Geochemistry and Petrogenesis of Late Ediacaran Rare-metal Albite Granites of the Arabian-Nubian Shield
Corresponding Author
Bassam A. ABUAMARAH
Department of Geology and Geophysics, King Saud University, Riyadh, 11451 Saudi Arabia
Corresponding author. E-mail: [email protected]Search for more papers by this authorMokhles K. AZER
Geological Sciences Department, National Research Centre, Dokki, Cairo, 12622 Egypt
Search for more papers by this authorPaul D. ASIMOW
Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125 USA
Search for more papers by this authorHabes GHREFAT
Department of Geology and Geophysics, King Saud University, Riyadh, 11451 Saudi Arabia
Search for more papers by this authorHeba S. MUBARAK
Geological Sciences Department, National Research Centre, Dokki, Cairo, 12622 Egypt
Search for more papers by this authorCorresponding Author
Bassam A. ABUAMARAH
Department of Geology and Geophysics, King Saud University, Riyadh, 11451 Saudi Arabia
Corresponding author. E-mail: [email protected]Search for more papers by this authorMokhles K. AZER
Geological Sciences Department, National Research Centre, Dokki, Cairo, 12622 Egypt
Search for more papers by this authorPaul D. ASIMOW
Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125 USA
Search for more papers by this authorHabes GHREFAT
Department of Geology and Geophysics, King Saud University, Riyadh, 11451 Saudi Arabia
Search for more papers by this authorHeba S. MUBARAK
Geological Sciences Department, National Research Centre, Dokki, Cairo, 12622 Egypt
Search for more papers by this authorAbout the first and corresponding author:
Bassam A. ABUAMARAH, born in 1959 in Al Madina, Al Mounawarah, Saudi Arabia; B.Sc 1981 from King Saud Universitry; M.Phil. and Ph.D. 1990 from Manchester University, UK. Professor of geological sciences, specializing in the fields of mineralogy, petrology and geochemistry, with particulate interest the mineralogy, economic ore deposits, petrogenesis and geochemistry of the Arabian Shield. E-mail: [email protected].
Abstract
The Abu Dabbab albite granite (ADAG), in the central Eastern Desert of Egypt, hosts the most significant rare metal ore deposit in the northern part of the Neoproterozoic Arabian-Nubian Shield. Here, we report detailed field, petrographic, mineralogical and geochemical investigation of the ADAG, an isolated stock-like granitic body with sharp intrusive contacts against metamorphic country rocks, probably emplaced at about 600 Ma. The fine-grained porphyritic upper unit is a preserved remnant of the shallowly-emplaced apex of the magma chamber, whereas the medium-grained lower unit crystallized at deeper levels under subvolcanic conditions. The peraluminous leucocratic ADAG shares common geochemical characteristics with post-collisional intraplate A-type magmas. In addition to the conspicuous enrichment in Na2O, the ADAG is remarkable for its anomalous concentrations of Ta, Nb, Li, Hf, Ga, Sn, Zn and heavy rare-earth elements. Nb-Ta minerals in the ADAG are mixed with Fe-Mn oxides, forming black patches that increase in abundance toward of the base of the intrusion. Columbite-tantalite, cassiterite and wolframite are the most important ore minerals. Pronounced negative Eu anomalies (Eu/Eu∗ = 0.10–0.24) reflect extreme magmatic fractionation and perhaps the effects of late fluid-rock interaction. The ADAG was most likely generated by partial melting of the juvenile middle crust of the ANS as the geotherm was elevated by erosional uplift following lithospheric delamination and it was emplaced at the intersection of lineations of structural weakness. Although formation of the ADAG and its primary enrichment in rare metals are essentially due to magmatic processes, late-stage metasomatism caused limited redistribution of rare metals. Fluid-driven subsolidus modification was limited to the apex of the magma chamber and drove development of greisen, amazonite, and quartz veins along fracture systems.
References
- Abdalla, H.M., 2009. Mineralogical and geochemical characterization of beryl-bearing granitoids, Eastern Desert, Egypt. Metallogenic and Exploration Constraints. Resource Geology, 59(2): 121–139.
- Abdallah, S.E., Azer, M.K., and El Shammari, A.S., 2020. The petrological and geochemical evolution of Ediacaran rare-metal bearing A-type granites from Jabal Aja complex, northern Arabian Shield, Saudi Arabia. Acta Geologica Sinica (English Edition), 94(3): 743–762.
- Abdel-Rahman, A.M., 2006. Petrogenesis of anorogenic peralkaline granitic complexes from eastern Egypt. Mineralogical Magazine, 70: 27–50.
