REE Tetrad Effect as a Powerful Indicator of Formation Conditions of Karst Bauxites: A Case Study of the Shahindezh Deposit, NW Iran
Corresponding Author
Ali ABEDINI
Department of Geology, Faculty of Sciences, Urmia University, 5756151818 Urmia Iran
Corresponding author. E-mail: [email protected] and [email protected]Search for more papers by this authorMansour REZAEI AZIZI
Department of Geology, Faculty of Sciences, Urmia University, 5756151818 Urmia Iran
Search for more papers by this authorAli Asghar CALAGARI
Department of Earth Sciences, Faculty of Natural Sciences, University of Tabriz, 5166616471 Tabriz Iran
Search for more papers by this authorCorresponding Author
Ali ABEDINI
Department of Geology, Faculty of Sciences, Urmia University, 5756151818 Urmia Iran
Corresponding author. E-mail: [email protected] and [email protected]Search for more papers by this authorMansour REZAEI AZIZI
Department of Geology, Faculty of Sciences, Urmia University, 5756151818 Urmia Iran
Search for more papers by this authorAli Asghar CALAGARI
Department of Earth Sciences, Faculty of Natural Sciences, University of Tabriz, 5166616471 Tabriz Iran
Search for more papers by this authorAbout the first and corresponding author:
Ali ABEDINI: an associate professor in the Department of Geology, Faculty of Sciences, Urmia University, Iran. He specializes in economic geology and applied geochemistry and is the author and coauthor of 235 papers on the geology of Iran.
Abstract
Study of the concentration of major, trace, and rare earth elements (REE) in the Shahindezh karst bauxite deposit, northwestern Iran clarifies the relationship of the tetrad effect with geochemical parameters in the bauxite ores. The existence of irregular curves in the chondrite-normalized REE patterns as well as non-CHARAC behavior of geochemically isovalent pairs (Y/Ho) are related to the tetrad effect. The meaningful positive correlation between the sizes of the calculated T3 tetrad effect and some geochemical factors such as Y/Ho, ΣREE, La/Y, (La/Yb)N, and (LREE/HREE)N as well as some major oxides-based parameters like Al2O3 + LOI/SiO2 + Fe2O3, Al2O3/Fe2O3, Al2O3 + LOI, IOL, and SiO2 + Fe2O3 indicate that the studied bauxite horizon was likely deposited by different (acidic and/or alkalic) solutions at different stages. The lower part of the studied horizon with a thickness of ∼4.7 m displays alkali characteristics whereas the upper parts of the horizon with a thickness of ∼5.3 m are characterized by more acidic conditions. These results are fully supported by the co-occurrence of convex-concave tetrad effect curves in the chondrite-normalized REE patterns. Therefore, the tetrad effect phenomenon used in this study has proved to be a good and reliable geochemical proxy to assess the conditions of the depositional environment in the Shahindezh bauxite ores.
References
- Abedini, A., and Calagari, A.A., 2013a. Rare earth elements geochemistry of Sheikh-Marut laterite deposit, NW Mahabd, West-Azarbaidjan province, Iran. Acta Geologica Sinica (English Edition), 87(1): 176–185.
- Abedini, A., and Calagari, A.A., 2013b. Geochemical characteristics of Kanigorgeh ferruginous bauxite horizon, West-Azarbaidjan province, NW Iran. Periodico di Mineralogica, 82: 1–23.
- Abedini, A., and Calagari, A.A., 2013c. Geochemical characteristics of bauxites: the Permian Shahindezh horizon, NW Iran. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 270: 301–324.
- Abedini, A., and Calagari, A.A., 2014. REE geochemical characteristics of titanium-rich bauxites: the Permian Kanigorgeh horizon, NW Iran. Turkish Jounral of Earth Sciences, 23: 513–532.
- Abedini, A., and Calagari, A.A., 2015. Rare earth element geochemistry of the Upper Permian limestone: the Kanigorgeh mining district, NW Iran. Turkish Jounral of Earth Sciences, 24: 365–382.
- Abedini, A., Calagari, A.A., and Mikaeili, K., 2014. Geochemical characteristics of laterites: the Alibaltalu deposit, Iran. Bulletin of the Mineral Research and Exploration, 148: 69–84.
10.19111/bmre.55769 Google Scholar
- Abedini, A., Calagari, A.A., and Naseri, H., 2016. Mineralization and REE geochemistry of hydrothermal quartz and calcite of Helmesi vein-type copper deposite, NW Iran. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 281: 123–134.
- Abedini, A., Rezaei Azizi, M., Calagari, A.A., and Cheshmehsari, M., 2017. Rare earth element geochemistry and tetrad effects of the Dalir phosphatic shales, northern Iran. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 286: 169–188.
- Abedini, A., Calagari, A.A., and Rezaei Azizi, M., 2018a. The tetrad-effect in rare earth elements distribution patterns of titanium-rich bauxites: Evidence from the Kanigorgeh deposit, NW Iran. Journal of Geochemical Exploration, 186: 129–142.
- Abedini, A., Rezaei Azizi, M., and Calagari, A.A., 2018b. The lanthanide tetrad effect in argillic alteration: An example from the Jizvan district, northern Iran. Acta Geologica Sinica (English Edition), 92(5): 1468–1485.
- Aghanabati, A., 1998. Major sedimentary and structural units of Iran (map). Geosciences, 7: 29–30.
- Aghanabati, A., 2005. Geology of Iran. Tehran: Geological Survey of Iran, 538 (in Persian).
- Akagi, T., Hashimoto, Y., Fu F.F., Tsuno, H., Tao, H., and Nakano, Y., 2004. Variation of the distribution coefficients of rare earth elements in modern coral-lattices: Species and site dependencies. Geochimica et Cosmochimica Acta, 68: 2265–2273.
- Alavi, M., 1991. Sedimentary and structural characteristics of the Paleo-Tethys remnants in northeastern Iran. Geological Society of America Bulletin, 103: 983–992.
- Alizadeh, B., Najjari, S., and Kadkhodaie-Ilkhchi, A., 2012. Artificial neural network modeling and cluster analysis for organic facies and burial history estimation using well log data: A case study of the South Pars Gas Field, Persian Gulf, Iran. Computer and Geosciences, 45: 261–269.
- Anders, E., and Grevesse, N., 1989. Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta, 53: 187–214.
- Babechuk, M.G., Widdowson, M., and Kamber, B.S., 2014. Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India. Chemical Geology, 363: 56–75.
- Bardossy, G. 1982. Karst Bauxites. Amsterdam: Elsevier Scientific, 441p.
- Bardossy, G., and Combes, P.J., 1999. Karst Bauxites: interfingering of deposition and plalaeoweathering. In: Thiry, M., and Simon-Coincon, R. (eds.), Palaeoweathering, Palaeosurface and related continental deposits. New York: John Wiley and Sons, 189–206.
- Bardossy, G.Y., and Aleva, G.Y.Y., 1990. Lateritic Bauxites. Budapest: Akademia, Kiado, 646 p.
- Bau, M., 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contributions to Mineralogy and Petrology, 123: 323–333.
- Bau, M., and Koschinsky, A., 2009. Oxidative scavenging of cerium on hydrous Fe oxide: Evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts. Geochemical Journal, 43: 37–47.
- Bogatyrev, B.A., and Zhukov, V.V., 2009. Bauxite provinces of the world. Geology of Ore Deposits, 51: 339–355.
- Braun, J.J., Pagel, M., Muller, J.P., Bilong, P., Michard, A., and Guillet, B. 1990. Ce anomalies in lateritic profiles. Geochimica et Cosmochimica Acta, 54: 781–795.
- Broska, L., Gaab, A., and Kubis, M., 2006. Tetrad effect in the western Carpathians granites and their petrological interpretation. Acta Mineralogica-Petrographia, Abstract Series 5, Szeged, 19.
- Calagari, A.A., and Abedini, A., 2007. Geochemical investigations on Permo –Triassic bauxite deposit at Kanisheeteh, east of Bukan, Iran. Journal of Geochemical Exploration, 94: 1–18.
- Calagari, A.A., Kangrani, F., and Abedini, A., 2010. Geochemistry of minor, trace and rare earth elements in Biglar Permo-Triassic bauxite deposit, Northwest of Abgarm, Ghazvin Province, Iran. Journal of Sciences Islamic Republic of Iran, 21: 225–236.
- Cao, M.J., Zhou, Q.F., Qin, K.Z., Tang, D.M., and Evans, N.J., 2013. The tetrad effect and geochemistry of apatite from the Altay Koktokay No. 3 pegmatite, Xinjiang, China: Implications for pegmatite petrogenesis. Mineralogy and Petrology, 107: 985–1005.
- Censi, P., Saiano, F., Pisciotta, A., and Tuzzolino, N., 2014. Geochemical behaviour of rare earths in Vitis vinifera grafted onto different rootstocks and growing on several soils. Science of Total Environment, 473–474: 597–608.
- Censi, P., Sortino, F., Zuddas, P., Saiano, F., Brusca, L., Chiavetta, S., and Falcone, E.E., 2016. Rare earths behaviour during the deposition of volcanic sublimates. Journal of Volcanology and Geothermal Research, 33: 53–63.
- Censi, P., Sprovieri, M., Saiano, F., Di Geronimo, S.I., Larocca, D., and Placenti, F., 2007. The behaviour of REEs in Thailand's Mae Klong estuary: Suggestions from the Y/Ho ratios and lanthanide tetrad effects. Estuarine, Coastal and Shelf Science, 71: 569–579.
- Chen, J., Wang, Q., Zhang, Q., Carranza, E.J.M., and Wang, J., 2018. Mineralogical and geochemical investigations on the iron-rich gibbsitic bauxite in Yongjiang basin, SW China. Journal of Geochemical Exploration, 188: 413–426.
- Constantopoulos, J., 1988. Fluid inclusions and rare earth element geochemistry of fluorite from south-central Idaho. Economic Geology, 83: 626–636.
- Crinci, J., and Jurkowic, I., 1990. Rare earth elements in Triassic bauxites of Croatia Yugoslavia. Travaux, 19: 239–248.
- Cunha, M.C.L., Nardi, L.V.S., and Müller, I.F., 2012. Biogeochemistry of REE elements and tetrad effect in plants from volcanic soils in southernmost Brazil. Anais da Academia Brasileira de Ciěncias, 84: 911–918.
- Davis, J.A., and Kent, D.B., 1990. Surface complexation modeling in aqueous geochemistry. In: Hochella, M. F. and White, A. F. (Eds.), Mineral- Water Interface Geochemistry. Rev. Mineral. 23, Chap. 5, 67 pp.
- Davranche, M., Pourret, O., Gruau, G., Dia, A., and Coz-Bouhnik, M.L., 2005. Adsorption of REE(III)-humate complexes onto MnO2: Experimental evidence for cerium anomaly and lanthanide tetrad effect suppression. Geochimica et Cosmochimica Acta, 69: 4825–4835.
- Duc-Tin, Q., and Keppler, H., 2015. Monazite and xenotime solubility in granitic melts and the origin of the lanthanide tetrad effect. Contributions to Mineralogy and Petrology, 169: 2–26.
- Feng, J.L., Gao, S.P., and Zhang, J.F., 2011. Lanthanide tetrad effect in ferromanganese concretions and Terra Rossa overlying dolomite during weathering. Chemie der Erde, 71: 349–362.
- Feng, J.L., Zhao, Z.H., Chen, F., and Hu, H.P., 2014. Rare earth elements in sinters from the geothermal waters (hot springs) on the Tibetan Plateau, China. Journal of Volcanology and Geothermal Research, 287: 1–11.
- Gadd, M.G., Layton-Matthews, D., and Peter, J.M., 2016. Nonhydrothermal origin of apatite in SEDEX mineralization and host rocks of the Howard's Pass district, Yukon, Canada. American Mineralogist, 101: 1061–1071.
- Gamaletsos, P.N., Godelitsas, A., Kasama, T., Church, N.S., Douvalis, A.P., Göttlicher, J., Steininger, R., Boubnov, A., Pontikes, Y., Tzamos, E., Bakas, T., and Filippidis, A., 2017. Nano-mineralogy and -geochemistry of high-grade diasporic karst type bauxite from Parnassos-Ghiona mines, Greece. Ore Geology Reviews, 84: 228–244.
- Henderson, P., 1984. Rare Earth Element Geochemistry. Amsterdam: Elsevier Scientific, 510.
- Hill, I.G., Worden, R.H., and Meighan, I.G., 2000. Geochemical evolution of a palaeolaterite: the Interbasaltic Formation, Northern Ireland. Chemical Geology, 166: 65–84.
- Hochella, M.F., and White, A.F. 1990. Mineral-water interface geochemistry: An overview. In: Hochella, M.F., and White, A.F. (eds.), Mineral-Water Interface Geochemistry. Rev. Mineral. 23, Chap. 1. 4, 16.
- Hou, Y.L., Zhong, Y.T., Xu, Y.G., and He, B., 2017. The provenance of late Permian karstic bauxite deposits in SW China, constrained by the geochemistry of interbedded clastic rocks, and U-Pb-Hf-O isotopes of detrital zircons. Lithos, 278–281: 240–254.
- Irber, W., 1999. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochimica et Cosmochimica Acta, 63: 489–508.
- Jahn, B.M., Wu, F., Capdevila, R., Martineau, F., Zhao, Z., and Wang, Y., 2001. Highly evolved juvenile granites with tetrad REE patterns: the Woduhe and Baerzhe granites from the Great Xing'an Mountains in NE China. Lithos, 59: 171–198.
- Jørgensen, C.K., 1970. The “tetrad effect” of Peppard is a variation of the nephelauxetic ratio in the third decimal. Journal of Inorganic and Nuclear Chemistry, 32: 3127–3128.
- Karadag, M.M., Kupeli, S., Aryk, F., Ayhan, A., Zedef, V., and Doyen, A., 2009. Rare earth element (REE) geochemistry and genetic implications of the Mortas-bauxite deposit (Seydisehir/Konya- Southern Turkey). Chemie der Erde, 69: 143–159.
- Kawabe, I., 1992. Lanthanide tetrad effect in the Ln3+ refined spin-pairing energy ionic radii and theory. Geochemical Journal, 26: 309–335.
- Kawabe, I., 1995. Tetrad effects and fine structures of REE abundance patterns of granitic and rhyolitic rocks: ICP-AES determinations of REE and Y in eight GSJ reference rocks. Geochemical Journal, 29: 213–230.
- Kawabe, I., Kitahara, Y., and Naito, K., 1991. Non-chondritic yttrium/holmium ratio and lanthanide tetrad effect observed in pre-Cenozoic limestones. Geochemical Journal, 25: 31–44.
- Kawabe, I., Ohta, A., Ishii, S., tokumura, M., and Miyauchi, K., 1999. REE partitioning between Fe-Mn oxyhydroxide precipitates and weakly acid NaCl solutions: convex tetrad effect and fractionation of Y and Sc from heavy lanthanides. Geochemical Journal, 33: 167–180.
- Khosravi, M., Abedini, A., Alipour, S., and Mongelli, G., 2017. The Darzi-Vali bauxite deposit, West-Azarbaidjan Province, Iran: Critical metals distribution and parental affinities. Journal of African Earth Science, 129: 960–972.
- Kosmulski, M., 2006. The pH-dependent surface charging and points of zero charge. III. Update. Journal of Colloid and Interface Science, 298: 730–741.
- Kosmulski, M., 2011. The pH-dependent surface charging and points of zero charge: V. Update. Journal of Colloid and Interface Science, 353: 1–15.
- Lawrence, M.G., Greig, A., Collerson, K.D., and Kamber, B.S., 2006. Rare earth element and yttrium variability in South East Queensland Waterways. Aquatic Geochemistry, 12: 39–72.
- Lee, S.G., Asahara, Y., Tanaka, T., Lee, S.R., and Lee, T., 2013. Geochemical significance of the Rb-Sr, La-Ce and Sm-Nd isotope systems in A-type rocks with REE tetrad patterns and negative Eu and Ce anomalies: The Cretaceous Muamsa and Weolaksan granites, South Korea. Chemie der Erde, 73: 75–88.
- Lee, S.G., Masuda, A., and Kim, S.H., 1994. An early Proterozoic leuco-granitic gneiss with the REE tetrad phenomenon. Chemical Geology, 114: 59–67.
- Ling, K., Zhu, X., Wang, Z., Han, T., Tang, H., and Chen, W., 2013. Metallogenic model of bauxite in Central Guizhou Province: an example of Lindai Deposit. Acta Geologica Sinica (English Edition), 87(6): 630–1642.
- Ling, K.Y., Zhu, X.Q., Tang, H.S., Du, S.J., and Gu, J., 2018. Geology and geochemistry of the Xiaoshanba bauxite deposit, Central Guizhou Province, SW China: Implications for the behavior of trace and rare earth elements. Journal of Geochemical Exploration, 190: 170–186.
- Liu, X., Wang, Q., Zhang, Q., Zhang, Y., and Li, Y., 2016. Genesis of REE minerals in the karstic bauxite in western Guangxi, China, and its constraints on the deposit formation conditions. Ore Geology Reviews, 75: 100–115.
- Long, Y., Chi, G., Liu, J., Jin, Z., and Dai, T. 2017. Trace and rare earth elements constraints on the sources of the Yunfeng paleo-karstic bauxite deposit in the Xiuwen-Qingzhen area, Guizhou, China. Ore Geology Reviews, 91: 404–418.
- Lottermoser, B.G., 1992. Rare earth elements and hydrothermal ore formation processes. Ore Geology Reviews, 7: 25–41.
- Maksimovic, Z., and Pantó, G.Y., 1991. Contribution to the geochemistry of the rare earth elements in the karst-bauxite deposits of Yugoslavia and Greece. Geoderma, 51: 93–109.
- Masuda, A., and Akagi, T., 1989. Lanthanide tetrad effect observed in leucogranites from China. Geochemical Journal, 23: 245–253.
- Masuda, A., and Ikeuchi, Y., 1979. Lanthanide tetrad effect observed in marine environments. Geochemical Journal, 13: 19–22.
- Masuda, A., Kawakami, O., Dohmoto, Y., and Takenaka, T., 1987. Lanthanide tetrad effects in nature: Two mutually opposite types W and M. Geochemical Journal, 21: 119–124.
- Masuda, A., Matsuda, N., Minami, M., and Yamamoto, H., 1994. Approximate estimation of the degree of lanthanide tetrad effect from precise but partially void data measured by isotope dilution and an electron configuration model to explain the tetrad phenomenon. Proceedings of the Japan Academy, 70 B: 169–174.
- MATLAB User's Guide 2016. Version 9.1.0.441655 (R2016b), Statistics Toolbox. The Math Works Inc.
- McLennan, S.M., 1994. Rare earth element geochemistry and the “tetrad effect”. Geochimica et Cosmochimica Acta, 58: 2025–2033.
- Migdisov, A., Williams-Jones, A.E., Brugger, J., and Caporuscio, F.A., 2016. Hydrothermal transport, deposition, and fractionation of the REE: Experimental data and thermodynamic calculations. Chemical Geology, 439: 13–42.
- Minami, M., Masuda, A., Takahashi, K., Adachi, M., and Shimizu, H., 1998. Y-Ho fractionation and lanthanide tetrad effect observed in cherts. Geochemical Journal, 32: 405–419.
- Minuzzi, O.R.R., Neto, A.C.B., Formoso, M.L.L., Andrade, S., Janasi, V.A., and Flores, J.A., 2008. Rare earth element and yttrium geochemistry applied to the genetic study of cryolite ore at the Pitinga Mine (Amazon, Brazil). Anais da Academia Brasileira de Ciěncias, 80: 719–733.
- Möller, P., Bau, M., Dulski, P., and Lüders, V., 1998. REE and Y fractionation in fluorite and their bearing on fluorite formation. In: Proceedings of the Ninth Quadrennial IAGOD Symposium, Schweizerbart, Stuttgart, 575–592.
- Mondillo, N., Balassone, G., Boni, M., and Rollinson, G.G. 2011. Karst bauxites in the Campania Apennines (southern Italy): A new approach. Periodico di Mineralogica, 80: 407–432.
- Monecke, T., Kempe, U., Monecke, J., Sala, M., and Wolf, D., 2002. Tetrad effect in rare earth element distribution patterns: A method of quantification with application to rock and mineral samples from granite-related rare metal deposits. Geochimica et Cosmochimica Acta, 66: 1185–1196.
- Monecke, T., Monecke, J., Mönch, W., and Kempe, U., 2000. Mathematical analysis of rare earth element patterns of fluorites from the Ehrenfriedersdorf tin deposit, Germany: evidence for a hydrothermal mixing process of lanthanides from two different sources. Mineralogy and Petrology, 70: 235–256.
- Mongelli, G., Boni, M., Buccione, R., and Sinisi, R., 2014. Geochemistry of the apulian karst bauxites (Southern Italy): Chemical fractionation and parental affinities. Ore Geology Reviews, 63: 9–21.
- Mongelli, G., Boni, M., Oggiano, G., Mameli, P., Sinisi, R., Buccione, R., and Mondillo, N., 2017. Critical metals distribution in Tethyan karst bauxite: The Cretaceous Italian ores. Ore Geology Reviews, 86: 526–536.
- Mongelli, G., Buccione, R., Gueguen, E., Langone, A., and Sinisi, R., 2016. Geochemistry of the Apulian Allochthonous Karst Bauxite, Southern Italy: Distribution of critical elements and constraints on Late Cretaceous Peri-Tethyan palaeogeography. Ore Geology Reviews, 77: 246–259.
- Nardi, L.V.S., Formoso, M.L.L., Jarvis, K., Oliveira, L., Bastos Neto, A.C., and Fontana, E., 2012. REE, Y, Nb, U, and Th contents and tetrad effect in zircon from a magmatic-hydrothermal F-rich system of Sn-rare metalecryolite mineralized granites from the Pitinga Mine, Amazonia, Brazil. Journal of South American Earth Science, 33: 34–42.
- Nesbitt, H.W., 1979. Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature, 279: 206–210.
- Ohta, A., Kagi, H., Nomura, M., Tsuno, H., and Kawabe, I., 2009. Coordination study of rare earth elements on Fe oxyhydroxide and Mn dioxides. Part II. Correspondence of structural change to irregular variations of partitioning coefficients and tetrad effect variations appearing in interatomic distances. American Mineralogist, 94: 476–486.
- Parks, G.A., 1990. Surface energy and adsorption at mineral interfaces: an introduction. In: Hochella, M.F., and White, A.F. (eds.), Mineral-Water Interface Geochemistry. Rev. Mineral. 23, Chap. 4, 83 pp. Peh, Z., and Kovacevic Galovic, E., 2014. Geochemistry of Istrian Lower Palaeogene bauxites - is it relevant to the extent of subaerial exposure during Cretaceous times?. Ore Geology Reviews, 63: 296–306.
- Peppard, D.F., Mason, G.W., and Lewey, S., 1969. A tetrad effect in the liquid- liquid extraction ordering of lanthanide (III). Journal of Inorganic and Nuclear Chemistry, 31: 2271–2272.
- Peretyazhko, I.S., and Savina, E.A., 2010. Tetrad effects in the rare earth element patterns of granitoid rocks as an indicator of fluoridesilicate liquid immiscibility in magmatic systems. Petrology, 18: 514–543.
- Peterson J.R., and Cunningham B.B., 1967. Crystal structures and lattice parameters of the compounds of berkelium I. Berkelium dioxide and cubic berkelium sesquioxide. Journal of Inorganic and Nuclear Chemistry Letters 3.
- Ragab, A.A., 2011. Geochemistry and radioactivity of mineralized pegmatite from Abu Rusheid area, South Eastern Desert, Egypt. JAKU, Earth Science, 22: 99–130.
- Rezaei Azizi, M., Abedini, A., Alipour, S., Niroomand, S., Sasmaz, A., and Talaei, B., 2017. Rare earth element geochemistry and tetrad effects in fluorites: A case study from the Qahr-Abad deposit, Iran. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 383: 255–273.
- Sasmaz, A., Turkyilma, B., Ozturk, N., Yavuz, F. and Kumral, M., 2014. Geology and geochemistry of Middle Eocene Maden complex ferromanganese deposits from the Elazığ–Malatya region, eastern Turkey. Ore Geology Reviews, 56: 352–372.
- Sasmaz, M., Obek, E. and Sasmaz, A., 2017. The accumulation of La, Ce and Y by Lemna minor and Lemna gibba in the Keban gallery water, Elazig Turkey. Water and Environment Journal, 32: 75–83.
- Schoonen, M.A.A., 1994. Calculation of the point of zero charge of metal oxides between 0 and 350°C. Geochimica et Cosmochmica Acta, 58: 2845–2851.
- Shannon, R.D., 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, B25: 925–946.
- Sverjensky, D.A., 1994. Zero-point-of-charge prediction from crystal chemistry and solvation theory. Geochimica et Cosmochmica Acta, 58: 3123–3129.
- Takahashi, Y., Yoshida, H., Sato, N., Hama, K., Yusa, Y., and Shimizu, H., 2002. W- and M-type tetrad effects in REE patterns for water–rock systems in the Tono uranium deposit, central Japan. Chemical Geology, 184: 311–335.
- Tang, H.S., Chen, Y.J., Santosh, M., Zhong, H., and Yange, T., 2013. REE geochemistry of carbonates from the Guanmenshan Formation, Liaohe Group, NE Sino-Korean Craton: Implications for seawater compositional change during the Great Oxidation Event. Precambrian Research, 227: 316–336.
- Taylor, Y., and McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwells, 312.
10.1287/opre.33.2.312 Google Scholar
- Torró, L., Proenza, J.A., Aiglsperger, T., Bover-Arnal, T., Villanova-de-Benavent, C., Rodríguez-García, D., Ramírez, A., Rodríguez, J., Mosquea, L.A., and Salas, R., 2017. Geological, geochemical and mineralogical characteristics of REE-bearing Las Mercedes bauxite deposit, Dominican Republic. Ore Geology Reviews, 89: 114–131.
- Veksler, I.V., Dorfman, A.M., Kamenetsky, M., Dulski, P., and Dingwell, D., 2005. Partitioning of lanthanides and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous systems. Geochimica et Cosmochmica Acta, 69: 2847–2860.
- Yuste, A., Bauluz, B., and Mayayo M.J., 2015. Genesis and mineral transformation in Lower Cretaceous karst bauxitees (NE Spain): climate influence and superimposed processes. Geological Journal, 50: 839–857.