research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logo STRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206

Synthesis and properties of Sr2La2NiW2O12, a new S = 1 triangular lattice magnet

crossmark logo

aLeibniz Institute for Solid State and Materials Research IFW Dresden, Helmholtzstraße 20, Dresden, 01069, Germany, and bFederal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, Berlin, 12489, Germany
*Correspondence e-mail: [email protected]

Edited by L. Dawe, Wilfrid Laurier University, Waterloo, Ontario, Canada (Received 29 March 2024; accepted 18 July 2024; online 30 August 2024)

This article is part of a collection of articles from the IUCr 2023 Congress in Melbourne, Australia, and commemorates the 75th anniversary of the IUCr.

Magnetic materials featuring triangular arrangements of spins are frequently investigated as platforms hosting magnetic frustration. Hexagonal perovskites with ordered vacancies serve as excellent candidates for two-dimensional triangular magnetism due to the considerable separation of the magnetic planes. In this work, the effects of chemical pressure on the ferromagnetic ground state of Ba2La2NiW2O12 by substitution of Ba2+ with Sr2+ to produce Sr2La2NiW2O12 are investigated. The two materials are characterized using synchrotron-based XRD, XANES and EXAFS in addition to magnetometry in order to correlate their crystal structures and magnetic properties. Both materials form in space group R3, yet as a result of the enhanced bending of key bond angles due to the effects of chemical pressure, the TC value of the magnetic Ni2+ sublattice is reduced from ∼6 K in Ba2La2NiW2O12 to 4 K in Sr2La2NiW2O12.

1. Introduction

Frustrated magnetism, typically defined empirically as the case where a large ratio exists between the Weiss temperature and the onset temperature of long-range magnetic order, has been suggested to arise from a variety of fundamental origins. However, for the realization of a maximally frustrated magnetic system as it is manifested in various theoretically proposed spin liquids (Balents, 2010[Balents, L. (2010). Nature, 464, 199-208.]; Savary & Balents, 2017[Savary, L. & Balents, L. (2017). Rep. Prog. Phys. 80, 016502.]), one nearly universal ingredient is the implementation of geometric spatial arrangement of the spins in the solid which yields a fine balancing of the exchange interaction(s) between them. As highly degenerate energy levels of the ground state are typically associated with such an entanglement, even small perturbations of the crystal structure can result in preferential solutions to alleviate the frustration. As theoretical models can avoid this contingency, many of the theoretical constructs involve simple idyllic patterns as templates for calculations such as the famous kagome or honeycomb lattices.

One of the simplest of such frustrated arrangements, frequently used as an example for introductory purposes, is the antiferromagnetic (AFM) interaction on a triangle, and by extension, tilings in two and three dimensions which are based on triangular arrangements, such as the edge-sharing tetrahedra found in the f.c.c. lattice. While the kagome lattice, also based on triangles, has maintained its status as a frustrated system, the completely tiled 2D triangular plane has received less attention due to the solution to the system which commonly materializes – the 120° AFM structure. However, recent works in the frustrated cobaltate magnet systems suggest the possibility of Kitaev interactions between high-spin d7 Co2+ at low temperatures which may yet again produce interesting results even in 3d transition metal triangular magnets (Liu & Khaliullin, 2018[Liu, H. & Khaliullin, G. (2018). Phys. Rev. B, 97, 014407.]; Kim et al., 2021[Kim, C., Kim, H.-S. & Park, J.-G. (2021). J. Phys. Condens. Matter, 34, 023001.], 2023[Kim, C., Kim, S., Park, P., Kim, T., Jeong, J., Ohira-Kawamura, S., Murai, N., Nakajima, K., Chernyshev, A. L., Mourigal, M., Kim, S. & Park, J. (2023). Nat. Phys. 19, 1624-1629.]).

While triangular patterns are very commonly observed in a wide variety of crystalline lattices, simple chemical formulae such as binaries frequently bring neighboring magnetic planes in close proximity, allowing for the out-of-plane terms to significantly impact the properties. Complex oxides, on the other hand, enable for rather exotic and elaborate crystal structures to be designed resulting in well separated 2D planes and more idealistic correspondence to theoretical models. Hexagonal perovskites, one such class of materials, have been studied for many reasons, but recent interest has shown these materials to include excellent candidates for low-dimensional triangular magnets and quantum materials (Nguyen & Cava, 2021[Nguyen, L. T. & Cava, R. J. (2021). Chem. Rev. 121, 2935-2965.]).

One such variant of hexagonal perovskite, first demonstrated in the 1960s (Longo et al., 1965[Longo, J. M., Katz, L. & Ward, R. (1965). Inorg. Chem. 4, 235-241.]), has a generalized quadruple perovskite formula (A4B4O12) convoluted by both cation and vacancy ordering to yield a formula of A4BB2O12. The crystal chemistry of these vacancy and cation ordered hexagonal perovskites was elaborated considerably in the 1980s in the group of Kemmler-Sack (Herrmann & Kemmler-Sack, 1980a[Herrmann, M. & Kemmler-Sack, S. (1980a). Z. Anorg. Allg. Chem. 469, 51-60.]; Rother & Kemmler-Sack, 1980[Rother, H. J. & Kemmler-Sack, S. (1980). Z. Anorg. Allg. Chem. 465, 179-182.]; Herrmann & Kemmler-Sack, 1981[Herrmann, M. & Kemmler-Sack, S. (1981). Z. Anorg. Allg. Chem. 476, 115-125.]; Herrmann & Kemmler-Sack, 1980b[Herrmann, M. & Kemmler-Sack, S. (1980b). Z. Anorg. Allg. Chem. 470, 113-117.]; Kemmler-Sack & Herrmann, 1980[Kemmler-Sack, S. & Herrmann, M. (1980). Z. Anorg. Allg. Chem. 480, 171-180]), demonstrating some of the chemical flexibility enjoyed by its more commonly known simple perovskite parents. Apparently abandoned for several decades, these materials have recently resurfaced in the context of a materials platform to study low-dimensional and frustrated magnetism (Evans et al., 2021[Evans, H. A., Mao, L., Seshadri, R. & Cheetham, A. K. (2021). Annu. Rev. Mater. Res. 51, 351-380.]).

While many potential members remain yet unexplored, several teams have published results which begin to paint a picture of the interesting accessible properties in these systems. Recent research has focused on inclusion of a single magnetic ion at the B site with an oxidation state of 2+, with focus on the magnetism of triangular lattices of Mn2+, Co2+ and Ni2+ (Doi et al., 2017[Doi, Y., Wakeshima, M., Tezuka, K., Shan, Y. J., Ohoyama, K., Lee, S., Torii, S., Kamiyama, T. & Hinatsu, Y. (2017). J. Phys. Condens. Matter, 29, 365802.]; Rawl, Lee et al., 2017[Rawl, R., Lee, M., Choi, E. S., Li, G., Chen, K. W., Baumbach, R., de la Cruz, C. R., Ma, J. & Zhou, H. D. (2017). Phys. Rev. B, 95, 174438.]; Kojima et al., 2018[Kojima, Y., Watanabe, M., Kurita, N., Tanaka, H., Matsuo, A., Kindo, K. & Avdeev, M. (2018). Phys. Rev. B, 98, 174406.]; Saito et al., 2019[Saito, M., Watanabe, M., Kurita, N., Matsuo, A., Kindo, K., Avdeev, M., Jeschke, H. O. & Tanaka, H. (2019). Phys. Rev. B, 100, 064417.]). Meanwhile, the counterbalancing A and B′ cations typically are all nonmagnetic to yield a clean 2D magnetic system. The A cations utilized thus far have been a combination of alkaline earth and rare earth cations typical of hexagonal perovskites, while the B′ cations include d0 configuration ions such as Re7+, W6+, Te6+ and Nb5+. The combinations of charge balance between the A and B′ sublattices allow for numerous combinations of nonmagnetic scaffolding for each magnetic lattice, in turn allowing for studies with the application of chemical pressure by aliovalent or isovalent cation substitutions (Rawl, Lee et al., 2017[Rawl, R., Ge, L., Agrawal, H., Kamiya, Y., Dela Cruz, C. R., Butch, N. P., Sun, X. F., Lee, M., Choi, E. S., Oitmaa, J., Batista, C. D., Mourigal, M., Zhou, H. D. & Ma, J. (2017). Phys. Rev. B, 95, 060412.]). Furthermore, materials with yet another doubling of the formula and greater dilution of the magnetic layers in these materials produce even greater separation between the layers in related A8BB6O24 compounds (Rawl, Ge et al., 2017[Rawl, R., Ge, L., Agrawal, H., Kamiya, Y., Dela Cruz, C. R., Butch, N. P., Sun, X. F., Lee, M., Choi, E. S., Oitmaa, J., Batista, C. D., Mourigal, M., Zhou, H. D. & Ma, J. (2017). Phys. Rev. B, 95, 060412.], 2019[Rawl, R., Ge, L., Lu, Z., Evenson, Z., Dela Cruz, C. R., Huang, Q., Lee, M., Choi, E. S., Mourigal, M., Zhou, H. D. & Ma, J. (2019). Phys. Rev. Mater. 3, 054412.]).