- Abou El Maaty, M.A., and Ali Bik, M.W., 2000. Petrology of alkali feldspar granites of Nuweibi and Gebel El-Mueilha, central Eastern Desert, Egypt. Egyptian Journal of Geology, 44: 127–148.
- Abu El-Rus, M.A., Mohamed, M.A., and Lindh, A., 2017. Mueilha rare metals granite, Eastern Desert of Egypt: An example of a magmatic-hydrothermal system in the Arabian-Nubian Shield. Lithos, 294–295: 362–382.
- Abuamarah, B.A., 2020. Genesis and petrology of postcollisional rare-metal-bearing granites in the Arabian Shield: A case study of Aja Ring Complex, Northern Saudi Arabia. The Journal of Geology, 128(2): 131–56.
- Abuamarah, B.A., Azer, M.K., Asimow, P.D., and Shi, Q., 2020. Petrogenesis of the post-collisional rare-metal-bearing Ad-Dayheen granite intrusion, Central Arabian Shield. Lithos, 105956.
- Ali, B.H., Wilde, S.A., and Gabr, M.M.A., 2009. Granitoid evolution in Sinai, Egypt, based on precise SHRIMP U-Pb zircon geochronology. Gondwana Research, 15: 38–48.
- Ali, K.A., Azer, M.K., Gahlan, H.A., Wilde, S.A., Samuel, M.D., and Stern, R.J., 2010. Age constraints on the formation and emplacement of Neoproterozoic ophiolites along the Allaqi-Heiani suture, South Eastern Desert of Egypt. Gondwana Research, 18: 583–595.
- Ali, K.A., Jeon, H., Li, A., Andresen, S.Q., Harbi, H.M., and Hegner, E., 2014. U-Pb zircon geochronology and Nd-Hf-O isotopic systematics of the Neoproterozoic Hadbadh Dayheen ring complex, Central Arabian Shield, Saudi Arabia. Lithos, 206–207: 348–360.
- Ali, K.A., Surour, A.A., Whitehouse, M.J. and Andresen, A., 2015. Single zircon Hf-O isotope constraints on the origin of A-type granites from the Jabal Al-Hassir ring complex, Saudi Arabia. Precambrian Research, 256: 131–147.
- Antipin, V.S., Kuzmin, M.I., Odgerel, D., Kousch, L.V. and Perepelov, A.B., 2018. Geochemical evolution and ore-bearing metasomatic rocks of the Baga-Gazryn multiphase massif of rare-metal Li-F granites (Mongolia). Doklady Earth Sciences, 483 (PT. 1): 1468–1472.
- Arslan, A.I., Helba, H.A., Khalil, S.O., and Morteani, G., 1997. Bedrock geochemical prospecting and ore potentiality of the rare metal-bearing granite at Nuweibi area, central Eastern Desert, Egypt. The Third Conference on Geochemistry, Alexandria University, Alexandria-Egypt: 375–387.
- Asran, M.H.A., 1985. Geology, petrography and geochemistry of the apogranites at Nuweibi and Abu Dabbab areas, Eastern Desert, Egypt. Egypt: Assiut University (Master thesis): 1–149.
- Azer, M.K., 2013. Late Ediacaran (605–580 Ma) post-collisional alkaline magmatism in the Arabian-Nubian Shield: A case study of Serbal ring-shaped intrusion, southern Sinai, Egypt. Journal of Asian Earth Sciences, 77: 203–223.
- Azer, M.K., Abdelfadil, K.M. and Ramadan, A.A., 2019a. Geochemistry and petrogenesis of Late Ediacaran rare-metal albite granite of the Nubian Shield: Case study of Nuweibi intrusion, Eastern Desert, Egypt. The Journal of Geology, 127 (6): 665–689.
- Azer, M.K., Abdelfadil, K.M., Asimow, P.D. and Khalil, A.E., 2020. Tracking the transition from subduction-related to post-collisional magmatism in the north Arabian-Nubian Shield: A case study from the Homrit Waggat area of the Eastern Desert of Egypt. Geological Journal, 55(6): 4426–4452.
- Azer, M.K., Gahlan, H.A., Asimow, P.D., and Al-Kahtany, K.M., 2019b. The common origin and alteration history of the hypabyssal and volcanic phases of the Wadi Tarr Albitite Complex, southern Sinai, Egypt. Lithos, 324–325: 821–841.
- Azer, M.K., Obeid, M.A., and Ren, M., 2014. Geochemistry and petrogenesis of late Ediacaran (580–605 Ma) post-collisional alkaline rocks from Katherina Ring complex, south Sinai., Egypt. Journal of Asian Earth Sciences, 93: 229–252.
- Azer, M.K., Stern, R.J., and Kimura, J.I., 2010. Origin of a Late Neoproterozoic (605 ± 13 Ma) intrusive carbonate-albitite complex in Southern Sinai, Egypt. International Journal of Earth Sciences, 99: 245–267.
- Barboni, M., and Bussy, F., 2013. Petrogenesis of magmatic albite granites associated to cogenetic A-type granites: Narich residual melt extraction from a partially crystallized A-type granite mush. Lithos, 177: 328–351.
- Basta, F.F., Maurice, A.E., Betros, B.R., Azer, M.K., and El-Sobky, A., 2017. Intrusive rocks of the Wadi Hamad Area, North Eastern Desert, Egypt: Change of magma composition with maturity of Neoproterozoic continental island arc and the role of collisional plutonism in the differentiation of arc crust. Lithos, 288–289: 248–263.
- Batchelor, R.A. and Bowden, P., 1985. Petrogenetic interpretation of granitoid rock series, using multicationic parameters. Chemical Geology, 48: 43–45.
- Be'eri-Shlevin, Y., Katzir, Y., and Whitehouse M., 2009. Post-collisional tectono-magmatic evolution in the northern Arabian-Nubian Shield (ANS): Time constraints from ion-probe U-Pb dating of zircon. Journal of Geological Society of London, 166: 71–85.
- Beus, A.A., 1968. Geochemical specialization of magmatic complexes as criteria for the exploration of hidden complexes. 23rd Internal Geological Congress, Prague, 6: 101–105.
- Beus, A.A., 1982. Metallogeny of Precambrian rare-metal granitoids. Revista Brasileira de Geociências, 12: 410–413.
- Beyth, M., Stern, R.J., Altherr, R., and Kröner, A., 1994. The late Precambrian Timna igneous complex Southern Israel: Evidence for comagmatic-type sanukitoid monzodiorite and alkali granite magma. Lithos, 31: 103–124.
- Bonin, B., 2007. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, 97: 1–29.
- Boskabadi, A., Pitcairn, I.K., Broman, C., Boyce, A., Teagle, D.A.H., Cooper, M.J., Azer, M.K., Stern, R.J., Mohamed, F.H., and Majka, J., 2017. Carbonate alteration of ophiolitic rocks in the Arabian-Nubian Shield of Egypt: Sources and compositions of the carbonating fluid and implications for the formation of Au deposits. International Geology Review, 59 (4): 391–419.
- Cathelineau, M., 1988. Accessory mineral alteration in peraluminous granites at the hydrothermal stage: A review. Rendiconti della Società Italiana di Mineralogiae Petrologia, 43: 499–508.
- Černý, P., 1992. Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research. Applied Geochemistry, 7: 393–416.
- Chaudhri, N., Kaur, P., Okrusch, M., and Schimrosczyk, A., 2003. Characterization of the Dabla granitoids, North Khetri Copper Belt, Rajasthan, India: Evidence of bimodal anorogenic felsic magmatism. Gondwana Research, 6: 879–895.
- Chauris, L., 1985. Premières données géochimiques sur les albitites metasomatiques des environs de Brest (Finistère, France). Bulletin Societé Géologique de France, 8: 885–889.
10.2113/gssgfbull.I.6.885 Google Scholar
- Clemens, J.D., Holloway, J.R., and White, A.J.R., 1986. Origin of an A-type granites: Experimental constraints. American Mineralogist, 71: 317–324.
- Collins, W.J., Beams, S.D., White, A.J.R., and Chappell, B.W., 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contribution to Mineralogy and Petrology, 80: 189–200.
- Creaser, R.A., Price, R.C., and Wormald, R.J., 1991. A-type granites revisited: Assessment of a residual-source model. Geology, 19: 163–166.
- Dahlquist, J.A., Alasino, P.H., and Bello, C., 2014. Devonian F-rich peraluminous A-type magmatism in the proto-Andean foreland (Sierras Pampeanas, Argentina): Geochemical constraints and petrogenesis from the western-central region of the Achala batholith. Mineralogy and Petrology, 108: 391–417.
- De la Roche, H., Leterrier, J., Grandclaude, P., and Marchal, M., 1980. A classification of volcanic and plutonic rocks using R1-R2 diagrams and major-element analyses—its relationships with current nomenclature. Chemical Geology, 29: 183–210.
- Demange, M., 1975. Zonation métasomatique autour des albitites de la région de Saint Chély d'Apcher (Lozère). Bulletin de Minéralogie, 98: 186–190.
- du Bray, E.A., 1994. Compositions of micas in peraluminous granitoids of the eastern Arabian shield. Contributions to Mineralogy and Petrology, 116: 381–397.
- Eby, G.N., 1990. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 26: 115–134.
- Eby, G.N., 1992. Chemical subdivisions of the A-type granitoids: Petrogenesis and tectonic implications. Geology, 20: 641–644.
- El Hadek, H.H., Mohamed, M.A., El Habaak, G.H., Bishara, W.W., and Ali, K.A., 2016. Geochemical constraints on petrogenesis of Homrit Waggat rare metal granite, Egypt. International Journal of Geophysics and Geochemistry, 3(4): 33–48.
- El Maghraoui, M., Joron, J.L., Raimbault, L., and Treuil, M., 2002. Element mobility during metasomatism of granitic rocks in the Saint-Chély d'Apcher area (Lozère, France). Environment International, 28: 349–357.
- El-Tabal, H.K., 1979. Mineralogical studies on some rare metal apogranites from Nuweibi and Abu Dabbab areas, Eastern Desert, Egypt. Cairo: Al-Azhar University (Master thesis): 1–112.
- Evensen, N.M., Hamilton, P.J., and O'Nions, R.K., 1978. Rare earth abundances in chondritic meteorites. Geochimica et Cosmochimica Acta, 42: 1199–1212.
- Eyal, M., Litvinovsky, B., Jahn, B.M., Zanvilevich, A., and Katzir, Y., 2010. Origin and evolution of post-collisional magmatism: Coeval Neoproterozoic calc-alkaline and alkaline suites of the Sinai Peninsula. Chemical Geology, 269: 153–179.
- Farahat, E.S., Mohamed, H.A., Ahmed, A.F., and El Mahallawi, M.M. 2007. Origin of I- and A-type granitoids from the Eastern Desert of Egypt: Implications for crustal growth in the northern Arabian-Nubian Shield. Journal of African Earth Sciences, 49: 43–58.
- Gahlan, H.A., Azer, M.K., Asimow, P.D., and Al-Kahtany, K., 2016. Late Ediacaran post-collisional A-type syenites with shoshonitic affinities, northern Arabian-Nubian Shield: A possible mantle-derived A-type magma. Arabian Journal of Geosciences, 9: 603.
- Haapala, I., Frindt, S., and Kandara, J., 2007. Cretaceous gross spitzkoppe and klein spitzkoppe stocks in Namibia: Topaz-bearing A-type granites related to continental rifting and mantle plume. Lithos, 97: 174–192.
- Hanson, G.N., 1978. The application of trace elements to the petrogenesis of igneous rocks of granitic composition. Earth planetary Sciences and Letters, 38: 26–43.
- Hanson, G.N., 1980. Rare earth elements in petrogenetic studies of igneous systems. Annual Review of Earth and Planetary Sciences, 8: 371–406.
- Harris, N.B., Pearce, J.A., and Tindle, A.G., 1986. Geochemical characteristics of collision-zone magmatism. In: M.P. Coward and A.C. Ries (eds.), Collision Tectonics. Journal of Geological Society, London, Special Publication, 19: 67–81.
- Hassanen, M.A., Saad, N.A., and Khalefa, O.M., 1995. Geochemical aspects and origin of Tin-bearing granites in the Eastern Desert, Egypt. Acta Mineralogica-Petrographica, 36: 55–72.
- Heikal, M.Th.S., Gomaa, S.R., Abd El Monsef, M., Taha, A.A., Top, G., Mahmoud, K.R., and El-Mansi, M.M., 2018. Insight on radiological risk assessment and its statistical evaluations for Abu Dabbab albite granite mining area, Central Nubian Shield, Egypt. Arab Journal of Nuclear Sciences and Applications, 51 (4): 143–167.
- Helba, H., Trumbull, R.B., Morteani, G., Khalil, S.O., and Arslan, A., 1997. Geochemical and petrographic studies of Ta mineralization in the Nuweibi albite granite complex, Eastern Desert, Egypt. Mineralium Deposita, 32(2): 164–179.
- Helba, H., 1994. Geochemical prospecting for rare metals in Nuweibi area, central Eastern Desert, Egypt. Egypt: Alexandria University (Ph. D thesis): 1–145.
- Holtz, F., Behrens, H., Dingwell, D.B., and Taylor, R.P., 1992. Water solubility in aluminosilicate melts of haplogranite composition at 2 kbar. Chemical Geology, 96: 289–302.
- Irber, W., 1999. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu∗, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochimica et Cosmochimica Acta, 63: 89–508.
- Irber, W., Möller, P., and Dulski, P., 1994. Two types of lanthanide tetrad effects observed in felsic igneous rocks. European Journal of Mineralogy, 1: 122.
- Jahn, B.M., Wu, F.Y., Capdevila, R., Martineau, F., Zhao, Z., and Wang, Y., 2001. Highly evolved juvenile granites with tetrad REE patterns: The Woduhe and Baerzhe granite from the Great Xing'an Mountains in NE China. Lithos, 59: 171–198.
- Jahn, S., 1996. Geochemische und mineralogische Untersuchungen zur Metallogenese Seltenmetall-führender Granitoide in der Central Eastern Desert, Ägypten. Technische Universität Berlin (Ph. D thesis): 1–271.
- Jarrar, G.H., Manton, W.I., Stern, R.J., and Zachmann F., 2008. Late Neoproterozoic A-type granites in the northernmost Arabian-Nubian Shield formed by fractionation of basaltic melts. Chemie der Erde, 68: 295–312.
- Johnson, P.R., 2003. Post-amalgamation basins of the NE Arabian shield and implications for Neoproterozoic III tectonism in the northern East African orogen. Precambrian Research, 123: 321–338.
- Johnson, P.R., and Woldehaimanot, B., 2003. Development of the Arabian Nubian Shield: Perspectives on accretion and deformation in the East African Orogen and the assembly of Gondwana. In: M. Yoshida, B.F. Windley, and S. Dasgupta (eds.), Proterozoic East Gondwana: Supercontinent Assembly and Breakup. Geological Society, London, Special Publication, London, 289–325.
- Johnson, P.R., Halverson, G.P., Kusky, T.M., Stern, R.J., and Pease, V. 2013. Volcanosedimentary basins in the Arabian-Nubian Shield: Markers of repeated exhumation and denudation in a Neoproterozoic accretionary orogen. Geosciences, 3: 389–445.
10.3390/geosciences3030389 Google Scholar
- Kamel, O.A., and E1Tabbal, H.K., 1980. Petrology and mineralogy of Nuweibi and Abu Dabbab rare metal apogranites, Eastern Desert, Egypt. Proceeding of Geodynamic Evolution of the Afro-Arabic Rift System, 47: 685–705.
- Katzir, Y., Eyal, M., Litvinovsky, B.A., Jahn, B.M., Zanilevich, A.N., Valley, J.W., Beeri, Y., and Shimshilashvili, E., 2007. Petrogenesis of A-type granites and origin of vertical zoning in the Katharina pluton, Gebel Mussa (Mt. Moses) area, Sinai, Egypt. Lithos, 95: 208–228.
- Kessel, R., Stein, M., and Navon, O., 1998. Petrogenesis of late Neoproterozoic dikes in the northern Arabian-Nubian Shield: Implications for the Origin of A-type granites. Precambrian Research, 92: 195–213.
- Khalil, A.E.S., Obeid, M.A. and Azer, M.K., 2014. Serpentinized peridotites at the north part of Wadi Allaqi district (Egypt): Implications for the tectono-magmatic evolution of fore-arc crust. Acta Geologica Sinica (English Edition), 88(5): 1421–1436.
- Khalil, A.E.S., Obeid, M.A., Azer, M.K., and Asimow, P.D., 2018. Geochemistry and petrogenesis of post-collisional alkaline and peralkaline granites of the Arabian-Nubian Shield: A case study from the southern tip of Sinai Peninsula, Egypt. International Geology Review, 60(8): 998–1018.
- King, P.L., White, A.J.R., Chappell, B.W., and Allen, C.M., 1997. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia. Journal of Petrology, 38: 371–391.
- Kovalenko, V.I., and Kovalenko, N.I., 1984. Problems of the origin, ore bearing and evolution of rare-metal granites. Physics of the Earth and Planetary Interiors, 35: 51–62.
- Küster, D., 2009. Granitoid-hosted Ta mineralization in the Arabian-Nubian Shield: Ore deposit types, tectonometallogenetic setting and petrogenetic framework. Ore Geology Review, 35: 68–86.
- Lee, S.G., Asahara, Y., Tanaka, T., Lee, S.R., and Lee, T., 2013. Geochemical significance of the Rb-Sr, La-Ce and Sm-Nd isotope systems in A-type rocks with REE tetrad patterns and negative Eu and Ce anomalies: The Cretaceous Muamsa and Weolaksan granites, South Korea. Chemie der Erde – Geochemistry, 73: 75–88.
- Liégeois, J.P., and Black, R., 1987. Alkaline magmatism subsequent to collision in the Pan-African belt of the Adrar des Iforas. In: J.G. Fitton, and B.G.J. Upton (eds.), Alkaline Igneous Rocks. Geological Society, Special Publication, 30: 381–401.
- Liégeois, J.P., Navez, J., Black, R., and Hertogen, J., 1998. Contrasting origin of post-collision high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization. Lithos, 45: 1–28.
- London, D., 1987. Internal differentiation of rare element pegmatites: Effects of boron, phosphorus, and fluorine. Geochimica et Cosmochimica Acta, 51: 403–420.
- London, D., Morgan, G.B., Paul, K.A., and Guttery, B.M., 2012. Internal evolution of miarolitic granitic pegmatites at the Little Three Mine, Ramona, California, USA. Canadian Mineralogist, 50: 1025–1054.
- Lundstrom, C.C., 2016. The role of thermal migration and low-temperature melt in granitoid formation: Can granite form without rhyolitic melt? International Geology Review, 58(3): 371–388.
- Manning, D.A.C., 1981. The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1 kb. Contribution to Mineralogy and Petrology, 76: 206–215.
- McKay, G.A., 1989. Partitioning of rare earth elements between major silicate minerals and basaltic melts. In: B.R. Lipin and G.A. McKay (eds.), Geochemistry and mineralogy of rare earth elements. Mineralogical Society of America, 21: 45–77.
10.1515/9781501509032-006 Google Scholar
- Mechie, J., and Prodehl, C., 1988. Crustal and uppermost mantle structure beneath the Afro-Arabian rift system. Tectonophysics, 153: 103–121.
- Meert, J.G., 2003. A synopsis of events related to the assembly of eastern Gondwana. Tectonophysics, 362: 1–40.
- Miller, C.F., Stoddard, E.F., Bradfish, L.J., and Dollase, W.A., 1981. Composition of plutonic muscovite: Genetic implications. Canadian Mineralogist, 19(1): 25–34.
- Mittlefehldt, D.W., and Miller, C.F., 1983. Geochemistry of the Sweetwater Wash pluton, California: Implications for “anomalous” trace element behaviour during differentiation of felsic magmas. Geochimica et Cosmochimica Acta, 47: 109–124.
- Moghazi, A.K.M., Iaccheri, L.M., Bakhsh, R.A., Kotov, A.B., and Ali, K.A., 2015. Sources of rare-metal-bearing A-type granites from Jabel Sayed complex, Northern Arabian Shield, Saudi Arabia. Journal of Asian Earth Sciences, 107: 244–258.
- Mohamed, A.M., 2013. Immiscibility between silicate magma and aqueous fluids in Egyptian raremetal granites: Melt and fluid inclusions study. Arabian Journal of Geosciences, 6(10): 15–25.
- Mohamed, F.H., 1993. Rare-metal-bearing and barren granites, Eastern Desert of Egypt: Geochemical characterization and metallogenetic aspects. Journal of African Earth Sciences, 17: 525–539.
- Möller, P., and Muecke, G.K., 1984. Significance of Europium anomalies in silicate melts and crystal-melt equilibria: A reevaluation. Contribution to Mineralogy and Petrology, 87: 242–250.
- Morag, N., Avigad, D., Gerdes, A., Belousova, E., and Harlavan, Y., 2011. Crustal evolution and recycling in the northern Arabian-Nubian Shield: New perspectives from zircon Lu-Hf and U-Pb systematics. Precambrian Research, 186: 101–116.
- Mushkin, A., Navon, O., Halicz, L., Heimann, A., Woerner, G., and Stein, M., 1999. Geology and geochronology of the Amram Massif, southern Negev Desert, Israel. Israel Journal of Earth Sciences, 48: 179–193.
- Mushkin, A., Navon, O., Halicz, L., Hartmann, G., and Stein, M., 2003. The petrogenesis of A-type magmas from the Amram Massif, southern Israel. Journal of Petrology, 44(5): 815–832.
- Müller, A., and Seltmann, R., 1999. The genetic significance of snowball quartz in high fractionated tin granites of the Krušne Hory/Erzgebirge Mineral deposits processes to processing, 1: 409–412.
- Olade, M.A., 1980. Geochemical characteristics of tin bearing and tin-barren granites, northern Nigeria. Economic Geology, 75: 71–82.
- Patiño Douce, A.E., 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In: A. Castro, C. Fernandez and J. Vigneresse (eds.), Understanding Granites: Integrating New and Classical Techniques. Geological Society, London, Special Publications, 168: 55–75.
- Pearce, J.A., 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins. In: C.J. Hawkesworth, and M.J. Norry (eds.), Continental Basalts and Mantle Xenoliths. Shiva, Nantwich, 230–249.
- Pearce, J.A., Harris, N.B.W., and Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25: 956–983.
- Pichavant, M., and Manning, D., 1984. Petrogenesis of tourmaline granites and topaz granites; the contribution of experimental data. Physics of the Earth and Planetary Interiors, 35: 31–50.
- Pollard, P.J., 1989. Geologic characteristics and genetic problems associated with the development of granite-hosted deposits of tantalum and niobium. In: P. Möller, P. Cerny, and F. Saupe (eds.), Lanthanides, tantalum and niobium, Springer New York Berlin Heidelberg, 240–256.
- Qadhi, T.M., 2007. Geochemical evolution of rare metal-bearing A-type granites from the Aja batholith, Hail Terrain, Saudi Arabia. Journal of Geological Society of India, 70(5): 714.
- Ramsay, C.R., 1986. Specialized felsic plutonic rocks of the Arabian Shield and their precursors. Journal of African Earth Sciences, 4: 153–168.
- Renno, A., 1997. Zur Petrogenese der Albitgranite von Abu Dabbab und Nuweibi, Central Eastern Desert, Ägypten. Berlin: Technische Universität Berlin (Unpublished PhD thesis): 1–216.
- Renno, A.D., Schmidt, W., and Shalaby, I.M., 1993. Rare-metal province cental Eastern Desert, Egypt. II A-Type granites of Abu Dabbab, Igla and Nuweibi. In: U. Thorweih, and H. Schandelmeier (eds.), geosciencentific research in NE Africa. Balkema, Rotterdam, Brookfield, 483–488.
- Riad, A.M., 1979. Geology and petrology on some apogranite occurrence, Nuweibi area, Eastern Desert, Egypt. Cairo, Egypt: Al-Azhar University (Master thesis): 117.
- Richard, L.R., 1995. Mineralogical and petrological data processing system. Minpet Software (c) 1988–1995, Version 2.02.
- Rugless, C.S., and Pirajno, F., 1996. Geology and geochemistry of the Copperhead albitite “carbonate” complex, east Kimberley, Western Australia. Australian Journal of Earth Sciences, 43: 311–322.
- Sabet, A.H., Tsogoev, V.B., Sarin, L.P., and Azazi, S.A., 1976. Tin-tantalum deposit of Abu Dabbab. Annals of Geological Survey of Egypt, VI: 93–118.
- Samuel, M.D., Moussa, H.E., Azer, M.K., and Ghabrial, D.S., 2019. Geochemical constraints of the Ediacaran volcano-sedimentary succession at Wadi Zaghra, Sa'al Metamorphic Complex, South Sinai, Egypt. Acta Geologica Sinica (English Edition), 93(1): 50–73.
- Schwartz, M.O., 1992. Geochemical criteria for distinguishing magmatic and metasomatic albite-enrichment in granitoids: Examples from the Ta-Li granite Yichun (China) and the Sn-W deposit Tikus (Indonesia). Mineralium Deposita, 27: 101–108.
- Seddik, A.M., Darwish, M.H., Azer, M.K., and Asimow, P.D., 2020. Assessment of magmatic versus post-magmatic processes in the Mueilha rare-metal granite, Eastern Desert of Egypt, Arabian-Nubian Shield. Lithos, 366–367: 105542.
- Sherif, M.I., Ghoneim, M.F., Heikal, M.T.S., and El Dosuky, B.T., 2013. Perogenesis of granites, Sharm El-Sheikh area, South Sinai, Egypt: Petrological constrains and tectonic evolution. Mineralogy and Petrology, 107: 765–783.
- Sklyarov, E.V., Gladkochub, D.P., Kotov, A.B., Starikova, A.E., Sharygin, V.V., Velikoslavinsky, S.D., Larin, A.M., Mazukabzov, A.M., Tolmacheva, E.V., and Khromova, E.A., 2016. Genesis of the Katugin rare-metal ore deposit: Magmatism versus metasomatism. Russian Journal of Pacific Geology, 10(3): 155–167.
- Srivastava, P.K., Gupta, Y.P., and Qazi, M.A., 2007. Geochemistry of rare metal bearing A-type Dhanota Granite, Mahendragarh District, Haryana. Journal of Geological Society of India, 70(2): 265.
- Stern, R.J., 1985. The Najd Fault System, Saudi Arabia and Egypt: A late Precambrian rift-related transform system. Tectonics, 4: 497–511.
- Stern, R.J., 1994. Arc assembly and continental collision in the Neoproterozoic East African Orogen: Implications for the consolidation of Gondwanaland. Annual Reviews of Earth and Planetary Science, 22: 319–351.
- Stern R.J., and Gottfried, D., 1986. Petrogenesis of a Late Precambrian (575-600 Ma) bimodal suite in Northeast Africa. Contribution to Mineralogy and Petrology, 92: 492–501.
- Stern, R.J., and Hedge, C.E., 1985. Geochronologic constraints on late Precambrian crustal evolution in the Eastern Desert of Egypt. American Journal of Science, 285: 97–127.
- Stern, R.J., and Voegeli, D.A., 1987. Geochemistry, geochronology, and petrogenesis of a late Precambrian (∼590 Ma) composite dike from the North Eastern Desert of Egypt. Geological Rundschau, 76: 325–341.
- Stoeser, D.B., and Frost, C.D., 2006. Nd, Pb, Sr, and O isotopic characterization of Saudi Arabian Shield terranes. Chemical Geology, 226: 163–188.
- Sylvester, P.J., 1989. Post-collisional alkaline granites. Journal of Geology, 97: 261–280.
- Tao, J., Li, W., Cai, Y., and Cen, T., 2014. Mineralogical feature and geological significance of muscovites from the Longyuanba Indosinian and Yanshannian two-mica granites in the eastern Nanling Range. Science China Earth Sciences, 57: 1150–1157.
- Tischendorf, G., 1977. Geochemical and petrographic characteristics of silicic magmatic rocks associated with rare-metal mineralization. In: M. Stemprok, L. Burnol and G. Tischendorf (eds.), Metalization Associated with Acid Magmatism 2, Usterdni Ustav Geologicky, Prague, 41–98.
- Tkachev, A.V., 2011. Evolution of metallogeny of granitic pegmatites associated with orogens throughout geological time. Geological Society of London, Special Publications, 350 (1): 7–23.
- Tollo, R.P., Aleinikoff, J.N., Bartholomew, M.J., and Rankin, D.W., 2004. Neoproterozoic A-type granitoids of the central and southern Appalachians: Intraplate magmatism associated with episodic rifting of the Rodinian supercontinent. Precambrian Research, 128: 3–38.
- Vance, J.A., 1969. On synneusis. Contributions to Mineralogy and Petrology, 24: 7–29.
- Webb, P.C., Tindle, A.G., Barritt, S.D., Brown, G.C., and Miller, J.F., 1985. Radiothermal granites of the United Kingdom: comparison of fractionation patterns and variation of heat production for selected granites. Institution of Mining and Metallurgy, Special Publications, 409–424.
- Whalen, J.B., Currie, K.L., and Chappell, B.W., 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contribution to Mineralogy and Petrology, 95: 407–419.
- Winkler, H.G.F., Boese, M., and Marcopoulos, T., 1975. Low temperature granite melts. Neues Jahrbuch für Mineralogie. Monatshefte, 6: 245–268.
- Wu, F.Y., Sun, D.Y., Li, H., Jahn, B.M., and Wilde, S., 2002. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis. Chemical Geology, 187: 143–173.
- Yang, G., Li, Y., Wu, H., Zhong, X., Yang, B., Yan, C., Yan, J., and Si, G. 2011. Geochronological and geochemical constrains on petrogenesis of the Huangyangshan A-type granite from the East Junggar, Xinjiang, NW China. Journal of Asian Earth Sciences, 40: 722–736.
- Zhao, Z.H., Xiong, X.L., Han, X.D., Wang, Y.X., Wang, Q., Bao, Z.W., and Jahn, B.M., 2002. Controls on the REE tetrad effect in granites: Evidence from the Qianlishan and Baerzhe granites, China. Geochemical Journal, 36: 527–543.
- Zhu, Y.F., Zeng, Y., and Gu, L., 2006. Geochemistry of the rare metal-bearing pegmatite No. 3 vein and related granites in the Keketuohai region, Altay Mountains, northwest China. Journal of Asian Earth Sciences, 27(1): 61–77.
- Zhu, Z., Wang, R., Marignac, C., Cuney, M., Mercadier, J., Che, X., and Lespinasse, M.Y., 2018. A new style of rare metal granite with Nb-rich mica: The Early Cretaceous Huangshan rare-metal granite suite, northeast Jiangxi Province, southeast China. American Mineralogist, 103(10): 1530–1544.