research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logo STRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Synthesis, structure and blue-light emission of a zero-dimensional zinc halide with the 4-(4-chloro­phen­yl)pyridinium cation

crossmark logo

aCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, People's Republic of China
*Correspondence e-mail: [email protected]

Edited by X. Wang, Oak Ridge National Laboratory, USA (Received 19 May 2025; accepted 9 June 2025; online 14 July 2025)

Exploring blue emission lead-free halides with high photoluminescence quan­tum yields (PLQYs) is a significant and challenging issue for luminescent materials. Herein, a zero-dimensional (0D) organic–inorganic hybrid halide, namely, bis­[4-(4-chloro­phen­yl)pyridinium] tetra­bromido­zincate, (C11H9ClN)2[ZnBr4] or [HCPP]2[ZnBr4] [CPP is 4-(4-chloro­phen­yl)pyridine], was synthesized through acid solution evaporation. The com­pound crystallizes in the monoclinic space group C2/c. The asymmetric unit consists of a [ZnBr4]2− dianion cluster and two monoprotonated [HCPP]+ cations. The [ZnBr4]2− unit presents an almost undistorted tetra­hedral geometry. The [HCPP]+ cations adopt nearly coplanar conformations with small dihedral angles of 5.05 (3)°; there are relatively strong ππ inter­actions between adjacent [HCPP]+ cations due to slipped parallel packing, with a distance of 3.81 (1) Å. Significantly, this halide exhibits highly efficient blue-light emission (385–500 nm) with a PLQY of 56.35%.