In this work, the topic of investigation concerns the magnetism of Ni2+ in A4BB2O12 materials. Two such compounds have been reported thus far with considerable difference in properties. Ba2La2NiTe2O12 features AFM interactions on the triangular lattice, with two magnetic transitions upon cooling: from paramagnetic to a collinear AFM structure and then to a 120° structure (Saito et al., 2019[Saito, M., Watanabe, M., Kurita, N., Matsuo, A., Kindo, K., Avdeev, M., Jeschke, H. O. & Tanaka, H. (2019). Phys. Rev. B, 100, 064417.]). Conversely, Ba2La2NiW2O12 exhibits ferromagnetic (FM) interactions and a low-temperature long-range-ordering transition to an FM state (Rawl, Lee et al., 2017[Rawl, R., Lee, M., Choi, E. S., Li, G., Chen, K. W., Baumbach, R., de la Cruz, C. R., Ma, J. & Zhou, H. D. (2017). Phys. Rev. B, 95, 174438.]). In order to shed further light on the surprising system, in this work we synthesize additional member Sr2La2NiW2O12, effectively applying chemical pressure to Ba2La2NiW2O12. Both of these materials are characterized for their magnetic properties and crystal structures using synchrotron X-rays for direct comparison, both to each other as well as to recent neutron powder diffraction results (Yu et al., 2023[Yu, B. C., Yang, J. Y., Gawryluk, D. J., Xu, Y., Zhan, Q. F., Shiroka, T. & Shang, T. (2023). Phys. Rev. Mater. 7, 074403.]).

2. Experimental

Polycrystalline samples of Sr2La2NiW2O12 and Ba2La2NiW2O12 were synthesized in high-density alumina crucibles using the solid-state method. Stoichiometric quantities of La2O3, SrCO3 or BaCO3, NiO and WO3 were weighed, thoroughly ground in an agate mortar and pestle, and heated in a muffle furnace at 1250°C for a period of 24 h. The rate of heating to the dwell temperature was 100°C h−1, while the rate of cooling after dwelling was 50°C h−1. Prior to weighing, the La2O3 reagent had been dried overnight in a muffle furnace at 800°C.

For the preliminary characterization by in-house powder X-ray diffraction (XRD), the samples were finely ground and mounted on to a thin-film sample holder, to be analyzed on a Stoe Stadi diffractometer, in transmission geometry with Co Kα1 radiation, equipped with a Ge monochromator and a DECTRIS MYTHEN 1K detector. Powder XRD data were collected at room temperature (∼293 K) on beamline P02.1 (PETRA III) with an energy of approximately 60 keV and λ = 0.2073 Å (Dippel et al., 2015[Dippel, A.-C., Liermann, H.-P., Delitz, J. T., Walter, P., Schulte-Schrepping, H., Seeck, O. H. & Franz, H. (2015). J. Synchrotron Rad. 22, 675-687.]). Data were acquired on a Perkin Elmer XRD1621 CN3-EHS (200 µm × 200 µm pixel size, 2048 × 2048 pixel area) area detector and integrated using the Fit2D program (Hammersley et al., 1996[Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N. & Hausermann, D. (1996). High Pressure Res. 14, 235-248. ]). Powder XRD data were analyzed with the Rietveld method using the GSAS EXPGUI program (Larson & Von Dreele, 2004[Larson, A. C. & Von Dreele, R. B. (2004). GSAS, Technical Report LAUR 86-748. Los Alamos National Laboratory, NM, USA.]; Toby, 2001[Toby, B. H. (2001). J. Appl. Cryst. 34, 210-213.]).

X-ray absorption spectroscopy (XAS) measurements containing both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) were performed in fluorescence mode at the Ni K-edge (8.333 keV) at the BAMline (Buzanich et al., 2023[Guilherme Buzanich, A., Radtke, M., Yusenko, K. V., Stawski, T. M., Kulow, A., Cakir, C. T., Röder, B., Naese, C., Britzke, R., Sintschuk, M. & Emmerling, F. (2023). J. Chem. Phys. 158, 244202.]), located at BESSY II (Berlin, Germany). The incident energy was tuned by a double-crystal monochromator in a Si(111) arrangement (ΔE/E = 2 × 10−4). A 5 cm-long ionization chamber filled with nitro­gen was used to measure the I0 signal (before the sample). The beam size was 4 mm (horizontal) × 1 mm (vertical). A four-element silicon drift detector was used to collect the fluorescence signal in backscattered mode, as described by Buzanich et al. (2023[Guilherme Buzanich, A., Radtke, M., Yusenko, K. V., Stawski, T. M., Kulow, A., Cakir, C. T., Röder, B., Naese, C., Britzke, R., Sintschuk, M. & Emmerling, F. (2023). J. Chem. Phys. 158, 244202.]). The measurement protocol was: 10 eV steps until 20 eV before the edge, followed by 0.25 eV steps until 20 eV above the edge and 2 eV steps until 200 eV above the edge. From then on equidistant k-steps were taken (every 0.06 Å) until 16 Å. The data evaluation and treatment were performed by using the ATHENA program from the DEMETER (Ravel & Newville, 2005[Ravel, B. & Newville, M. (2005). J. Synchrotron Rad. 12, 537-541.]) package. The EXAFS signal was Fourier transformed, by convoluting a Hanning-type window with the signal in k-space between 2 and 14 Å−1, with tapering parameter dk = 2.

The temperature and field dependence of the direct current magnetization of both samples were measured using a Quantum Design SQUID MPMS. The powder samples were contained in size #4 gel capsules, mounted inside straws, and attached to a standard sample stick for insertion into the device. Temperature dependence of the magnetization was collected in an applied magnetic field of 1000 Oe following both field cooled (FC) and zero field cooled (ZFC) protocols in the temperature range of 2 to 350 K. Field dependent measurements were collected at 2 K, starting from a virginal ZFC state, in the applied field range of ±50 kOe. No corrections to the data for the diamagnetism of the sample holder were necessary given the magnitude of the response.

3. Results and discussion

Both samples crystallize in rhombohedral space group [R{\bar 3}] with an overall crystal structure similar to a quadrupled hexagonal perovskite (Nguyen & Cava, 2021[Nguyen, L. T. & Cava, R. J. (2021). Chem. Rev. 121, 2935-2965.]). The primary difference is that the trimer of face-sharing octahedra normally found in such a hexagonal perovskite instead contains an ordered vacancy in the center of this trimer. The location of these sites is highlighted in Fig. 1[link]. The severed trimers are linked by corner-sharing connections to NiO6 octahedra. Much like the more typical hexagonal perovskites, both the face-sharing columns and the linking octahedra are arranged in a triangular layout when viewed down the c axis, which has lent hexagonal perovskites opportunities to serve as platforms for low-dimensional and frustrated magnetism. The distance separating the nearest-neighbor Ni ions is equivalent to the a unit-cell parameter in each material. However, notably, there is no direct connection via shared ligands between neighboring NiO6 octahedra. Therefore, while the severed connectivity between the triangular planes weakens potential out-of-plane exchange interactions, the exchange mechanisms within the plane are also longer ranged and, therefore, of marginal strength. The consideration of a direct exchange between the nickel ions as a potential mechanism is supplemented by superexchange pathways which take into account the neighboring chemical scaffolding. The bonding angle considering a pathway from Ni through W to the nearest Ni is just shy of 90°, meanwhile, there exists the possibility for exchange to proceed via a Ni–O–O–Ni pathway. Interestingly, it appears that the comparison of Ba2La2NiW2O12 and nearly isostructural Ba2La2NiTe2O12 directly probes these pathways. While Te6+ has a full d shell, participation in superexchange is precluded, and the remaining mechanism of Ni–O–O–Ni lends an AFM exchange and resultant properties. Meanwhile, Ba2La2NiW2O12 has an empty d shell in the chemical scaffolding in W6+. Apparently, the availability of these orbitals for participation in a super-superexchange mechanism is sufficient to overtake the AFM Ni–O–O–Ni mechanism, which likely persists. The nearly 90° exchange pathway through W yields an FM exchange, much like what is seen in the Goodenough–Kanamori rules (Goodenough, 1955[Goodenough, J. B. (1955). Phys. Rev. 100, 564-573.]; Kanamori, 1959[Kanamori, J. (1959). J. Phys. Chem. Solids, 10, 87-98.]) of simpler directly linked polyhedra. Interestingly, it is highly rational that both mechanisms should be sensitive to any distortions or rotations of the octahedra and resulting oxygen position.

[Figure 1]
Figure 1
Representation of the crystal structure of Sr2La2NiW2O12 viewed along the a axis, highlighting the ordered cation vacancies (left), and a cross sectional perovskite-like slab viewed along the c axis showing the triangular arrangement of magnetic Ni ions (bottom right). This figure was drawn using the VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]) software package.

The refinement of the crystal structure models against synchrotron powder XRD data are shown visually in Fig. 2[link] and numerically in Table 1[link]. Two structural models have been proposed in the literature for similar materials with space groups [R{\bar 3}] and [R{\bar 3}m] (Saito et al., 2019[Saito, M., Watanabe, M., Kurita, N., Matsuo, A., Kindo, K., Avdeev, M., Jeschke, H. O. & Tanaka, H. (2019). Phys. Rev. B, 100, 064417.]), including a recent comparison and assignment of [R{\bar 3}] for Sr2La2NiW2O12 and Ba2La2NiW2O12 on the basis of neutron diffraction (Yu et al., 2023[Yu, B. C., Yang, J. Y., Gawryluk, D. J., Xu, Y., Zhan, Q. F., Shiroka, T. & Shang, T. (2023). Phys. Rev. Mater. 7, 074403.]). The primary difference between the two structural models is that the [R{\bar 3}] model includes an out-of-phase rotation between neighboring corner-connected octahedra within the perovskite-like slabs as can be seen in Fig. 1[link], whereas the [R{\bar 3}m] model does not (see supporting information, Fig. S1[link]). While neutron diffraction is more sensitive to the differences in these structural models as they primarily involve oxygen positions, there is a statistically significant difference in the fitting of the synchrotron XRD patterns favoring the octahedral tilt model associated with [R{\bar 3}], which is consistent with the previous report (Yu et al., 2023[Yu, B. C., Yang, J. Y., Gawryluk, D. J., Xu, Y., Zhan, Q. F., Shiroka, T. & Shang, T. (2023). Phys. Rev. Mater. 7, 074403.]). The refined parameters of both structural models for both materials are given in Table 1[link] for direct comparison.

