 2 1 0 Not tested Not tested 2 2
SEUK MSSP Not tested Not tested 0 0 1 25 18 2 3 0 Not tested Not tested 1 4
Total Not tested Not tested 0 0 1 98 81 12 4 0 Not tested Not tested 1 2
Miconazole NUK MRSP Not tested Not tested Not tested 0 37 12 0 0 0 0 0 0 0.5 1
NUK MSSP Not tested Not tested Not tested 2 48 0 0 0 0 0 0 0 0.5 0.5
SEUK MRSP Not tested Not tested Not tested 0 1 44 2 1 0 0 0 0 1 1
SEUK MSSP Not tested Not tested Not tested 0 33 8 4 4 0 0 0 0 0.5 2
Total Not tested Not tested Not tested 2 119 64 6 5 0 0 0 0 0.5 1
1:1 Chlorhexidine/miconazole NUK MRSP Not tested 0 0 2 47 0 0 0 0 Not tested Not tested Not tested 0.5 0.5
NUK MSSP Not tested 0 0 8 42 0 0 0 0 Not tested Not tested Not tested 0.5 0.5
SEUK MRSP Not tested 0 0 0 41 6 1 0 0 Not tested Not tested Not tested 0.5 1
SEUK MSSP Not tested 0 0 4 33 9 3 0 0 Not tested Not tested Not tested 0.5 1
Total Not tested 0 0 14 163 15 4 0 0 Not tested Not tested Not tested 0.5 0.5
80:16:1 chlorhexidine/tromethamine/EDTA NUK MRSP 0 0 0 0 0 23 20 6 0 0 Not tested Not tested 2 4
NUK MSSP 0 0 0 0 1 47 2 0 0 0 Not tested Not tested 1 1
SEUK MRSP 0 0 0 0 0 25 20 2 1 0 Not tested Not tested 1 2
SEUK MSSP 0 0 0 0 1 42 1 2 0 3 Not tested Not tested 1 4
Total 0 0 0 0 2 137 43 10 1 3 Not tested Not tested 1 2
  • MRSP, meticillin-resistant S. pseudintermedius; MSSP, meticillin-susceptible S. pseudintermedius; NUK, isolates of northern UK origin; SEUK, isolates of southeastern UK origin.
  • NUK MRSP n = 49, NUK MSSP n = 50, SEUK MRSP n = 48, SEUK MSSP n = 49.
  • a MICs for trisEDTA (alone) are not included because MIC >512 mg/L was established for all 196 isolates.
  • b MIC50 is equal to the median value.

Combination with miconazole reduced the chlorhexidine MICs by zero (n = 1), one (n = 100), two (n = 83) or three dilutions (n = 12). In 79 of 196 isolates, an additive interaction was observed between miconazole and chlorhexidine (0.5 < FICi ≤ 1; Table 2).20 No antagonistic interactions were observed; all other isolates fell into the ‘no interaction’ group.

Table 2. Interpretation of fractional inhibitory concentration indices for a 1:1 combination of chlorhexidine and miconazole and an 80:16:1 combination of chlorhexidine, tromethamine and ethylenediaminetetraacetic acid (EDTA) (trisEDTA) for 196 Staphylococcus pseudintermedius isolates from dogs
Drug combination Bacterial group Synergy ≤0.5 Additive >0.5–≤1 Indifference >1–≤2 Antagonism >2
1:1 chlorhexidine and miconazole NUK MRSP (n = 49) 0 14 35 0
NUK MSSP (n = 50) 0 6 44 0
SEUK MRSP (n = 48) 0 43 5 0
SEUK MSSP (n = 49) 0 16 33 0
Total 0 79 117 0
80:16:1 combination of chlorhexidine, tromethamine and EDTA (trisEDTA) NUK MRSP (n = 50) 0 9 40 0
NUK MSSP (n = 50) 0 13 37 0
SEUK MRSP (n = 49) 0 4 44 0
SEUK MSSP (n = 49) 0 17 29 3
Total 0 43 150 3
  • MRSP, meticillin-resistant S. pseudintermedius; MSSP, meticillin-susceptible S. pseudintermedius; NUK, isolates of northern UK origin; SEUK, isolates of southeastern UK origin.

MICs for chlorhexidine/trisEDTA in 80:16:1 combination (MIC90 2 mg/L, range 0.5–16 mg/L, Table 1) were significantly lower than that of chlorhexidine alone in all bacterial groups (P < 0.05) except SEUK MRSP. A 80:16:1 combination with trisEDTA reduced the chlorhexidine MICs by one dilution in 43 cases, and had no effect in 150. There was an additive interaction between chlorhexidine and trisEDTA in a 80:16:1 combination in 21.9% isolates (43/196) whereas three isolates (1.5%) showed an antagonistic interaction where the MIC was increased by one dilution (Table 2).

As with the chlorhexidine/miconazole combination, MICs for the 80:5:1 ratio of chlorhexidine/TrisEDTA were closely comparable to those seen with the 80:16:1 ratio; the MIC50 and MIC90 for both combinations were 1 and 2 mg/L, respectively, and the lowest MIC was 0.5 mg/L in both studies (Table 3). As before, the chlorhexidine/miconazole combination (MIC50 = 0.5 mg/L; MIC90 = 1.0 mg/L) had greater in vitro activity (P < 0.0005) than the combination of chlorhexidine and TrisEDTA.

Table 3. Minimal inhibitory concentrations (MICs) of chlorhexidine and miconazole in a 1:1 combination and chlorhexidine, tromethamine and ethylenediaminetetraacetic acid (EDTA) in an 80:5:1 ratio for 185 Staphylococcus pseudintermedius isolates from dogs
Drug Bacterial Type MIC/mg/L MIC50 MIC90
0.125 0.25 0.5 1 2 4 8 16
1:1 Chlorhexidine/miconazole NUK MRSP 0 0 43 6 0 0 Not tested Not tested 0.5 1
NUK MSSP 0 1 49 0 0 0 Not tested Not tested 0.5 0.5
SEUK MRSP 0 0 16 29 0 0 Not tested Not tested 1 1
SEUK MSSP 0 0 30 11 0 0 Not tested Not tested 0.5 1
Total 0 1 138 46 0 0 Not tested Not tested 0.5 1
80:5:1 chlorhexidine/tromethamine/EDTA NUK MRSP 0 0 0 18 20 1 0 0 2 4
NUK MSSP 0 0 0 35 14 1 0 0 1 2
SEUK MRSP 0 0 0 21 22 2 0 0 2 2
SEUK MSSP 0 0 1 23 15 2 0 0 1 2
Total 0 0 1 97 71 16 0 0 1 2
  • MRSP, meticillin-resistant S. pseudintermedius; MSSP, meticillin-susceptible S. pseudintermedius; NUK, isolates of northern UK origin; SEUK, isolates of southeastern UK origin.
  • NUK MRSP n = 49, NUK MSSP n = 50, SEUK MRSP n = 45, SEUK MSSP n = 41.
  • a MIC50 is equal to the median value.

Amongst the MSSP, NUK isolates were significantly more susceptible to all drugs (except 80:5:1 chlorhexidine/trisEDTA) than SEUK isolates (P < 0.05; Table 4). In the MRSP groups, SEUK isolates were significantly less susceptible to miconazole than NUK isolates (P > 0.0005); however, no significance was found in differences between NUK and SEUK MRSP for the other drugs.

Table 4. Comparisons (P-values) of minimal inhibitory concentrations of chlorhexidine, miconazole and combinations of chlorhexidine with either miconazole or tromethamine and ethylenediaminetetraacetic acid (EDTA) amongst Staphylococcus pseudintermedius isolates grouped by UK region (NUK and SEUK) and bacteria type (MRSP and MSSP)
Chlorhexidine Miconazole 1:1 Chlorhexidine/miconazole 80:16:1 Chlorhexidine/tromethamine/EDTA 80:5:1 Chlorhexidine/tromethamine/EDTA
NUK versus SEUK MRSP 0.128 <0.0005 0.098 0.470 0.254
NUK versus SEUK MSSP 0.008 <0.0005 0.002 0.014 0.118
MRSP versus MSSP NUK <0.0005 0.022 0.337 <0.0005 0.496
MRSP versus MSSP SEUK 0.789 <0.0005 0.644 0.060 0.124
  • a P value < 0.05 is considered significant. Significant values are in bold.
  • b n = 196 S. pseudintermedius isolates.
  • c n = 185 S. pseudintermedius isolates.

MRSP had significantly higher MICs of miconazole (NUK MRSP MIC90 = 0.5 mg/L, SEUK MRSP MIC90 = 1 mg/L) than MSSP (NUK MSSP MIC90 = 0.5 mg/L, SEUK MSSP MIC90 = 0.5 mg/L; P < 0.05; Table 4). NUK MRSP had significantly higher MICs of chlorhexidine and chlorhexidine/trisEDTA 80:16:1 combination when compared with MSSP; however, no differences were seen in other MRSP/MSSP comparisons (Table 4). Reference strains had MICs equal to or within one dilution of previously established values;5 the quality control MSSA isolate (B122) showed greater susceptibility to miconazole than previously determined, reflecting the overall increased susceptibility to miconazole seen in these results. MICs varied by a single dilution between replicates on only six occasions.

Discussion

Continued spread of MRSP and the potential for the emergence of tolerance to chlorhexidine8, 9 warrants the monitoring of the efficacy of these combination products. Further investigation into the interaction of these combinations may indicate whether additive or synergistic combinations can be used to delay development of resistance, as well as to improve the efficacy of chlorhexidine. The efficacy of miconazole in this study against staphylococci is not unexpected considering previous research documenting its anti-staphylococcal activity.21 The good activity of chlorhexidine and miconazole in combination against MRSP and MSSP is in accordance with and supports the results of a study of isolates originating from both the UK and Germany.5 Previously, both synergistic and additive effects have been observed with miconazole and chlorhexidine, whereas only additive effects were noted in the present study; these differences appear to reflect a somewhat higher activity of miconazole alone. A degree of variation is well recognized in MIC determinations even when standardized protocols are followed.22 Otherwise, MICs of field and reference strains were similar to values reported previously and there was good repeatability in the data within this study. The lower MICs and increased rates of additivity in this study indicated that the combination of miconazole/chlorhexidine is more efficacious in vitro than both tested combinations of trisEDTA/chlorhexidine.

The combination of trisEDTA with chlorhexidine resulted in lower MICs than with chlorhexidine alone (in most cases); however, this disparity appears modest in comparison to the enhancement seen when trisEDTA is combined with marbofloxacin or gentamicin against Pseudomonas aeruginosa.13 This may reflect a difference between the effect of TrisEDTA on Gram-positive and -negative bacteria, or could indicate that the mechanism of activity of chlorhexidine is not improved by the increased permeability afforded to the bacteria by the action of TrisEDTA. The mechanisms of interaction of these combinations warrants further investigation. The emergence of MRSP is attributed to the expansion of a few dominant lineages, rather than the acquisition of resistance genes by multiple lineages;1 this is similar to the clonal expansion of MRSA in human medicine. This may account for the lack of regional differences in MIC amongst this study's MRSP isolates. Greater regional variability in MSSP MICS is likely to reflect greater genetic diversity in this group,9 but the overall low MICs for both NUK and SEUK regions indicates that there should be no difference in response to treatment with these combinations according to region.

The low MICs in this study showed that chlorhexidine shampoos are rational choices for treatment of canine superficial pyoderma associated with S. pseudintermedius, including MRSP. The combination of chlorhexidine with miconazole showed apparent superiority over combination with trisEDTA in vitro, although product formulation, ability of the antiseptic to penetrate into the infected area of skin and client compliance may have confounding effects on treatment that must be investigated through in vivo studies. The very limited differences in susceptibility amongst MSSP and the apparent absence of regional differences amongst MRSP indicates that topical therapy remains an important option for veterinarians in the treatment of canine superficial pyoderma.

Acknowledgements

The authors thank Stephen Steen, CAPL Laboratories, for collection of some of the staphylococcal isolates for this study, and Anna Riddle and Joseph Kirk for skilled technical assistance.

      The full text of this article hosted at iucr.org is unavailable due to technical difficulties.