1. Introduction

Recently, zero-dimensional (0D) metal hybrid halides have shown tremendous potential as luminescent materials due to their diverse structures and tunable photoluminescence (PL) (Han et al., 2021[Han, Y., Yue, S. & Cui, B. B. (2021). Adv. Sci. 8, 2004805.]; Haque et al., 2025[Haque, M. A., Grieder, A., Harvey, S. P., Brunecky, R., Ye, J. Y., Addison, B., Zhang, J., Dong, Y., Xie, Y., Hautzinger, M. P., Walpitage, H. H., Zhu, K., Blackburn, J. L., Vardeny, Z. V., Mitzi, D. B., Berry, J. J., Marder, S. R., Ping, Y., Beard, M. C. & Luther, J. M. (2025). Nat. Chem. 17, 29-37.]). Generally, 0D halides are com­posed of isolated metal halide clusters or units and bulky organic cations. In contrast to the high-dimensional halides, 0D hybrid halides always show strong quantum/dielectric confinement and possess much softer lattices, leading to an increased exciton binding energy, and allowing for the emission of self-trapped excitons (STEs) with wide broadband and large Stokes-shifted properties (Morad et al., 2019[Morad, V., Shynkarenko, Y., Yakunin, S., Brumberg, A., Schaller, R. D. & Kovalenko, M. V. (2019). J. Am. Chem. Soc. 141, 9764-9768.]; Dastidar et al., 2024[Dastidar, R. G., Okamoto, T., Takahashi, K., Takano, Y., Vijayakumar, C., Subrahmanyam, C. & Biju, V. (2024). Nanoscale 16, 5107-5114.]; Wang et al., 2024a[Wang, Y., Kang, H., Zhang, S., Qu, H., Zhu, L., Zhao, D., Li, X., Lei, X. & Yue, C. (2024a). Chem. Commun. 60, 2784-2787.]). As a result, lower-energy green, yellow and red light emissions are easily realized in 0D halides, while higher-energy blue-light emission remains extremely challenging, especially in the pure-blue region (460–480 nm) (Ma et al., 2021[Ma, Z., Shi, Z., Yang, D., Li, Y., Zhang, F., Wang, L., Chen, X., Wu, D., Tian, Y., Zhang, Y., Zhang, L., Li, X. & Shan, C. (2021). Adv. Mater. 33, 2001367.]; Zhang et al., 2021[Zhang, F., Liang, W., Wang, L., Ma, Z., Ji, X., Wang, M., Wang, Y., Chen, X., Wu, D., Li, X., Zhang, Y., Shan, C. & Shi, Z. (2021). Adv. Funct. Mater. 31, 2105771.]; Yang et al., 2025[Yang, C., Zheng, J., Xu, C., Xiao, C., Chang, Y., Zhou, L. & Gong, X. (2025). Chem. Commun. 61, 4379-4382.]). Great effort has been made to explore the preparation of blue-emitting 0D halides. For instance, Lei and co-workers have reported a series of 0D hybrid zinc halides of the form AZnBr4 [A = 1-ethylpiperazine (EP), 1-phenylpiperazine (BP) and N,N,2,2-tetra­methyl­propane-1,3-di­amine (TMPDA)] based on discrete [ZnBr4]2− tetra­hedra exhibiting blue emission (452–485 nm) and a maximum photolu­mi­nes­cence quan­tum yield (PLQY) of 35.47% (Ma et al., 2022a[Ma, Y., Sun, Y., Xu, W., Liu, X., Zhong, Q., Song, Y., Fu, H., Yue, C. & Lei, X. (2022a). Adv. Opt. Mater. 10, 2200386.]). Saparov and co-workers reported two halides, namely, (P-xd)ZnCl4 and (P-xd)CdCl4, where P-xd is p-xylylenedi­am­mo­nium, showing blue emission and a PLQY of 23% for (P-xd)ZnCl4 (Popy et al., 2023[Popy, D. A., Evans, B. N., Jiang, J., Creason, T. D., Banerjee, D., Loftus, L. M., Pachter, R., Glatzhofer, D. T. & Saparov, B. (2023). Mater. Today Chem. 30, 101502.]). This group also utilized trimeth­yl(4-stilben­yl)methyl­ammonium (R+) as the organic cations to pre­pare indium(III) halides and the halide RInBr4 displays high-efficiency blue emission with a PLQY value of 16.36% (Fattal et al., 2021[Fattal, H., Creason, T. D., Delzer, C. J., Yangui, A., Hayward, J. P., Ross, B. J., Du, M., Glatzhofer, D. T. & Saparov, B. (2021). Inorg. Chem. 60, 1045-1054.]). In addition, Zhang's group prepared a 0D hybrid zinc halide, i.e. (C9H14N)2[ZnBr4] (C9H14N+ is the N-butyl­pyridinium cation) based on the pyridine quaternary ammonium salt. This crystal shows efficient blue-light emission centred at 426 nm and a high quantum yield of 49.95% (Cheng et al., 2023[Cheng, H., Hu, X., Cao, C., Li, X., Xie, R., Wang, D., Yang, W. & Zhang, Y. (2023). J. Alloys Compd. 968, 171950.]). Despite the significant achievements that have been made in the development of 0D lead-free halides, achieving highly efficient blue-light emission is extremely challenging due to the limitation of an intrinsic large Stokes shift and an unavoidable self-absorption effect (Ma et al., 2022b[Ma, Y. Y., Fu, H. Q., Liu, X. L., Sun, Y. M., Zhong, Q. Q., Xu, W. J., Lei, X. W., Liu, G. D. & Yue, C. Y. (2022b). Inorg. Chem. 61, 8977-8981.]; Peng et al., 2021[Peng, H., Wang, X., Zhang, Z., Tian, Y., Xiao, Y., Hu, J., Wang, J. & Zou, B. (2021). Chem. Commun. 57, 8162-8165.]; Cho et al., 2025[Cho, S., Sree, V. G., Fulari, A. V., Park, S., Mei, M., Kim, M., Jana, A., Das, D., Im, H., Kyhm, K. & Taylor, R. A. (2025). J. Colloid Interface Sci. 680, 215-225.]). However, after summarizing the reported studies about blue-emitting 0D halides, we found that the construction of blue-emitting 0D halides is mainly concentrated on two strategies. The first common strategy is to adopt d10 metal ions, such as Zn2+ and Cd2+, which have a relatively stable outer electronic structure (Liu et al., 2024[Liu, S., Wu, Y., Wu, J. & Lin, Z. (2024). ChemPhotoChem 8, e202400139.]; Tan et al., 2025[Tan, R., Liu, Z., Zang, Z. & Zhao, S. (2025). Chem. Sci. 16, 2136-2153.]; Hao et al., 2022[Hao, X., Liu, H., Ding, W., Zhang, F., Li, X. & Wang, S. (2022). J. Phys. Chem. Lett. 13, 4688-4694.]). The other is to focus on the modulation of organic cations. The organic com­ponents play a crucial role in generating blue emission and the introduction of an organic cation into a hybrid structure can improve its blue-emission efficiency (Deng et al., 2023[Deng, Y., Liang, X., Li, F., Wang, M., Zhou, Z., Zhao, J., Wang, F., Liu, S. & Zhao, Q. (2023). Laser Photonics Rev. 17, 2300043.]; Belikova et al., 2024[Belikova, D. E., Fateev, S. A., Khrustalev, V. N., Kozhevnikova, V., Ordinartsev, A. A., Dzuban, A. V., Goodilin, E. A. & Tarasov, A. B. (2024). J. Mater. Chem. C 12, 13537-13544.]). These findings provide important inspiration for the design of hybrid halides as blue-light emitters.

[Scheme 1]

In this study, a new 0D organic–inorganic hybrid halide, namely, bis­[4-(4-chloro­phen­yl)pyridinium] tetra­bromido­zinc­ate, [HCPP]2[ZnBr4], was prepared by adopting chlorine-de­cor­ated 4-phenyl­pyridine as the cation source. This halide exhibits an intense blue emission centred at 432 nm through STEs of the [ZnBr4]2− unit and a singlet excited state of the organic cations with a PLQY of 56.35%, surpassing almost all previously reported 0D zinc halide counterparts. This work provides an efficient way to achieve high-efficiency blue emission through the modulation of appropriate organics.

2. Experimental

2.1. Materials and methods

Zinc bromide (anhydrous, ZnBr2, 99.9%) and 4-(4-chloro­phen­yl)pyridine (CPP, 99.0%) were purchased from Alfa, and ethanol (EtOH, 99.9%) and hy­dro­gen bromide (HBr, 35%) were purchased from Aladdin. All chemicals are used directly without further purification. Elemental analysis for C, N and H was performed on an Elementar Vario MICRO instrument. Powder X-ray diffraction (PXRD) analysis was carried out with a Rigaku D/Max 2500 powder X-ray diffractometer using Cu Kα radiation (λ = 1.5418 Å) at a voltage of 40 kV and 40 mA. Photoluminescence (PL) spectra, quantum yield and time-resolved decay spectra were recorded on an Edinburgh FLS1000 fluorescence spectrometer with a xenon lamp and an integrated sphere sample chamber.

2.2. Synthesis and crystallization

For the synthesis of [HCPP]2[ZnBr4], a mixture of CPP (0.2 mmol) and ZnBr2 (0.1 mmol) was dissolved in a mixture of ethanol (3 ml) and HBr (1 ml), and stirred at 353 K for 30 min. Colourless block-shaped crystals suitable for single-crystal X-ray diffraction analysis were obtained by slow evaporation under ambient conditions for 1 d. The crystals were collected, washed with acetone five times and then dried in air (yield 63.5%, based on Zn). Analysis calculated (%) for C22H18Br4Cl2N2Zn: C 31.58, H 2.35, N 3.13; found: C 32.04, H 2.38, N 3.19.

2.3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. H atoms connected to C atoms were located at geometrically calculated positions.

Table 1
Experimental details

Crystal data
Chemical formula (C11H9ClN)2[ZnBr4]
Mr 766.27
Crystal system, space group Monoclinic, C2/c
Temperature (K) 285
a, b, c (Å) 12.7583 (6), 14.1507 (5), 15.2706 (5)
β (°) 110.067 (1)
V3) 2589.57 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 7.34
Crystal size (mm) 0.16 × 0.16 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.321, 0.333
No. of measured, independent and observed [I > 2σ(I)] reflections 42246, 3223, 2597
Rint 0.074
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.067, 1.02
No. of reflections 3223
No. of parameters 145
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.61
Computer programs: APEX2 (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

2.4. Density Functional Theory (DFT) calculations

First-principles calculations were carried out using the projected augmented-wave (PAW) method (Kresse et al., 1996[Kresse, G. & Furthmüller, J. (1996). Phys. Rev. B 54, 11169-11186.]), as implemented in VASP (Kresse et al., 1999[Kresse, G. & Joubert, D. (1999). Phys. Rev. B 59, 1758-1775.]; Perdew et al., 1992[Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J. & Fiolhais, C. (1992). Phys. Rev. B 46, 6671-6687.]). The exchange correlation energy was treated using the Perdew–Burke–Ernzerhof (PBE) exchange–correlation functional in the scheme of generalized gradient approximation (Hohenberg et al., 1964[Hohenberg, P. & Kohn, W. (1964). Phys. Rev. 136, B864-B871.]; Perdew et al., 1996[Perdew, J. P., Burke, K. & Ernzerhof, M. (1996). Phys. Rev. Lett. 77, 3865-3868.]). The kinetic energy cutoff for all cases was determined to be 520 eV. The convergence thresholds for the electronic calculations and ionic relaxations were chosen as 10−6 eV and 0.01 eV Å−1, respectively. The standard Monkhorst–Pack k-point grids with a density of 0.1 Å−1 were used for Brillouin zone sampling. The valence electron configurations applied in this work were treated as Zn 3d104s2, C 2s22p2, Cl 3s23p5, Br 4s24p5, N 2s22p3 and H 1s1.