Table 1
Crystallographic data from synchrotron XRD for Ba2La2NiW2O12 and Sr2La2NiW2O12 in both space groups considered in the text

In both space groups, coordinates Ba/Sr x, Ba/Sr y, La x, La y, Ni x, Ni y, Ni z, W x and W y are equal to 0.

  Ba2La2NiW2O12 Ba2La2NiW2O12 Sr2La2NiW2O12 Sr2La2NiW2O12
Space group [R{\bar 3}] [R{\bar 3}m] [R{\bar 3}] [R{\bar 3}m]
a (Å) 5.66176 (8) 5.66167 (8) 5.59271 (8) 5.59271 (8)
c (Å) 27.3620 (6) 27.3623 (6) 26.5639 (6) 26.5638 (6)
V3) 759.59 (3) 759.58 (3) 719.56 (3) 719.56 (3)
Rwp (%) 7.54 7.81 7.91 8.06
χ2 158.9 170.2 147.1 152.2
Ba/Sr z 0.13276 (13) 0.13285 (15) 0.13430 (16) 0.13433 (16)
La z 0.29296 (17) 0.29276 (17) 0.29173 (13) 0.29158 (13)
W z 0.41860 (14) 0.41848 (14) 0.42188 (10) 0.42176 (10)
O1 x 0.483 (6) 0.4951 (14) 0.460 (9) 0.4966 (15)
O1 y 0.498 (6) 0.5049 (14) 0.467 (9) 0.5034 (15)
O1 z 0.1175 (4) 0.1174 (4) 0.1238 (4) 0.1232 (4)
O2 x 0.432 (3) 0.4841 (12) 0.422 (3) 0.4811 (15)
O2 y 0.462 (3) 0.5160 (12) 0.462 (3) 0.5189 (15)
O2 z 0.2944 (5) 0.2947 (5) 0.2910 (5) 0.2914 (4)
∠Ni—O2—W (°) 160.6 (8) 169.8 (7) 159.4 (8) 171.0 (8)
∠Ni—W—Ni (°) 89.65 (6) 89.70 (7) 88.85 (5) 88.91 (6)
∠Ni—O2—O2 (°) 122.9 (8) 122.9 (8) 147.9 (5) 137.4 (5)
Ni—O2 (Å) 2.10 (3) 2.10 (3) 2.15 (3) 2.11 (3)
W—O1 (Å) 1.79 (5) 1.815 (11) 1.85 (6) 1.83 (6)
W—O2 (Å) 1.98 (2) 1.950 (12) 1.91 (2) 1.89 (3)
[Figure 2]
Figure 2
Synchrotron XRD patterns collected at room temperature (∼293 K) of (a) Ba2La2NiW2O12 and (b) Sr2La2NiW2O12. The black symbols, red curve and blue curve correspond to the observed data, calculated pattern and difference curve, respectively. Black vertical bars (top) refer to Bragg angles of the main phase while the secondary ones below refer to (a) BaWO4 and La2O3 and (b) SrWO4.

The structural impact of the cation substitution can be clearly seen by comparing the structural models of the two materials. The substitution of smaller Sr2+ for Ba2+ creates chemical pressure by compressing the material to alleviate potential underbonding of the relatively smaller cation. This can be seen in the unit-cell parameters and unit-cell volume, which are noticeably reduced. Important effects of this compression include the reduced distance between neighboring Ni2+ ions and the change in bonding angles implicated in the superexchange mechanisms previously described. In order to verify the accuracy of the bond lengths and angles of importance, it is instructive to compare directly to the neutron diffraction results which can be presumed to more accurately determine the oxygen positions. In Ba2La2NiW2O12 and Sr2La2NiW2O12, respectively, the Ni—O2 bond lengths are given as 2.064 (4) Å and 2.051 (2) Å, the W—O2 bond lengths as 2.009 (6) Å and 2.004 (2) Å, and ∠Ni—O2—O2 bond angles as 121.50 (5)° and 120.62 (4)° (Yu et al., 2023[Yu, B. C., Yang, J. Y., Gawryluk, D. J., Xu, Y., Zhan, Q. F., Shiroka, T. & Shang, T. (2023). Phys. Rev. Mater. 7, 074403.]). While these values are qualitatively similar to those refined and presented in Table 1[link] in the present work, the refinement based on synchrotron X-ray data places the O2 anions closer to W. Presuming a higher precision of the oxygen position refined from neutron data, this results in a slight distortion of the octahedra and bond angles. Meanwhile, the a unit-cell parameters of 5.66126 (9) Å and 5.59654 (5) Å and c unit-cell parameters of 27.35363 (3) Å and 26.58389 (1) Å given for Ba2La2NiW2O12 and Sr2La2NiW2O12, respectively (Yu et al., 2023[Yu, B. C., Yang, J. Y., Gawryluk, D. J., Xu, Y., Zhan, Q. F., Shiroka, T. & Shang, T. (2023). Phys. Rev. Mater. 7, 074403.]), compare very closely to the refined values given in Table 1[link].

Several impurities exist in the samples which could be accounted for in the refinement process. The Sr2La2NiW2O12 sample contains 4.24 (9)% of SrWO4 by weight fraction, while the Ba2La2NiW2O12 sample contains 5.99 (11)% BaWO4 and 0.42 (3)% La2O3. As the impurities determined were nonmagnetic, they were not considered detrimental to subsequent magnetic characterizations after attempts to purify the samples by revised synthesis were not entirely successful.

The assumption that the magnetic Ni ions were in the 2+ oxidation state was tested by XAS measurements using hard X-rays near the Ni K-edge (8.333 keV) as shown in Fig. 3[link]. Standards used in the measurement for comparison purposes were a Ni metal foil and NiO. As shown in the inset of Fig. 3[link](a), the position of the edge for both samples is directly beneath the signal from the Ni2+ standard, signifying a strong agreement with the assumption of the nominal oxidation state. Furthermore, the EXAFS components of the data were able to be analyzed to produce pair correlations corresponding to the local structure radiating from Ni centers. From the basis of the refined averaged crystal structure, tentative assignments of the pair distances to neighboring species could be made. The similarity of the crystal structures is immediately evident in the distribution of the peaks of the two samples. The relatively small change in unit-cell parameters makes little impact on the curves, yet in this data, there is the possibility of checking for cation disorder, namely, that the smaller Sr2+ may yield antisite disorder with La3+ whereas Ba2+ does not seem to. We can observe a similar radial distribution of the peaks between both samples, even at higher radial distances. Noteworthy are the peaks at ∼3.8 Å and ∼5.8 Å, which can arise from Ni–Sr and Ni–Ba scattering paths, respectively. The magnitude in the Ni–Ba case is higher than Ni–Sr, due to stronger scattering from Ba than from Sr. In addition, if there is a distortion prone to happen in the case of Sr, this would produce a lower magnitude in the scattering paths at those distances.

[Figure 3]
Figure 3
(a) Normalized XAS data measured at room temperature near the Ni K-edges of Ba2La2NiW2O12, Sr2La2NiW2O12, standard Ni0 foil, and standard Ni2+O. The inset displays a close up of the edge position. (b) The Fourier transformed EXAFS component, with peaks corresponding to distances from Ni to neighboring pairs, are labeled in the figure.

Having established these details, we now turn to examine the magnetic behavior of the samples. Both samples have an apparently FM ground state as witnessed in their low-temperature hysteretic field dependence, as shown in Figs. 4[link](a) and 4[link](b). Considering the given Ni2+ oxidation state, the preponderance of Ni2+O6 octahedra in the literature establish a high-spin d8 S = 1 electronic configuration as the most reasonable expectation. Indeed, the saturation magnetization of both compounds is very nearly the ideal 2 μB per Ni2+ with 1.87 μB and 1.93 μB in Ba2La2NiW2O12 and Sr2La2NiW2O12, respectively. In light of the presence of approximately 6% and 4% of nonmagnetic impurities in the two samples, a correction accounting for the precise moles of magnetic species would bring these two numbers even closer together and even closer to the nominal value of 2 μB. Given the proximity of these values to the nominal value, interpretations of the ground state as anything more complex than a trivial collinear ferromagnet can be considered unreasonable. Both materials are soft ferromagnets, with low coercive fields, and with Sr2La2NiW2O12 being softer than Ba2La2NiW2O12.

[Figure 4]
Figure 4
The field dependence of the magnetization of (a) Ba2La2NiW2O12 and (b) Sr2La2NiW2O12 at 2 K, the temperature dependence of the magnetization of (c) Ba2La2NiW2O12 and (d) Sr2La2NiW2O12 with FC conditions (red) and ZFC conditions (blue) plotted against the left axis and with the inverse of the FC dataset (black) plotted against the right axis with a fitting described in the main text, and (e) displays the comparison of the low-temperature FC data of both compounds with the derivative of both plotted in the inset.

The temperature dependence of the magnetization reveals FM transitions in both materials at low temperatures. The temperatures of these transitions can be best assigned on the basis of the derivative of the magnetic susceptibility with respect to temperature, as shown in the inset of Fig. 4[link](e). TC lies just above 6 K and 4 K in Ba2La2NiW2O12 and Sr2La2NiW2O12, respectively, within resolution of the temperature spacings measured. These values agree are consistent with those previously reported (Yu et al., 2023[Yu, B. C., Yang, J. Y., Gawryluk, D. J., Xu, Y., Zhan, Q. F., Shiroka, T. & Shang, T. (2023). Phys. Rev. Mater. 7, 074403.]) on the basis of several methods. The higher temperature portion of both data sets adheres to a well behaved Curie–Weiss law, as shown in Figs. 4[link](c) and 4[link](d). The effective moments of both samples are similar with 3.08 μB and 3.00 μB for Ba2La2NiW2O12 and Sr2La2NiW2O12, respectively. These values can be compared to a spin only effective moment of 2.83 μB, with a positive orbital contribution typical of a d8 configuration. The Weiss temperatures were +5.83 K and +5.40 K for Ba2La2NiW2O12 and Sr2La2NiW2O12, respectively, highlighting the presence of FM interactions. The corresponding literature values reported for Ba2La2NiW2O12 by Rawl, Lee et al. (2017[Rawl, R., Lee, M., Choi, E. S., Li, G., Chen, K. W., Baumbach, R., de la Cruz, C. R., Ma, J. & Zhou, H. D. (2017). Phys. Rev. B, 95, 174438.]) were 3.19 μB for the effective moment, +25.5 K for the Weiss temperature, and with a TC value of 6.2 K while those reported by Yu et al. (2017[Yu, B. C., Yang, J. Y., Gawryluk, D. J., Xu, Y., Zhan, Q. F., Shiroka, T. & Shang, T. (2023). Phys. Rev. Mater. 7, 074403.]) for Ba2La2NiW2O12 and Sr2La2NiW2O12, respectively, are effective moments of 3.17 μB and 3.13 μB, Weiss temperatures of 7.4 K and 8.4 K, and TC values of 4.3 and 4.8 K.

The results, combined, indicate that the substitution of Sr for Ba effectively applies chemical pressure to the system, reducing the unit-cell parameters and twisting bond angles as a result. The effect of these structural changes on the magnetism are to lower the TC by a considerable degree, on the relative low-temperature scale. While naively, one may expect that the chemical pressure serves to bring the Ni ions closer together, which it does, and to enhance the exchange interactions as a result. This would be true if direct exchange were the responsible mechanism. However, it is clear from the change in the sign of the exchange between Ba2La2NiW2O12 and Ba2La2NiTe2O12, that direct exchange is not responsible. Therefore, the bending of the bond angles, and its implications for the longer-range indirect exchange mechanisms must be the cause. The reduced TC can then be considered as weakening of the FM exchange as a result of the less ideal bond angles, it can be considered as a strengthening of the competing AFM Ni–O–O–Ni mechanism, which manifests in the ground state of Ba2La2NiTe2O12, or as a combination of the two effects.

Supporting information


Computing details top

(SR2LA2NIW2O12_SYNCH4_phase_1) top
Crystal data top
La2NiO12Sr2W2 c = 26.5639 (6) Å
Mr = 1071.44 V = 719.56 (3) Å3
Trigonal, R3 Z = 3
a = 5.59270 (8) Å
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq
SR1 0.0 0.0 0.13430 (16) 0.00534
LA2 0.0 0.0 0.29173 (13) 0.01114
NI3 0.0 0.0 0.0 0.00656
W4 0.0 0.0 0.42188 (10) 0.00775
O5 0.460 (9) 0.467 (9) 0.1238 (4) 0.04418
O6 0.422 (3) 0.462 (3) 0.2910 (5) 0.07198
Atomic displacement parameters (Å2) top
U11 U22 U33 U12 U13 U23
SR1 0.0023 (11) 0.0023 (11) 0.012 (3) 0.0011 (6) 0.0 0.0
LA2 0.0047 (16) 0.0047 (16) 0.024 (2) 0.0024 (8) 0.0 0.0
NI3 0.013 (5) 0.013 (5) 0.007 (5) 0.007 (2) 0.0 0.0
W4 0.0043 (9) 0.0043 (9) 0.0146 (14) 0.0022 (5) 0.0 0.0
O5 0.08 (3) 0.07 (2) 0.013 (12) 0.06 (2) 0.054 (16) 0.032 (16)
O6 0.062 (19) 0.036 (15) 0.008 (12) 0.070 (9) 0.011 (8) 0.011 (8)
Geometric parameters (Å, º) top
SR1—SR1i 3.658 (4) LA2—O6x 2.478 (16)
SR1—SR1ii 3.658 (4) LA2—O6xi 3.128 (16)
SR1—SR1iii 3.658 (4) LA2—O6xvi 2.665 (14)
SR1—LA2 4.182 (7) LA2—O6xx 2.665 (14)
SR1—LA2i 4.061 (2) LA2—O6xxi 2.665 (14)
SR1—LA2ii 4.061 (2) NI3—SR1 3.568 (4)
SR1—LA2iii 4.061 (2) NI3—SR1xxii 3.568 (4)
SR1—NI3 3.568 (4) NI3—LA2iv 3.4128 (11)
SR1—W4iv 3.450 (2) NI3—LA2v 3.4128 (11)
SR1—W4v 3.450 (2) NI3—LA2vi 3.4128 (11)
SR1—W4vi 3.450 (2) NI3—LA2i 3.4128 (11)
SR1—O5vii 3.01 (5) NI3—LA2ii 3.4128 (11)
SR1—O5 2.61 (5) NI3—LA2iii 3.4128 (11)
SR1—O5viii 2.61 (5) NI3—O6iv 2.153 (14)
SR1—O5ix 3.01 (5) NI3—O6xxiii 2.153 (14)
SR1—O5x 2.61 (5) NI3—O6xxiv 2.153 (14)
SR1—O5xi 3.01 (5) NI3—O6iii 2.153 (14)
SR1—O5iii 2.602 (12) NI3—O6xii 2.153 (14)
SR1—O5xii 2.602 (12) NI3—O6xiii 2.153 (14)
SR1—O5xiii 2.602 (12) W4—SR1xvii 3.450 (2)
SR1—O6iii 3.056 (14) W4—SR1xviii 3.450 (2)
SR1—O6xii 3.056 (14) W4—SR1xix 3.450 (2)
SR1—O6xiii 3.056 (14) W4—LA2 3.457 (2)
LA2—SR1 4.182 (7) W4—LA2xiv 3.461 (2)
LA2—SR1i 4.061 (2) W4—LA2xv 3.461 (2)
LA2—SR1ii 4.061 (2) W4—LA2xvi 3.461 (2)
LA2—SR1iii 4.061 (2) W4—O5xvii 1.845 (13)
LA2—LA2xiv 3.913 (4) W4—O5xxv 1.845 (13)
LA2—LA2xv 3.913 (4) W4—O5xxvi 1.845 (13)
LA2—LA2xvi 3.913 (4) W4—O6xvi 1.906 (13)
LA2—NI3xvii 3.4128 (11) W4—O6xx 1.906 (13)
LA2—NI3xviii 3.4128 (11) W4—O6xxi 1.906 (13)
LA2—NI3xix 3.4128 (11) O5—SR1 2.61 (5)
LA2—W4 3.457 (2) O5—SR1xxvii 3.01 (5)
LA2—W4xiv 3.461 (2) O5—SR1iii 2.602 (12)
LA2—W4xv 3.461 (2) O5—LA2iii 2.745 (14)
LA2—W4xvi 3.461 (2) O5—W4vi 1.845 (13)
LA2—O5iii 2.745 (14) O6—SR1iii 3.056 (14)
LA2—O5xii 2.745 (14) O6—LA2 2.478 (16)
LA2—O5xiii 2.745 (14) O6—LA2xxvii 3.128 (16)
LA2—O6vii 3.128 (16) O6—LA2xvi 2.665 (14)
LA2—O6 2.478 (16) O6—NI3xix 2.153 (14)
LA2—O6viii 2.478 (16) O6—W4xvi 1.906 (13)
LA2—O6ix 3.128 (16)
SR1i—SR1—SR1ii 99.71 (15) O5x—SR1—O5xi 168.4 (5)
SR1i—SR1—SR1iii 99.71 (15) O5x—SR1—O5iii 64.5 (9)
SR1i—SR1—W4iv 75.674 (19) O5x—SR1—O5xii 131.7 (8)
SR1i—SR1—W4v 75.674 (19) O5x—SR1—O5xiii 90.8 (10)
SR1i—SR1—W4vi 172.6 (2) O5xi—SR1—O5iii 125.1 (8)
SR1i—SR1—O5vii 44.6 (2) O5xi—SR1—O5xii 58.8 (8)
SR1i—SR1—O5 144.8 (3) O5xi—SR1—O5xiii 99.1 (10)
SR1i—SR1—O5viii 92.2 (3) O5iii—SR1—O5xii 67.3 (5)
SR1i—SR1—O5ix 91.9 (3) O5iii—SR1—O5xiii 67.3 (5)
SR1i—SR1—O5x 45.3 (3) O5xii—SR1—O5xiii 67.3 (5)
SR1i—SR1—O5xi 144.1 (3) O5iii—LA2—O5xii 63.4 (4)
SR1i—SR1—O5iii 54.4 (11) O5iii—LA2—O5xiii 63.4 (4)
SR1i—SR1—O5xii 101.5 (4) O5iii—LA2—O6 88.1 (11)
SR1i—SR1—O5xiii 45.5 (11) O5iii—LA2—O6viii 122.1 (7)
SR1ii—SR1—SR1iii 99.71 (15) O5iii—LA2—O6x 58.9 (6)
SR1ii—SR1—W4iv 75.674 (19) O5iii—LA2—O6xvi 167.8 (9)
SR1ii—SR1—W4v 172.6 (2) O5iii—LA2—O6xx 127.4 (7)
SR1ii—SR1—W4vi 75.674 (19) O5iii—LA2—O6xxi 114.3 (6)
SR1ii—SR1—O5vii 91.9 (3) O5xii—LA2—O5xiii 63.4 (4)
SR1ii—SR1—O5 92.2 (3) O5xii—LA2—O6 58.9 (6)
SR1ii—SR1—O5viii 45.3 (3) O5xii—LA2—O6viii 88.1 (11)
SR1ii—SR1—O5ix 144.1 (3) O5xii—LA2—O6x 122.1 (7)
SR1ii—SR1—O5x 144.8 (3) O5xii—LA2—O6xvi 114.3 (6)
SR1ii—SR1—O5xi 44.6 (2) O5xii—LA2—O6xx 167.8 (9)
SR1ii—SR1—O5iii 101.5 (4) O5xii—LA2—O6xxi 127.4 (7)
SR1ii—SR1—O5xii 45.5 (11) O5xiii—LA2—O6 122.1 (7)
SR1ii—SR1—O5xiii 54.4 (11) O5xiii—LA2—O6viii 58.9 (6)
SR1iii—SR1—W4iv 172.6 (2) O5xiii—LA2—O6x 88.1 (11)
SR1iii—SR1—W4v 75.674 (19) O5xiii—LA2—O6xvi 127.4 (7)
SR1iii—SR1—W4vi 75.674 (19) O5xiii—LA2—O6xx 114.3 (6)
SR1iii—SR1—O5vii 144.1 (3) O5xiii—LA2—O6xxi 167.8 (9)
SR1iii—SR1—O5 45.3 (3) O6—LA2—O6viii 119.994 (8)
SR1iii—SR1—O5viii 144.8 (3) O6—LA2—O6x 119.994 (8)
SR1iii—SR1—O5ix 44.6 (2) O6—LA2—O6xvi 81.0 (5)
SR1iii—SR1—O5x 92.2 (3) O6—LA2—O6xx 122.8 (3)
SR1iii—SR1—O5xi 91.9 (3) O6—LA2—O6xxi 68.7 (5)
SR1iii—SR1—O5iii 45.5 (11) O6viii—LA2—O6x 119.994 (8)
SR1iii—SR1—O5xii 54.4 (11) O6viii—LA2—O6xvi 68.7 (5)
SR1iii—SR1—O5xiii 101.5 (4) O6viii—LA2—O6xx 81.0 (5)
W4iv—SR1—W4v 108.29 (10) O6viii—LA2—O6xxi 122.8 (3)
W4iv—SR1—W4vi 108.29 (10) O6x—LA2—O6xvi 122.8 (3)
W4iv—SR1—O5vii 32.3 (2) O6x—LA2—O6xx 68.7 (5)
W4iv—SR1—O5 139.6 (3) O6x—LA2—O6xxi 81.0 (5)
W4iv—SR1—O5viii 31.8 (3) O6xvi—LA2—O6xx 56.6 (5)
W4iv—SR1—O5ix 140.2 (3) O6xvi—LA2—O6xxi 56.6 (5)
W4iv—SR1—O5x 88.6 (3) O6xx—LA2—O6xxi 56.6 (5)
W4iv—SR1—O5xi 88.8 (3) SR1xvii—W4—SR1xviii 108.29 (10)
W4iv—SR1—O5iii 129.2 (11) SR1xvii—W4—SR1xix 108.29 (10)
W4iv—SR1—O5xii 120.3 (11) SR1xvii—W4—O5xvii 48.1 (15)
W4iv—SR1—O5xiii 71.1 (3) SR1xvii—W4—O5xxv 128.4 (5)
W4v—SR1—W4vi 108.29 (10) SR1xvii—W4—O5xxvi 60.7 (15)
W4v—SR1—O5vii 88.8 (3) SR1xvii—W4—O6xvi 135.6 (5)
W4v—SR1—O5 88.6 (3) SR1xvii—W4—O6xx 61.9 (4)
W4v—SR1—O5viii 139.6 (3) SR1xvii—W4—O6xxi 115.9 (5)
W4v—SR1—O5ix 32.3 (2) SR1xviii—W4—SR1xix 108.29 (10)
W4v—SR1—O5x 31.8 (3) SR1xviii—W4—O5xvii 128.4 (5)
W4v—SR1—O5xi 140.2 (3) SR1xviii—W4—O5xxv 60.7 (15)
W4v—SR1—O5iii 71.1 (3) SR1xviii—W4—O5xxvi 48.1 (15)
W4v—SR1—O5xii 129.2 (11) SR1xviii—W4—O6xvi 61.9 (4)
W4v—SR1—O5xiii 120.3 (11) SR1xviii—W4—O6xx 115.9 (5)
W4vi—SR1—O5vii 140.2 (3) SR1xviii—W4—O6xxi 135.6 (5)
W4vi—SR1—O5 31.8 (3) SR1xix—W4—O5xvii 60.7 (15)
W4vi—SR1—O5viii 88.6 (3) SR1xix—W4—O5xxv 48.1 (15)
W4vi—SR1—O5ix 88.8 (3) SR1xix—W4—O5xxvi 128.4 (5)
W4vi—SR1—O5x 139.6 (3) SR1xix—W4—O6xvi 115.9 (5)
W4vi—SR1—O5xi 32.3 (2) SR1xix—W4—O6xx 135.6 (5)
W4vi—SR1—O5iii 120.3 (11) SR1xix—W4—O6xxi 61.9 (4)
W4vi—SR1—O5xii 71.1 (3) O5xvii—W4—O5xxv 96.6 (6)
W4vi—SR1—O5xiii 129.2 (11) O5xvii—W4—O5xxvi 96.6 (6)
O5vii—SR1—O5 168.4 (5) O5xvii—W4—O6xvi 169.4 (9)
O5vii—SR1—O5viii 58.1 (6) O5xvii—W4—O6xx 93.0 (13)
O5vii—SR1—O5ix 119.15 (8) O5xvii—W4—O6xxi 86.7 (11)
O5vii—SR1—O5x 61.2 (6) O5xxv—W4—O5xxvi 96.6 (6)
O5vii—SR1—O5xi 119.15 (8) O5xxv—W4—O6xvi 86.7 (11)
O5vii—SR1—O5iii 99.1 (10) O5xxv—W4—O6xx 169.4 (9)
O5vii—SR1—O5xii 125.1 (8) O5xxv—W4—O6xxi 93.0 (13)
O5vii—SR1—O5xiii 58.8 (8) O5xxvi—W4—O6xvi 93.0 (13)
O5—SR1—O5viii 118.86 (10) O5xxvi—W4—O6xx 86.7 (11)
O5—SR1—O5ix 61.2 (6) O5xxvi—W4—O6xxi 169.4 (9)
O5—SR1—O5x 118.86 (10) O6xvi—W4—O6xx 83.0 (7)
O5—SR1—O5xi 58.1 (6) O6xvi—W4—O6xxi 83.0 (7)
O5—SR1—O5iii 90.8 (10) O6xx—W4—O6xxi 83.0 (7)
O5—SR1—O5xii 64.5 (9) SR1—O5—SR1xxvii 168.4 (5)
O5—SR1—O5xiii 131.7 (8) SR1—O5—SR1iii 89.2 (10)
O5viii—SR1—O5ix 168.4 (5) SR1—O5—LA2iii 98.7 (11)
O5viii—SR1—O5x 118.86 (10) SR1—O5—W4vi 100.2 (16)
O5viii—SR1—O5xi 61.2 (6) SR1xxvii—O5—SR1iii 80.9 (10)
O5viii—SR1—O5iii 131.7 (8) SR1xxvii—O5—LA2iii 89.6 (11)
O5viii—SR1—O5xii 90.8 (10) SR1xxvii—O5—W4vi 87.0 (16)
O5viii—SR1—O5xiii 64.5 (9) SR1iii—O5—LA2iii 102.9 (5)
O5ix—SR1—O5x 58.1 (6) SR1iii—O5—W4vi 157.5 (14)
O5ix—SR1—O5xi 119.15 (8) LA2iii—O5—W4vi 95.9 (5)
O5ix—SR1—O5iii 58.8 (8) LA2—O6—LA2xvi 99.0 (5)
O5ix—SR1—O5xii 99.1 (10) LA2—O6—W4xvi 103.5 (6)
O5ix—SR1—O5xiii 125.1 (8) LA2xvi—O6—W4xvi 96.9 (6)
Symmetry codes: (i) x5/3, y4/3, z1/3; (ii) x5/3, y1/3, z1/3; (iii) x2/3, y1/3, z1/3; (iv) x2/3, y1/3, z1/3; (v) x+1/3, y1/3, z1/3; (vi) x+1/3, y+2/3, z1/3; (vii) x1, y1, z; (viii) y, xy, z; (ix) y+1, xy, z; (x) yx, x, z; (xi) yx, x+1, z; (xii) y5/3, yx1/3, z1/3; (xiii) xy5/3, x4/3, z1/3; (xiv) x4/3, y5/3, z2/3; (xv) x1/3, y5/3, z2/3; (xvi) x1/3, y2/3, z2/3; (xvii) x1/3, y2/3, z+1/3; (xviii) x1/3, y+1/3, z+1/3; (xix) x+2/3, y+1/3, z+1/3; (xx) y4/3, yx5/3, z2/3; (xxi) xy1/3, x5/3, z2/3; (xxii) x, y, z; (xxiii) y+1/3, xy1/3, z1/3; (xxiv) yx+1/3, x+2/3, z1/3; (xxv) y+2/3, xy+1/3, z+1/3; (xxvi) yx1/3, x+1/3, z+1/3; (xxvii) x+1, y+1, z.
(SR2LA2NIW2O12_SYNCH4_phase_2) top
Crystal data top
La2O3 c = 6.1345 (8) Å
Mr = 325.81 V = 82.55 (1) Å3
Hexagonal, P63/mmc Z = 2
a = 3.9418 (3) Å
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq
La1 0.3333 0.6667 0.22956 0.00263*
O1 0.0 0.0 0.0 0.01*
O2 0.3333 0.6667 0.6421 0.01*
Geometric parameters (Å, º) top
La1—La1i 3.9418 (3) La1—O1xii 2.8164 (2)
La1—La1ii 3.9418 (3) La1—O2 2.5307 (3)
La1—La1iii 3.9418 (3) La1—O2vii 2.3383 (2)
La1—La1iv 3.9418 (3) La1—O2ix 2.3383 (2)
La1—La1v 3.9418 (3) La1—O2xi 2.3380 (2)
La1—La1vi 3.9418 (3) La1—O2xiv 2.4079 (2)
La1—La1vii 3.8194 (3) La1—O2xvi 2.4086 (2)
La1—La1viii 3.8194 (3) La1—O2xviii 2.4079 (2)
La1—La1ix 3.8194 (3) La1—O2xxii 2.2799 (3)
La1—La1x 3.8194 (3) O1—La1i 2.6764 (2)
La1—La1xi 3.8192 (3) O1—La1iii 2.6761 (2)
La1—La1xii 3.8192 (3) O1—La1 2.6764 (2)
La1—La1xiii 3.6209 (3) O1—La1xxvii 2.8164 (2)
La1—La1xiv 4.0234 (4) O1—La1vii 2.8164 (2)
La1—La1xv 3.6213 (3) O1—La1ix 2.8161 (2)
La1—La1xvi 4.0237 (4) O1—La1xxviii 2.6764 (2)
La1—La1xvii 3.6209 (3) O1—La1xiii 2.6761 (2)
La1—La1xviii 4.0234 (4) O1—La1xv 2.6764 (2)
La1—La1xix 3.9496 (3) O1—La1xix 2.8161 (2)
La1—La1xx 3.9494 (3) O1—La1xxi 2.8164 (2)
La1—La1xxi 3.9500 (3) O1—La1xxii 2.8164 (2)
La1—La1xxii 0.2508 (1) O2—La1 2.5307 (3)
La1—La1xxiii 3.9496 (3) O2—La1viii 2.3383 (2)
La1—La1xxiv 3.9502 (3) O2—La1x 2.3383 (2)
La1—La1xxv 3.9500 (3) O2—La1xii 2.3380 (2)
La1—O1 2.6764 (2) O2—La1xiv 2.4079 (2)
La1—O1iv 2.6761 (2) O2—La1xvi 2.4086 (2)
La1—O1vi 2.6764 (2) O2—La1xviii 2.4079 (2)
La1—O1viii 2.8164 (2) O2—La1xxii 2.2799 (3)
La1—O1xxvi 2.8161 (2) O2—O2xxix 1.3238 (2)
La1xiii—La1—La1xv 65.952 (7) O2—La1—O2ix 103.2645 (19)
La1xiii—La1—La1xvii 65.957 (7) O2—La1—O2xi 103.2664 (19)
La1xiii—La1—La1xxii 141.141 (4) O2—La1—O2xiv 70.916 (3)
La1xiii—La1—O1 47.427 (3) O2—La1—O2xvi 70.921 (3)
La1xiii—La1—O1iv 47.434 (3) O2—La1—O2xviii 70.916 (3)
La1xiii—La1—O1vi 97.190 (8) O2—La1—O2xxii 180.0
La1xiii—La1—O2 141.063 (4) O2vii—La1—O2ix 114.8907 (14)
La1xiii—La1—O2vii 37.799 (2) O2vii—La1—O2xi 114.9035 (14)
La1xiii—La1—O2ix 97.310 (4) O2vii—La1—O2xiv 32.349 (4)
La1xiii—La1—O2xi 97.322 (4) O2vii—La1—O2xvi 122.3343 (7)
La1xiii—La1—O2xiv 70.147 (7) O2vii—La1—O2xviii 122.3534 (7)
La1xiii—La1—O2xvi 123.4449 (12) O2vii—La1—O2xxii 76.7441 (19)
La1xiii—La1—O2xviii 123.4673 (12) O2ix—La1—O2xi 114.9035 (14)
La1xiii—La1—O2xxii 38.946 (4) O2ix—La1—O2xiv 122.3253 (7)
La1xv—La1—La1xvii 65.952 (7) O2ix—La1—O2xvi 32.343 (4)
La1xv—La1—La1xxii 140.977 (4) O2ix—La1—O2xviii 122.3347 (7)
La1xv—La1—O1 47.427 (3) O2ix—La1—O2xxii 76.7269 (19)
La1xv—La1—O1iv 97.195 (8) O2xi—La1—O2xiv 122.3492 (7)
La1xv—La1—O1vi 47.427 (3) O2xi—La1—O2xvi 122.3395 (7)
La1xv—La1—O2 141.055 (4) O2xi—La1—O2xviii 32.351 (4)
La1xv—La1—O2vii 97.320 (4) O2xi—La1—O2xxii 76.7336 (19)
La1xv—La1—O2ix 37.790 (2) O2xiv—La1—O2xvi 109.850 (3)
La1xv—La1—O2xi 97.321 (4) O2xiv—La1—O2xviii 109.872 (3)
La1xv—La1—O2xiv 123.4506 (12) O2xiv—La1—O2xxii 109.093 (3)
La1xv—La1—O2xvi 70.134 (7) O2xvi—La1—O2xviii 109.850 (3)
La1xv—La1—O2xviii 123.4506 (12) O2xvi—La1—O2xxii 109.070 (3)
La1xv—La1—O2xxii 38.937 (4) O2xviii—La1—O2xxii 109.084 (3)
La1xvii—La1—La1xxii 141.063 (4) La1i—O1—La1iii 94.860 (5)
La1xvii—La1—O1 97.190 (8) La1i—O1—La1 94.854 (5)
La1xvii—La1—O1iv 47.434 (3) La1i—O1—La1xxviii 85.146 (5)
La1xvii—La1—O1vi 47.427 (3) La1i—O1—La1xiii 85.140 (5)
La1xvii—La1—O2 141.063 (4) La1i—O1—La1xv 180.0
La1xvii—La1—O2vii 97.326 (4) La1iii—O1—La1 94.860 (5)
La1xvii—La1—O2ix 97.315 (4) La1iii—O1—La1xxviii 85.140 (5)
La1xvii—La1—O2xi 37.797 (2) La1iii—O1—La1xiii 180.0
La1xvii—La1—O2xiv 123.4673 (12) La1iii—O1—La1xv 85.140 (5)
La1xvii—La1—O2xvi 123.4449 (12) La1—O1—La1xxviii 180.0
La1xvii—La1—O2xviii 70.147 (7) La1—O1—La1xiii 85.140 (5)
La1xvii—La1—O2xxii 38.937 (4) La1—O1—La1xv 85.146 (5)
La1xxii—La1—O1 121.747 (4) La1xxviii—O1—La1xiii 94.860 (5)
La1xxii—La1—O1iv 121.829 (4) La1xxviii—O1—La1xv 94.854 (5)
La1xxii—La1—O1vi 121.669 (4) La1xiii—O1—La1xv 94.860 (5)
La1xxii—La1—O2 0.0 La1—O2—La1viii 103.2645 (19)
La1xxii—La1—O2vii 103.3425 (19) La1—O2—La1x 103.2645 (19)
La1xxii—La1—O2ix 103.1865 (19) La1—O2—La1xii 103.2664 (19)
La1xxii—La1—O2xi 103.2664 (19) La1—O2—La1xiv 109.084 (3)
La1xxii—La1—O2xiv 70.994 (3) La1—O2—La1xvi 109.079 (3)
La1xxii—La1—O2xvi 70.843 (3) La1—O2—La1xviii 109.084 (3)
La1xxii—La1—O2xviii 70.916 (3) La1—O2—La1xxii 0.0
La1xxii—La1—O2xxii 180.0 La1—O2—O2xxix 180.0
O1—La1—O1iv 94.860 (5) La1viii—O2—La1x 114.8907 (14)
O1—La1—O1vi 94.854 (5) La1viii—O2—La1xii 114.9035 (14)
O1—La1—O2 121.747 (4) La1viii—O2—La1xiv 5.8198 (7)
O1—La1—O2vii 57.6850 (7) La1viii—O2—La1xvi 112.6350 (19)
O1—La1—O2ix 57.6765 (7) La1viii—O2—La1xviii 112.650 (2)
O1—La1—O2xi 134.987 (6) La1viii—O2—La1xxii 103.2731 (19)
O1—La1—O2xiv 76.712 (4) La1viii—O2—O2xxix 76.7503 (19)
O1—La1—O2xvi 76.709 (4) La1x—O2—La1xii 114.9035 (14)
O1—La1—O2xviii 167.3373 (12) La1x—O2—La1xiv 112.6243 (19)
O1—La1—O2xxii 58.253 (4) La1x—O2—La1xvi 5.8145 (7)
O1iv—La1—O1vi 94.860 (5) La1x—O2—La1xviii 112.6328 (19)
O1iv—La1—O2 121.751 (4) La1x—O2—La1xxii 103.2559 (19)
O1iv—La1—O2vii 57.6894 (7) La1x—O2—O2xxix 76.7207 (19)
O1iv—La1—O2ix 134.985 (6) La1xii—O2—La1xiv 112.645 (2)
O1iv—La1—O2xi 57.6843 (7) La1xii—O2—La1xvi 112.6384 (19)
O1iv—La1—O2xiv 76.725 (4) La1xii—O2—La1xviii 5.8179 (7)
O1iv—La1—O2xvi 167.3282 (12) La1xii—O2—La1xxii 103.2664 (19)
O1iv—La1—O2xviii 76.725 (4) La1xii—O2—O2xxix 76.7336 (19)
O1iv—La1—O2xxii 58.258 (4) La1xiv—O2—La1xvi 109.850 (3)
O1vi—La1—O2 121.747 (4) La1xiv—O2—La1xviii 109.872 (3)
O1vi—La1—O2vii 134.988 (6) La1xiv—O2—La1xxii 109.093 (3)
O1vi—La1—O2ix 57.6850 (7) La1xiv—O2—O2xxix 70.931 (3)
O1vi—La1—O2xi 57.6882 (7) La1xvi—O2—La1xviii 109.850 (3)
O1vi—La1—O2xiv 167.3373 (12) La1xvi—O2—La1xxii 109.070 (3)
O1vi—La1—O2xvi 76.709 (4) La1xvi—O2—O2xxix 70.906 (3)
O1vi—La1—O2xviii 76.712 (4) La1xviii—O2—La1xxii 109.084 (3)
O1vi—La1—O2xxii 58.244 (4) La1xviii—O2—O2xxix 70.916 (3)
O2—La1—O2vii 103.2645 (19) La1xxii—O2—O2xxix 180.0
Symmetry codes: (i) x1, y1, z; (ii) x1, y, z; (iii) x, y1, z; (iv) x, y+1, z; (v) x+1, y, z; (vi) x+1, y+1, z; (vii) xy, x, z1/2; (viii) xy, x, z+1/2; (ix) xy+1, x, z1/2; (x) xy+1, x, z+1/2; (xi) xy+1, x+1, z1/2; (xii) xy+1, x+1, z+1/2; (xiii) x, y+1, z; (xiv) x, y+1, z+1; (xv) x+1, y+1, z; (xvi) x+1, y+1, z+1; (xvii) x+1, y+2, z; (xviii) x+1, y+2, z+1; (xix) yx1, x, z+1/2; (xx) yx1, x+1, z+1/2; (xxi) yx, x, z+1/2; (xxii) yx, x+1, z+1/2; (xxiii) yx, x+2, z+1/2; (xxiv) yx+1, x+1, z+1/2; (xxv) yx+1, x+2, z+1/2; (xxvi) xy, x+1, z+1/2; (xxvii) xy, x1, z1/2; (xxviii) x, y, z; (xxix) yx, x+1, z+3/2.
(SR2LA2NIW2O12_SYNCH4_phase_3) top
Crystal data top
OZn c = 5.2062 (7) Å
Mr = 81.38 V = 47.68 (1) Å3
Hexagonal, P63mc Z = 2
a = 3.2520 (3) Å
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq
Zn1 0.3333 0.6667 0.01069 0.013*
O1 0.3333 0.6667 0.37181 0.01*
Geometric parameters (Å, º) top
Zn1—O1 1.8801 (3) O1—Zn1 1.8801 (3)
Zn1—O1i 2.0120 (2) O1—Zn1iv 2.0120 (2)
Zn1—O1ii 2.0120 (2) O1—Zn1v 2.0120 (2)
Zn1—O1iii 2.0118 (2) O1—Zn1vi 2.0118 (2)
O1—Zn1—O1i 111.060 (3) Zn1—O1—Zn1iv 111.060 (3)
O1—Zn1—O1ii 111.060 (3) Zn1—O1—Zn1v 111.060 (3)
O1—Zn1—O1iii 111.063 (3) Zn1—O1—Zn1vi 111.063 (3)
O1i—Zn1—O1ii 107.829 (3) Zn1iv—O1—Zn1v 107.829 (3)
O1i—Zn1—O1iii 107.839 (3) Zn1iv—O1—Zn1vi 107.839 (3)
O1ii—Zn1—O1iii 107.839 (3) Zn1v—O1—Zn1vi 107.839 (3)
Symmetry codes: (i) xy, x, z1/2; (ii) xy+1, x, z1/2; (iii) xy+1, x+1, z1/2; (iv) xy, x, z+1/2; (v) xy+1, x, z+1/2; (vi) xy+1, x+1, z+1/2.
(SR2LA2NIW2O12_SYNCH4_phase_4) top
Crystal data top
La0.87O0.91 a = 4.5112 (6) Å
Mr = 106.26 V = 91.81 (3) Å3
Cubic, Im3m Z = 1
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq Occ. (<1)
La1 0.0 0.0 0.0 0.00402* 0.435
O1 0.0 0.5 0.5 0.003* -0.152
Geometric parameters (Å, º) top
La1—La1i 3.9068 (4) La1—O1i 2.2556 (3)
La1—La1ii 3.9068 (4) La1—O1v 2.2556 (3)
La1—La1iii 3.9068 (4) La1—O1ix 2.2556 (3)
La1—La1iv 3.9068 (4) La1—O1x 2.2556 (3)
La1—La1v 3.9068 (4) La1—O1xi 2.2556 (3)
La1—La1vi 3.9068 (4) La1—O1xii 2.2556 (3)
La1—La1vii 3.9068 (4) O1—La1iv 2.2556 (3)
La1—La1viii 3.9068 (4) O1—La1viii 2.2556 (3)
O1i—La1—O1v 180.0 O1v—La1—O1xii 90.0
O1i—La1—O1ix 90.0 O1ix—La1—O1x 180.0
O1i—La1—O1x 90.0 O1ix—La1—O1xi 90.0
O1i—La1—O1xi 90.0 O1ix—La1—O1xii 90.0
O1i—La1—O1xii 90.0 O1x—La1—O1xi 90.0
O1v—La1—O1ix 90.0 O1x—La1—O1xii 90.0
O1v—La1—O1x 90.0 O1xi—La1—O1xii 180.0
O1v—La1—O1xi 90.0 La1iv—O1—La1viii 180.0
Symmetry codes: (i) x1/2, y1/2, z1/2; (ii) x1/2, y1/2, z+1/2; (iii) x1/2, y+1/2, z1/2; (iv) x1/2, y+1/2, z+1/2; (v) x+1/2, y1/2, z1/2; (vi) x+1/2, y1/2, z+1/2; (vii) x+1/2, y+1/2, z1/2; (viii) x+1/2, y+1/2, z+1/2; (ix) z1/2, x1/2, y1/2; (x) z1/2, x+1/2, y1/2; (xi) y1/2, z1/2, x1/2; (xii) y1/2, z1/2, x+1/2.
(SR2LA2NIW2O12_SYNCH4_phase_5) top
Crystal data top
O4SrW c = 11.948 (4) Å
Mr = 335.47 V = 350.11 (9) Å3
Tetragonal, I41/a Z = 4
a = 5.4133 (8) Å
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq
SR1 0.0 0.25 0.625 0.09371*
W2 0.0 0.25 0.125 0.00322*
O3 0.2362 0.1395 0.0818 0.02*
Geometric parameters (Å, º) top
SR1—SR1i 4.0309 (7) SR1—O3xiv 2.9158 (7)
SR1—SR1ii 4.0309 (7) SR1—O3xv 2.5983 (4)
SR1—SR1iii 4.0309 (7) W2—SR1xvi 3.8277 (5)
SR1—SR1iv 4.0309 (7) W2—SR1xvii 3.8277 (5)
SR1—W2v 3.8277 (5) W2—SR1xviii 3.8277 (5)
SR1—W2vi 3.8277 (5) W2—SR1xix 3.8277 (5)
SR1—W2vii 3.8277 (5) W2—O3 1.5030 (2)
SR1—W2viii 3.8277 (5) W2—O3xx 1.5030 (2)
SR1—O3vii 2.5983 (4) W2—O3xxi 1.5030 (2)
SR1—O3ix 2.9158 (7) W2—O3xxii 1.5030 (2)
SR1—O3x 2.5983 (4) O3—SR1xxiii 2.9158 (7)
SR1—O3xi 2.9158 (7) O3—SR1xviii 2.5983 (4)
SR1—O3xii 2.5983 (4) O3—W2 1.5030 (2)
SR1—O3xiii 2.9158 (7)
SR1i—SR1—SR1ii 84.362 (19) O3vii—SR1—O3ix 132.726 (5)
SR1i—SR1—SR1iii 123.307 (11) O3vii—SR1—O3x 92.2615 (15)
SR1i—SR1—SR1iv 123.307 (11) O3vii—SR1—O3xxiv 86.237 (5)
SR1i—SR1—O3vii 121.0805 (2) O3vii—SR1—O3xii 157.084 (7)
SR1i—SR1—O3ix 40.032 (9) O3vii—SR1—O3xxv 70.011 (12)
SR1i—SR1—O3x 113.433 (11) O3vii—SR1—O3xiv 74.275 (3)
SR1i—SR1—O3xxiv 107.402 (18) O3vii—SR1—O3xxvi 92.2615 (15)
SR1i—SR1—O3xii 77.183 (8) O3ix—SR1—O3x 74.275 (3)
SR1i—SR1—O3xxv 60.647 (14) O3ix—SR1—O3xxiv 135.895 (11)
SR1i—SR1—O3xiv 163.095 (3) O3ix—SR1—O3xii 70.011 (12)
SR1i—SR1—O3xxvi 46.205 (3) O3ix—SR1—O3xxv 64.143 (17)
SR1ii—SR1—SR1iii 123.307 (11) O3ix—SR1—O3xiv 135.895 (11)
SR1ii—SR1—SR1iv 123.307 (11) O3ix—SR1—O3xxvi 86.237 (5)
SR1ii—SR1—O3vii 77.183 (8) O3x—SR1—O3xxiv 132.726 (5)
SR1ii—SR1—O3ix 60.647 (14) O3x—SR1—O3xii 92.2615 (15)
SR1ii—SR1—O3x 46.205 (3) O3x—SR1—O3xxv 86.237 (5)
SR1ii—SR1—O3xxiv 163.095 (3) O3x—SR1—O3xiv 70.011 (12)
SR1ii—SR1—O3xii 121.0805 (2) O3x—SR1—O3xxvi 157.084 (7)
SR1ii—SR1—O3xxv 40.032 (9) O3xxiv—SR1—O3xii 74.275 (3)
SR1ii—SR1—O3xiv 107.402 (18) O3xxiv—SR1—O3xxv 135.895 (11)
SR1ii—SR1—O3xxvi 113.433 (11) O3xxiv—SR1—O3xiv 64.143 (17)
SR1iii—SR1—SR1iv 84.362 (19) O3xxiv—SR1—O3xxvi 70.011 (12)
SR1iii—SR1—O3vii 46.205 (3) O3xii—SR1—O3xxv 132.726 (5)
SR1iii—SR1—O3ix 163.095 (3) O3xii—SR1—O3xiv 86.237 (5)
SR1iii—SR1—O3x 121.0805 (2) O3xii—SR1—O3xxvi 92.2615 (15)
SR1iii—SR1—O3xxiv 40.032 (9) O3xxv—SR1—O3xiv 135.895 (11)
SR1iii—SR1—O3xii 113.433 (11) O3xxv—SR1—O3xxvi 74.275 (3)
SR1iii—SR1—O3xxv 107.402 (18) O3xiv—SR1—O3xxvi 132.726 (5)
SR1iii—SR1—O3xiv 60.647 (14) O3—W2—O3xx 96.773 (4)
SR1iii—SR1—O3xxvi 77.183 (8) O3—W2—O3xxvii 139.831 (12)
SR1iv—SR1—O3vii 113.433 (11) O3—W2—O3xxviii 96.773 (4)
SR1iv—SR1—O3ix 107.402 (18) O3xx—W2—O3xxvii 96.773 (4)
SR1iv—SR1—O3x 77.183 (8) O3xx—W2—O3xxviii 139.831 (12)
SR1iv—SR1—O3xxiv 60.647 (14) O3xxvii—W2—O3xxviii 96.773 (4)
SR1iv—SR1—O3xii 46.205 (3) SR1xxiii—O3—SR1xviii 93.763 (5)
SR1iv—SR1—O3xxv 163.095 (3) SR1xxiii—O3—W2 128.7545 (14)
SR1iv—SR1—O3xiv 40.032 (9) SR1xviii—O3—W2 136.242 (7)
SR1iv—SR1—O3xxvi 121.0805 (2)
Symmetry codes: (i) y1/4, x+1/4, z+1/4; (ii) y+3/4, x+1/4, z+1/4; (iii) y1/4, x1/4, z1/4; (iv) y1/4, x+3/4, z1/4; (v) x1/2, y, z+1/2; (vi) x1/2, y+1, z+1/2; (vii) x+1/2, y, z+1/2; (viii) x+1/2, y+1, z+1/2; (ix) y1/4, x+3/4, z+3/4; (x) y+1/4, x+3/4, z+3/4; (xi) x1/2, y, z+1/2; (xii) x1/2, y+1/2, z+1/2; (xiii) y+1/4, x1/4, z+3/4; (xiv) x1/2, y1/2, z1/2; (xv) y5/4, x5/4, z1/4; (xvi) x1/2, y, z1/2; (xvii) x1/2, y+1, z1/2; (xviii) x+1/2, y, z1/2; (xix) x+1/2, y+1, z1/2; (xx) y+1/4, x+1/4, z+1/4; (xxi) x, y+1/2, z; (xxii) y5/4, x3/4, z3/4; (xxiii) y+3/4, x+1/4, z3/4; (xxiv) x1/2, y1, z+1/2; (xxv) y7/4, x5/4, z1/4; (xxvi) y1/4, x1/4, z+3/4; (xxvii) x2, y1/2, z2; (xxviii) y1/4, x3/4, z3/4.
 

Acknowledgements

XAS experiments were performed at the BAMline at the BESSY-II storage ring (Helmholtz Center Berlin). We thank the Helmholtz-Zentrum Berlin für Materialien und Energie for the allocation of synchrotron radiation beamtime. We acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision of experimental facilities. Parts of this research were carried out at PETRA III and we would like to thank Ahmed Omar for assistance in using P02.1. Open access funding enabled and organized by Projekt DEAL.

Conflict of interest

The authors declare no competing interests.

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

Funding information

This research was partly supported by the UKRATOP project funded by the Federal Ministry of Education and Research (BMBF) under reference 01DK18002 (to Anastasiia Smerechuk) partially supported by the Deutsche Forschungsgemeinschaft DFG through SFB 1143 (Project-Id 247310070 to Ryan Morrow, Sabine Wurmehl, Bernd Büchner). The following funding is acknowledged: Deutsche Forschungsgemeinschaft (grant No. 247310070); Bundesministerium für Bildung und Forschung (award No. 01DK18002).

References

First citationBalents, L. (2010). Nature, 464, 199–208.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDippel, A.-C., Liermann, H.-P., Delitz, J. T., Walter, P., Schulte-Schrepping, H., Seeck, O. H. & Franz, H. (2015). J. Synchrotron Rad. 22, 675–687.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDoi, Y., Wakeshima, M., Tezuka, K., Shan, Y. J., Ohoyama, K., Lee, S., Torii, S., Kamiyama, T. & Hinatsu, Y. (2017). J. Phys. Condens. Matter, 29, 365802.  CrossRef PubMed Google Scholar
First citationEvans, H. A., Mao, L., Seshadri, R. & Cheetham, A. K. (2021). Annu. Rev. Mater. Res. 51, 351–380.  CrossRef CAS Google Scholar
First citationGoodenough, J. B. (1955). Phys. Rev. 100, 564–573.  CrossRef CAS Web of Science Google Scholar
First citationGuilherme Buzanich, A., Radtke, M., Yusenko, K. V., Stawski, T. M., Kulow, A., Cakir, C. T., Röder, B., Naese, C., Britzke, R., Sintschuk, M. & Emmerling, F. (2023). J. Chem. Phys. 158, 244202.  CrossRef PubMed Google Scholar
First citationHammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N. & Hausermann, D. (1996). High Pressure Res. 14, 235–248.   CrossRef Google Scholar
First citationHerrmann, M. & Kemmler–Sack, S. (1980a). Z. Anorg. Allg. Chem. 469, 51–60.  CrossRef CAS Google Scholar
First citationHerrmann, M. & Kemmler–Sack, S. (1980b). Z. Anorg. Allg. Chem. 470, 113–117.  CrossRef CAS Google Scholar
First citationHerrmann, M. & Kemmler–Sack, S. (1981). Z. Anorg. Allg. Chem. 476, 115–125.  CrossRef CAS Google Scholar
First citationKanamori, J. (1959). J. Phys. Chem. Solids, 10, 87–98.  CrossRef CAS Web of Science Google Scholar
First citationKemmler-Sack, S. & Herrmann, M. (1980). Z. Anorg. Allg. Chem. 480, 171–180  Google Scholar
First citationKim, C., Kim, H.-S. & Park, J.-G. (2021). J. Phys. Condens. Matter, 34, 023001.  CrossRef Google Scholar
First citationKim, C., Kim, S., Park, P., Kim, T., Jeong, J., Ohira-Kawamura, S., Murai, N., Nakajima, K., Chernyshev, A. L., Mourigal, M., Kim, S. & Park, J. (2023). Nat. Phys. 19, 1624–1629.  CrossRef CAS Google Scholar
First citationKojima, Y., Watanabe, M., Kurita, N., Tanaka, H., Matsuo, A., Kindo, K. & Avdeev, M. (2018). Phys. Rev. B, 98, 174406.  CrossRef Google Scholar
First citationLarson, A. C. & Von Dreele, R. B. (2004). GSAS, Technical Report LAUR 86-748. Los Alamos National Laboratory, NM, USA.  Google Scholar
First citationLiu, H. & Khaliullin, G. (2018). Phys. Rev. B, 97, 014407.  CrossRef Google Scholar
First citationLongo, J. M., Katz, L. & Ward, R. (1965). Inorg. Chem. 4, 235–241.  CrossRef CAS Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNguyen, L. T. & Cava, R. J. (2021). Chem. Rev. 121, 2935–2965.  CrossRef CAS PubMed Google Scholar
First citationRavel, B. & Newville, M. (2005). J. Synchrotron Rad. 12, 537–541.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRawl, R., Ge, L., Agrawal, H., Kamiya, Y., Dela Cruz, C. R., Butch, N. P., Sun, X. F., Lee, M., Choi, E. S., Oitmaa, J., Batista, C. D., Mourigal, M., Zhou, H. D. & Ma, J. (2017). Phys. Rev. B, 95, 060412.  CrossRef Google Scholar
First citationRawl, R., Ge, L., Lu, Z., Evenson, Z., Dela Cruz, C. R., Huang, Q., Lee, M., Choi, E. S., Mourigal, M., Zhou, H. D. & Ma, J. (2019). Phys. Rev. Mater. 3, 054412.  CrossRef Google Scholar
First citationRawl, R., Lee, M., Choi, E. S., Li, G., Chen, K. W., Baumbach, R., de la Cruz, C. R., Ma, J. & Zhou, H. D. (2017). Phys. Rev. B, 95, 174438.  CrossRef Google Scholar
First citationRother, H. J. & Kemmler-Sack, S. (1980). Z. Anorg. Allg. Chem. 465, 179–182.  CrossRef CAS Google Scholar
First citationSaito, M., Watanabe, M., Kurita, N., Matsuo, A., Kindo, K., Avdeev, M., Jeschke, H. O. & Tanaka, H. (2019). Phys. Rev. B, 100, 064417.  CrossRef Google Scholar
First citationSavary, L. & Balents, L. (2017). Rep. Prog. Phys. 80, 016502.  CrossRef PubMed Google Scholar
First citationToby, B. H. (2001). J. Appl. Cryst. 34, 210–213.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, B. C., Yang, J. Y., Gawryluk, D. J., Xu, Y., Zhan, Q. F., Shiroka, T. & Shang, T. (2023). Phys. Rev. Mater. 7, 074403.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logo STRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds