Volume 95, Issue 2 pp. 459-480
Original Article
Full Access

Geochemistry and Petrogenesis of Late Ediacaran Rare-metal Albite Granites of the Arabian-Nubian Shield

Bassam A. ABUAMARAH

Corresponding Author

Bassam A. ABUAMARAH

Department of Geology and Geophysics, King Saud University, Riyadh, 11451 Saudi Arabia

Corresponding author. E-mail: [email protected]Search for more papers by this author
Mokhles K. AZER

Mokhles K. AZER

Geological Sciences Department, National Research Centre, Dokki, Cairo, 12622 Egypt

Search for more papers by this author
Paul D. ASIMOW

Paul D. ASIMOW

Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125 USA

Search for more papers by this author
Habes GHREFAT

Habes GHREFAT

Department of Geology and Geophysics, King Saud University, Riyadh, 11451 Saudi Arabia

Search for more papers by this author
Heba S. MUBARAK

Heba S. MUBARAK

Geological Sciences Department, National Research Centre, Dokki, Cairo, 12622 Egypt

Search for more papers by this author
First published: 03 October 2019
Citations: 5

About the first and corresponding author:

Bassam A. ABUAMARAH, born in 1959 in Al Madina, Al Mounawarah, Saudi Arabia; B.Sc 1981 from King Saud Universitry; M.Phil. and Ph.D. 1990 from Manchester University, UK. Professor of geological sciences, specializing in the fields of mineralogy, petrology and geochemistry, with particulate interest the mineralogy, economic ore deposits, petrogenesis and geochemistry of the Arabian Shield. E-mail: [email protected].

Abstract

The Abu Dabbab albite granite (ADAG), in the central Eastern Desert of Egypt, hosts the most significant rare metal ore deposit in the northern part of the Neoproterozoic Arabian-Nubian Shield. Here, we report detailed field, petrographic, mineralogical and geochemical investigation of the ADAG, an isolated stock-like granitic body with sharp intrusive contacts against metamorphic country rocks, probably emplaced at about 600 Ma. The fine-grained porphyritic upper unit is a preserved remnant of the shallowly-emplaced apex of the magma chamber, whereas the medium-grained lower unit crystallized at deeper levels under subvolcanic conditions. The peraluminous leucocratic ADAG shares common geochemical characteristics with post-collisional intraplate A-type magmas. In addition to the conspicuous enrichment in Na2O, the ADAG is remarkable for its anomalous concentrations of Ta, Nb, Li, Hf, Ga, Sn, Zn and heavy rare-earth elements. Nb-Ta minerals in the ADAG are mixed with Fe-Mn oxides, forming black patches that increase in abundance toward of the base of the intrusion. Columbite-tantalite, cassiterite and wolframite are the most important ore minerals. Pronounced negative Eu anomalies (Eu/Eu = 0.10–0.24) reflect extreme magmatic fractionation and perhaps the effects of late fluid-rock interaction. The ADAG was most likely generated by partial melting of the juvenile middle crust of the ANS as the geotherm was elevated by erosional uplift following lithospheric delamination and it was emplaced at the intersection of lineations of structural weakness. Although formation of the ADAG and its primary enrichment in rare metals are essentially due to magmatic processes, late-stage metasomatism caused limited redistribution of rare metals. Fluid-driven subsolidus modification was limited to the apex of the magma chamber and drove development of greisen, amazonite, and quartz veins along fracture systems.

 

    The full text of this article hosted at iucr.org is unavailable due to technical difficulties.