3. Results and discussion

Single-crystal X-ray diffraction analysis reveals that [HCPP]2[ZnBr4] crystallized in the monoclinic space group C2/c. The asymmetric unit consists of two [HCPP]+ cations and one [ZnBr4]2− anion. As shown in Fig. 1[link](a), each Zn2+ ion is coordinated to four Br anions to form a [ZnBr4]2− tetra­hedron, yielding a zero-dimensional (0D) structure, with an average Zn—Br bond length of 2.4055 (4) Å and an average Cl—Zn—Cl bond angle of 109.04 (3)°, which are close to those of [ZnBr4]2− tetra­hedra in previously reported Zn-based hybrid halides (He et al., 2023[He, S., Hao, S., Fan, L., Liu, K., Cai, C., Wolverton, C., Zhao, J. & Liu, Q. (2023). Adv. Opt. Mater. 11, 2300218.]). Each [ZnBr4]2− tetra­hedron connects two [HCPP]+ cations via inter­molecular hy­dro­gen bonds to form a 0D dimer; the Br⋯H—N angle is 140.47 (3)°. One [HCPP]+ cation of this dimer is arranged parallel to one [HCPP]+ cation of another dimer, with an inter­planar distance of 3.81 (1) Å [Fig. 1[link](b)]. These dimers are further stacked into a 3D supra­molecular structure [Fig. 1[link](c)]. Notably, the pyridine and arene rings are nearly coplanar in the [HCPP]+ cation, with a small dihedral angle between their planes of 5.05 (3)°. The degree of structural distortion of the ZnBr4 tetra­hedron was evaluated by calculating the distortion of the bond lengths (Δd) according to the equation of Robinson et al. (1971[Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science 172, 567-570.]). The calculated Δd value is 1.14 × 10−4 and such a small degree of distortion (Liu et al., 2023[Liu, Y., Wang, W., Zhang, B., Wang, Y., Ren, M., Jing, Z. & Yue, C. (2023). CrystEngComm 25, 444-449.]; Wang et al., 2024b[Wang, Y., Liu, J., Liu, Y., Li, S., Xu, X. & Lou, Z. (2024b). J. Mater. Chem. C 12, 10267-10329.]) suggests the weak STEs of the [ZnBr4]2− cluster, which is good for the generation of the narrow emission band of [HCPP]2[ZnBr4].

[Figure 1]
Figure 1
The mol­ecular structure of [HCPP]2[ZnBr4], showing (a) the tetra­hedral [ZnBr4]2− anion and [HCPP]+ cation, (b) the inter­actions between the cations and inorganic nodes, and (c) a packing diagram of [HCPP]2[ZnBr4].

The powder X-ray diffraction (PXRD) pattern of [HCPP]2[ZnBr4] matches well with that simulated from the obtained single-crystal data without any extra diffraction peaks, indicating their high purity [Fig. 2[link](a)]. The thermogravimetric (TG) curve shows that the [HCPP]2[ZnBr4] crystals have excellent thermal stability; they begin to decom­pose from ∼250 °C [Fig. 2[link](b)].

[Figure 2]
Figure 2
The basic characterization of [HCPP]2[ZnBr4], showing (a) experimental and simulated PXRD patterns of [HCPP]2[ZnBr4] and (b) thermal analysis of [HCPP]2[ZnBr4].

The photophysical properties of [HCPP]2[ZnBr4] were investigated. As shown in Fig. 3[link](a), the solid-state UV–Vis absorption spectrum of [HCPP]2[ZnBr4] shows that the band edge is at about 400 nm. Upon 360 nm excitation, [HCPP]2[ZnBr4] exhibits a narrow blue-emission band centred at 432 nm, with the full-width at half-maximum (FWHM) of 76 nm, a large Stokes shift of 46 nm and a high PLQY of 56.35%. The Commission Inter­nationale de l'Éclairage (CIE 1931) chromaticity coordinates were determined as (0.16, 0.07) [Fig. 3[link](c)]. The PL decay lifetime is 1.76 ns at 432 nm [Fig. 3[link](d)].

[Figure 3]
Figure 3
The luminescence properties and theoretical calculations for [HCPP]2[ZnBr4], showing (a) the solid-state UV–Vis absorption spectrum of [HCPP]2[ZnBr4], (b) the excitation and emission spectra of organic mol­ecule CPP and [HCPP]2[ZnBr4], (c) the CIE chromaticity coordinates, (d) the PL decay curves of CPP and [HCPP]2[ZnBr4], (e) DOS and (f) calculated band structure.

In addition, the luminescence behaviour of CPP powder was tested and it exhibited a weak blue emission with a peak at 375 nm under 320 nm excitation [Fig. 3[link](b)], a PLQY of 11.36% and the CIE chromaticity coordinates (0.15, 0.06). The time-resolved spectrum of CPP under ambient conditions revealed a delay time of 0.86 ns at 375 nm [Fig. 3[link](d)]. Compared to the PLQY of CPP, the PLQY of [HCPP]2[ZnBr4] shows a 4.96-fold improvement, which may be attributed largely to the ordered arrangement and rigid enhancement of CPP mol­ecules in the halide matrix, leading to nonradiative transition suppression and PLQY improvements.

To better understand the luminescence mechanism of [HCPP]2[ZnBr4], DFT calculations were performed to investigate the band structure and density of states (DOS). The valence band maximum (VBM) of [HCPP]2[ZnBr4] is mainly located in the [HCPP]+ cation and the Br 4p orbital, and the conduction band maximum (CBM) is mainly distributed in the [HCPP]+ cation [Fig. 3[link](e)]. The energy band gap between the valence and conduction band of [HCPP]2[ZnBr4] is 2.48 eV [Fig. 3[link](f)], with such a small value indicating an intense quantum confinement effect. These results further confirm that the enhancement of blue emission of [HCPP]2[ZnBr4] originates from the organic cations and the STE of the [ZnBr4]2− node (Qi et al., 2022[Qi, Z., Gao, H., Zhu, X., Lu, Z. & Zhang, X. (2022). Inorg. Chem. 61, 19483-19491.]).

4. Summary

By adopting chlorine-decorated 4-phenyl­pyridine, a zinc-based hybrid halide has been prepared. It exhibits efficient blue emission with a high PLQY of 56.35%, among the highest reported in the literature to date. Experimental and theoretical studies indicate that the emission originates from the synergistic function of the electron transitions in the organic cations and the STE states. This work lays the foundation for synthesizing more efficient blue-emission hybrid halides.

Supporting information


Computing details top

Bis[4-(4-chlorophenyl)pyridinium] tetrabromidozincate top
Crystal data top
(C11H9ClN)2[ZnBr4] F(000) = 1472
Mr = 766.27 Dx = 1.965 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 12.7583 (6) Å Cell parameters from 8684 reflections
b = 14.1507 (5) Å θ = 2.3–28.0°
c = 15.2706 (5) Å µ = 7.34 mm1
β = 110.067 (1)° T = 285 K
V = 2589.57 (18) Å3 Block, clear light colourless
Z = 4 0.16 × 0.16 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
2597 reflections with I > 2σ(I)
Radiation source: Bruker Nonius FR591 rotating anode Rint = 0.074
φ and ω scans θmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1716
Tmin = 0.321, Tmax = 0.333 k = 1818
42246 measured reflections l = 2020
3223 independent reflections
Refinement top
Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.027 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0318P)2 + 1.6563P]
where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
3223 reflections Δρmax = 0.26 e Å3
145 parameters Δρmin = 0.61 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Data were collected using a using the Bruker D8 Venture with graphite-monochromated Mo Kα radiation (λ = 0.71073 Å). The structures were solved by direct methods and refined by full-matrix least-squares on F2 using the SHELX2014 program (Sheldrick et al., 2015) and OLEX2 software (Dolomanov et al., 2009). Non-H atoms were refined anisotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq
Br1 0.12018 (2) 0.60790 (2) 0.63802 (2) 0.04972 (9)
Zn1 0.0000 0.49763 (3) 0.7500 0.04242 (11)
Br2 0.10686 (3) 0.40262 (2) 0.81686 (2) 0.06137 (10)
Cl1 0.64771 (8) 0.61203 (6) 0.37676 (7) 0.0784 (2)
N1 0.1419 (2) 0.66118 (16) 0.64135 (17) 0.0587 (6)
C3 0.30245 (19) 0.64480 (15) 0.55977 (16) 0.0433 (5)
C6 0.38753 (19) 0.63634 (16) 0.51485 (16) 0.0436 (5)
C9 0.5469 (2) 0.62288 (19) 0.4290 (2) 0.0548 (6)
C7 0.4910 (2) 0.68112 (19) 0.55141 (19) 0.0547 (6)
H7 0.5070 0.7161 0.6060 0.066*
C4 0.1950 (2) 0.60941 (19) 0.5179 (2) 0.0567 (6)
H4 0.1761 0.5792 0.4605 0.068*
C8 0.5702 (2) 0.6749 (2) 0.5088 (2) 0.0596 (7)
H8 0.6383 0.7057 0.5340 0.072*
C5 0.1172 (2) 0.6185 (2) 0.5600 (2) 0.0602 (7)
H5 0.0458 0.5943 0.5311 0.072*
C11 0.3673 (3) 0.5841 (2) 0.4329 (2) 0.0597 (7)
H11 0.2992 0.5537 0.4065 0.072*
C10 0.4467 (3) 0.5771 (2) 0.3909 (2) 0.0648 (7)
H10 0.4325 0.5416 0.3368 0.078*
C2 0.3221 (3) 0.6911 (2) 0.6442 (2) 0.0674 (8)
H2 0.3917 0.7181 0.6743 0.081*
C1 0.2415 (3) 0.6978 (2) 0.6838 (2) 0.0734 (9)
H1A 0.2568 0.7282 0.7408 0.088*
H1 0.087 (3) 0.663 (2) 0.669 (2) 0.081 (10)*
Atomic displacement parameters (Å2) top
U11 U22 U33 U12 U13 U23
Br1 0.04176 (14) 0.05317 (15) 0.05209 (15) 0.00680 (10) 0.01334 (11) 0.00912 (10)
Zn1 0.0411 (2) 0.0401 (2) 0.0461 (2) 0.000 0.01505 (16) 0.000
Br2 0.06093 (18) 0.05586 (17) 0.07050 (19) 0.01307 (12) 0.02665 (14) 0.00854 (12)
Cl1 0.0741 (5) 0.0865 (6) 0.0936 (6) 0.0184 (4) 0.0533 (5) 0.0094 (4)
N1 0.0626 (15) 0.0559 (13) 0.0703 (15) 0.0072 (11) 0.0391 (12) 0.0022 (11)
C3 0.0442 (13) 0.0350 (11) 0.0497 (12) 0.0008 (9) 0.0148 (10) 0.0039 (9)
C6 0.0440 (13) 0.0374 (11) 0.0487 (13) 0.0012 (9) 0.0152 (10) 0.0013 (10)
C9 0.0535 (16) 0.0524 (14) 0.0658 (16) 0.0134 (12) 0.0298 (13) 0.0103 (12)
C7 0.0499 (14) 0.0577 (15) 0.0560 (14) 0.0033 (12) 0.0175 (12) 0.0091 (12)
C4 0.0512 (15) 0.0592 (16) 0.0604 (16) 0.0101 (12) 0.0201 (13) 0.0115 (12)
C8 0.0405 (13) 0.0672 (17) 0.0726 (18) 0.0011 (12) 0.0215 (13) 0.0039 (14)
C5 0.0484 (15) 0.0617 (16) 0.0735 (18) 0.0088 (12) 0.0248 (13) 0.0001 (14)
C11 0.0575 (16) 0.0654 (17) 0.0588 (16) 0.0125 (13) 0.0233 (13) 0.0144 (13)
C10 0.0681 (19) 0.0719 (18) 0.0599 (16) 0.0000 (15) 0.0291 (14) 0.0125 (14)
C2 0.0573 (17) 0.091 (2) 0.0570 (15) 0.0194 (15) 0.0233 (13) 0.0204 (15)
C1 0.079 (2) 0.090 (2) 0.0623 (17) 0.0216 (18) 0.0384 (17) 0.0209 (16)
Geometric parameters (Å, º) top
Br1—Zn1 2.4312 (3) C9—C10 1.372 (4)
Zn1—Br1i 2.4312 (3) C7—H7 0.9300
Zn1—Br2i 2.3798 (3) C7—C8 1.379 (4)
Zn1—Br2 2.3799 (3) C4—H4 0.9300
Cl1—C9 1.737 (3) C4—C5 1.361 (4)
N1—C5 1.318 (4) C8—H8 0.9300
N1—C1 1.318 (4) C5—H5 0.9300
N1—H1 0.93 (3) C11—H11 0.9300
C3—C6 1.475 (3) C11—C10 1.377 (4)
C3—C4 1.392 (3) C10—H10 0.9300
C3—C2 1.390 (4) C2—H2 0.9300
C6—C7 1.396 (3) C2—C1 1.364 (4)
C6—C11 1.398 (4) C1—H1A 0.9300
C9—C8 1.366 (4)
Br1i—Zn1—Br1 100.146 (18) C3—C4—H4 119.6
Br2—Zn1—Br1 110.390 (10) C5—C4—C3 120.8 (3)
Br2i—Zn1—Br1i 110.391 (10) C5—C4—H4 119.6
Br2i—Zn1—Br1 112.128 (10) C9—C8—C7 119.0 (3)
Br2—Zn1—Br1i 112.131 (10) C9—C8—H8 120.5
Br2i—Zn1—Br2 111.21 (2) C7—C8—H8 120.5
C5—N1—H1 118 (2) N1—C5—C4 120.7 (3)
C1—N1—C5 121.4 (3) N1—C5—H5 119.6
C1—N1—H1 121 (2) C4—C5—H5 119.6
C4—C3—C6 121.6 (2) C6—C11—H11 119.5
C2—C3—C6 122.8 (2) C10—C11—C6 121.1 (3)
C2—C3—C4 115.6 (2) C10—C11—H11 119.5
C7—C6—C3 121.5 (2) C9—C10—C11 119.7 (3)
C7—C6—C11 117.1 (2) C9—C10—H10 120.2
C11—C6—C3 121.3 (2) C11—C10—H10 120.2
C8—C9—Cl1 119.3 (2) C3—C2—H2 119.3
C8—C9—C10 121.2 (3) C1—C2—C3 121.3 (3)
C10—C9—Cl1 119.5 (2) C1—C2—H2 119.3
C6—C7—H7 119.1 N1—C1—C2 120.1 (3)
C8—C7—C6 121.8 (2) N1—C1—H1A 120.0
C8—C7—H7 119.1 C2—C1—H1A 120.0
Symmetry code: (i) x, y, z+3/2.
 

Conflict of interest

The authors declare that there are no conflicts of interests.

Funding information

Funding for this research was provided by: the Program for Innovative Research Team from the University of Henan Province (grant No. 24IRTSTHN005).

References

First citationBelikova, D. E., Fateev, S. A., Khrustalev, V. N., Kozhevnikova, V., Ordinartsev, A. A., Dzuban, A. V., Goodilin, E. A. & Tarasov, A. B. (2024). J. Mater. Chem. C 12, 13537–13544.  CSD CrossRef CAS Google Scholar
First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, H., Hu, X., Cao, C., Li, X., Xie, R., Wang, D., Yang, W. & Zhang, Y. (2023). J. Alloys Compd. 968, 171950.  CSD CrossRef Google Scholar
First citationCho, S., Sree, V. G., Fulari, A. V., Park, S., Mei, M., Kim, M., Jana, A., Das, D., Im, H., Kyhm, K. & Taylor, R. A. (2025). J. Colloid Interface Sci. 680, 215–225.  CrossRef CAS PubMed Google Scholar
First citationDastidar, R. G., Okamoto, T., Takahashi, K., Takano, Y., Vijayakumar, C., Subrahmanyam, C. & Biju, V. (2024). Nanoscale 16, 5107–5114.  CrossRef CAS PubMed Google Scholar
First citationDeng, Y., Liang, X., Li, F., Wang, M., Zhou, Z., Zhao, J., Wang, F., Liu, S. & Zhao, Q. (2023). Laser Photonics Rev. 17, 2300043.  CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFattal, H., Creason, T. D., Delzer, C. J., Yangui, A., Hayward, J. P., Ross, B. J., Du, M., Glatzhofer, D. T. & Saparov, B. (2021). Inorg. Chem. 60, 1045–1054.  CSD CrossRef CAS PubMed Google Scholar
First citationHan, Y., Yue, S. & Cui, B. B. (2021). Adv. Sci. 8, 2004805.  CrossRef Google Scholar
First citationHao, X., Liu, H., Ding, W., Zhang, F., Li, X. & Wang, S. (2022). J. Phys. Chem. Lett. 13, 4688–4694.  CrossRef CAS PubMed Google Scholar
First citationHaque, M. A., Grieder, A., Harvey, S. P., Brunecky, R., Ye, J. Y., Addison, B., Zhang, J., Dong, Y., Xie, Y., Hautzinger, M. P., Walpitage, H. H., Zhu, K., Blackburn, J. L., Vardeny, Z. V., Mitzi, D. B., Berry, J. J., Marder, S. R., Ping, Y., Beard, M. C. & Luther, J. M. (2025). Nat. Chem. 17, 29–37.  CrossRef CAS PubMed Google Scholar
First citationHe, S., Hao, S., Fan, L., Liu, K., Cai, C., Wolverton, C., Zhao, J. & Liu, Q. (2023). Adv. Opt. Mater. 11, 2300218.  Web of Science CSD CrossRef Google Scholar
First citationHohenberg, P. & Kohn, W. (1964). Phys. Rev. 136, B864–B871.  CrossRef Web of Science Google Scholar
First citationKresse, G. & Furthmüller, J. (1996). Phys. Rev. B 54, 11169–11186.  CrossRef CAS Web of Science Google Scholar
First citationKresse, G. & Joubert, D. (1999). Phys. Rev. B 59, 1758–1775.  Web of Science CrossRef CAS Google Scholar
First citationLiu, S., Wu, Y., Wu, J. & Lin, Z. (2024). ChemPhotoChem 8, e202400139.  CrossRef Google Scholar
First citationLiu, Y., Wang, W., Zhang, B., Wang, Y., Ren, M., Jing, Z. & Yue, C. (2023). CrystEngComm 25, 444–449.  CSD CrossRef CAS Google Scholar
First citationMa, Y., Sun, Y., Xu, W., Liu, X., Zhong, Q., Song, Y., Fu, H., Yue, C. & Lei, X. (2022a). Adv. Opt. Mater. 10, 2200386.  CrossRef Google Scholar
First citationMa, Y. Y., Fu, H. Q., Liu, X. L., Sun, Y. M., Zhong, Q. Q., Xu, W. J., Lei, X. W., Liu, G. D. & Yue, C. Y. (2022b). Inorg. Chem. 61, 8977–8981.  CSD CrossRef CAS Google Scholar
First citationMa, Z., Shi, Z., Yang, D., Li, Y., Zhang, F., Wang, L., Chen, X., Wu, D., Tian, Y., Zhang, Y., Zhang, L., Li, X. & Shan, C. (2021). Adv. Mater. 33, 2001367.  CrossRef Google Scholar
First citationMorad, V., Shynkarenko, Y., Yakunin, S., Brumberg, A., Schaller, R. D. & Kovalenko, M. V. (2019). J. Am. Chem. Soc. 141, 9764–9768.  CSD CrossRef CAS PubMed Google Scholar
First citationPeng, H., Wang, X., Zhang, Z., Tian, Y., Xiao, Y., Hu, J., Wang, J. & Zou, B. (2021). Chem. Commun. 57, 8162–8165.  CSD CrossRef CAS Google Scholar
First citationPerdew, J. P., Burke, K. & Ernzerhof, M. (1996). Phys. Rev. Lett. 77, 3865–3868.  CrossRef PubMed CAS Web of Science Google Scholar
First citationPerdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J. & Fiolhais, C. (1992). Phys. Rev. B 46, 6671–6687.  CrossRef CAS Google Scholar
First citationPopy, D. A., Evans, B. N., Jiang, J., Creason, T. D., Banerjee, D., Loftus, L. M., Pachter, R., Glatzhofer, D. T. & Saparov, B. (2023). Mater. Today Chem. 30, 101502.  CSD CrossRef Google Scholar
First citationQi, Z., Gao, H., Zhu, X., Lu, Z. & Zhang, X. (2022). Inorg. Chem. 61, 19483–19491.  CSD CrossRef CAS PubMed Google Scholar
First citationRobinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science 172, 567–570.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, R., Liu, Z., Zang, Z. & Zhao, S. (2025). Chem. Sci. 16, 2136–2153.  CrossRef CAS PubMed Google Scholar
First citationWang, Y., Kang, H., Zhang, S., Qu, H., Zhu, L., Zhao, D., Li, X., Lei, X. & Yue, C. (2024a). Chem. Commun. 60, 2784–2787.  CSD CrossRef CAS Google Scholar
First citationWang, Y., Liu, J., Liu, Y., Li, S., Xu, X. & Lou, Z. (2024b). J. Mater. Chem. C 12, 10267–10329.  CrossRef CAS Google Scholar
First citationYang, C., Zheng, J., Xu, C., Xiao, C., Chang, Y., Zhou, L. & Gong, X. (2025). Chem. Commun. 61, 4379–4382.  CSD CrossRef CAS Google Scholar
First citationZhang, F., Liang, W., Wang, L., Ma, Z., Ji, X., Wang, M., Wang, Y., Chen, X., Wu, D., Li, X., Zhang, Y., Shan, C. & Shi, Z. (2021). Adv. Funct. Mater. 31, 2105771.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logo STRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds