

research papers
The effects of flash-annealing on glycerol kinase crystals
aBrown University, Department of Molecular Biology, Cell Biology and Biochemistry,
70 Ship Street, Providence, RI 02903, USA, and bNational Synchrotron Light Source, Upton, NY 11973-5000, USA
*Correspondence e-mail: [email protected]
Reflection profiles from glycerol kinase crystals were analyzed to determine the effect of flash-cooling on mosaicity (η) and peak intensity in order to reveal changes in mosaic domain structure and composition. The results showed that repeated flash-annealing causes a significant decrease in the averaged mosaicity along with an increase in the overall peak counts of reflections and an enhanced signal-to-noise ratio. Individual reflection-profile analysis revealed a mostly dual domain structure, showing the minimization of one domain as a result of flash-annealing.
Keywords: flash-annealing; in situ annealing; cryocooling mosaicity; crystal quality; glycerol kinase.
1. Introduction
Within the last ten years, protein crystals have been routinely flash-cooled to avoid
crystal degradation as a result of radiation damage in the X-ray beam (Rodgers, 1994, 1997
; Garman & Schneider, 1997
). A disadvantage of this technique is the increase in crystal mosaicity that is frequently
observed (Teng & Moffat, 1998
; Kriminski et al., 2002
) and in many cases may lead to undesirable reflection overlap. Crystal mosaicity
was first explained by Darwin (1922
), who proposed a model which described crystals as composed of various mosaic blocks
with differences in orientation, unit-cell size and lattice variations. Helliwell
(1988
) provided a theoretical analysis of what the smallest mosaicity in a protein crystal
would be if it were perfect. Nave (1998
) and Boggon et al. (2000
) discussed how minute differences in orientation and unit-cell size of these blocks
contribute to the overall increase in mosaicity. Teng & Moffat (1998
) showed that flash-cooling results in an initial extreme temperature gradient between
the surface and the interior of the crystal. They speculated that this was a consequence
of incomplete relaxation of the consequently causing variations in the lattice which are exhibited in unit-cell dimension
changes.
The possibility of improving crystal order by changing the rate at which crystals
reach cryo-temperatures led to modifications and testing of various cooling protocols.
These included cooling at different temperatures or the use of additional intermediary
temperature steps (Teng & Moffat, 1998) and correlating these with conformational and lattice relaxation times (Parak et al., 1987
). Mitchell & Garman (1994
) suggested that optimizing the cryoprotectant concentration could minimize the mosaicity
of cryocooled crystals. They found that there was a definite optimal cryoprotectant
reagent concentration which corresponded to the highest resolution of diffraction
and the minimum mosaicity and that these last two parameters were highly correlated
with one another. Other modifications included altering or changing cryoprotectants
to modify the as initially proposed by Petsko (1975
). These and other reports led to the idea that reduction of lattice stress through
thawing of already cooled crystals may be possible via brief warming and re-cooling of crystals. The temporary application of `heat' through
thawing and subsequent relief of lattice constraints could then lead to a more ordered
and homogenous distribution of unit cells upon re-cooling.
To test this idea, the technique of flash-annealing (FA) was developed. This technique,
reported by Yeh & Hol (1998), demonstrated that rapid thawing and recooling of crystals of glycerol kinase, while
mounted on the goniometer head under a cold nitrogen stream at a temperature of 100 K
(hence also referred to as `in-situ annealing'), can dramatically improve diffraction quality. Flash-annealing decreased
the overall mosaicity of glycerol kinase crystals by over 1°, as indicated by the
mosaicity value given by the program DENZO. As defined in DENZO, mosaicity is the rocking angle in degrees in both the vertical and the horizontal
directions which would generate all the spots seen on a still diffraction photograph.
It includes contributions from X-ray bandwidth and beam crossfire (Otwinowski & Minor,
2001
). DENZO assumes a cosine model of the mosaicity function, approximately full-width at 5%
maximum. However, the formula does not explain why the model works well, owing to
(anti)correlations of errors (Otwinowski, 2005
). In addition to lowering the overall mosaicity of glycerol kinase crystals, flash-annealing
increased the resolution of the same crystals by 0.5 Å (Yeh & Hol, 1998
).
An alternative annealing technique, referred to as macromolecular crystal annealing
(MCA), was reported by Harp et al. (1998). In this approach, the crystal is removed from the coldstream, thawed in cryoprotectant
and subsequently cryocooled again. MCA was first applied to nucleosome core particle
crystals, where these crystals were removed from the cryostream and transferred to
a large drop of cryoprotectant. The crystal remained intact and transparent during
a subsequent flash-cooling step. Additional studies by Harp et al. (1998
) on nucleosome core particles, histone octamers and lysozyme showed this procedure
to be especially effective in rectifying problems such as ice rings resulting from
mishandling of crystals during cooling. MCA improved the mosaicity by more than twofold
for the nucleosome core particle, reducing this value from 0.825 to 0.345°. The histone
octamer showed a more modest improvement of approximately 20% from 0.338 to 0.217°.
The study indicated that the volume of the drop (∼0.3 ml) was a key parameter, in
addition to an incubation time of approximately 3 min. The exact reasons for these
particular volume and time parameters were not elaborated, although the authors concluded
that the warming that resulted from crystal annealing allowed the reordering of misaligned
mosaic blocks in the crystal, contributing to a lowering of the mosaic spread of the
reflections. Interestingly, when the initial glycerol kinase crystals were annealed
via the MCA approach, the crystals no longer diffracted upon re-cooling. It is possible
that optimization of the MCA annealing parameters would have resulted in better annealing
results; however, this method was not pursued since flash-annealing significantly
improved diffraction quality (Yeh & Hol, 1998
).
In 1999, Harp and coworkers published a study comparing the flash-annealing technique
with MCA. These techniques were applied to six different types of protein crystals
(myoglobin, lysozyme, proteinase K, concanavalin A, nucleosome core particle and chicken
histone octamer). Overall, they found that MCA was successful in five cases, whereas
flash-annealing improved the crystal quality in four cases. It was speculated that
the differences resulting from the application of the two techniques could be attributed
to the effect of the crystal size on the warming time, as larger crystals require
a longer thawing period for the crystals to `clear up' (Harp et al., 1999).
Further studies were carried out, such as the work of Samygina et al. (2000), who employed a combination of increased salt concentration with crystal annealing
using Escherichia coli pyrophosphatase and other protein crystals. Repeated cycles of annealing resulted
in a dramatic improvement of the maximum resolution from 1.8 to 1.2 Å, along with
a threefold to fivefold decrease in mosaicity. Ellis et al. (2002
) reported one of the most dramatic improvements in crystal quality using the flash-annealing
technique. Crystals of both native and mutant copper nitrite reductase protein were
studied. The crystals were annealed by blocking the coldstream for 10–15 s. It was
found that the resolution limit was extended from 2.5 to 1.1 Å, with a concomitant
decrease in mosaic spread from 1.5 to 0.3°. Kriminski et al. (2002
) studied flash-cooling-induced disorder and annealing using tetragonal and triclinic
hen egg-white lysozyme crystals. They speculated that crystal annealing reduces the
distribution of lattice spacings and improves diffraction resolution. They similarly
concluded that annealing produces larger and more homogeneous domains.
More recently, it was proposed that the solvent region plays an important role in
the successful application of annealing techniques. Parkin & Hope (2003) investigated the effect of crystal annealing on the solvent channels and structure
of concanavalin A crystals. They found only minimal changes in the protein structure
and the immediate hydration shell as a result of crystal annealing. The secondary
disordered solvent region, however, showed some dramatic changes. Juers & Matthews
(2004
) examined the role of solvent transport during annealing of β-galactosidase crystals. The crystals were flash-annealed with a blocking time of
2–3 s. The annealing process was repeated in cycles and the crystals showed a continuous
decrease in overall mosaicity along with an improvement in I/σ(I) per annealing cycle. These investigators postulated that the key to understanding
crystal annealing is the role of the bulk solvent and the cryoprotectant concentration.
An initially high cryoprotectant concentration will result in a net flow of condensed
water into the crystal during the thawing period. As a result, the solvent channels
contract less during subsequent cooling and the crystal quality is more likely to
improve. Juers and Matthew concluded that the failure of in situ cryoannealing may be an indication that the cryoprotectant concentration is too low
and that annealing is most likely to be successful in situations where the cryoprotectant
concentration is initially too high rather than too low. They suggest that annealing
would thus only be beneficial in cases where cryoconditions had not been properly
optimized.
For our studies, it should be noted that the cooling protocol for the glycerol kinase
crystals was optimized extensively, so that the concentrations of cryoprotectants
(ethylene glycol, glycerol, MPD, PEG 200, PEG 400) used were the minimum needed for
glass formation at 100 K, as indicated visually by the transparency of the solution
without residual opacity. However, we later found that visual inspection is a necessary
but not sufficient indicator of optimal cryoprotection, as further elaborated below.
Additionally, a comparison of data collected at room temperature on crystals of glycerol
kinase showed variations in mosaicities between 0.3 and >0.8°. This suggests that
inherent variations, possibly occurring during the crystal-growth stage, may be the
major contributor to the overall disorder of the crystal rather than damage arising
from the cooling protocol. This is further supported by the mosaicity values of cryocooled
glycerol kinase crystals, which can be of the order of 0.3°, as indicated by the mosaicity
given by the program DENZO. This idea is also substantiated by the study of copper nitrite reductase crystals,
whose diffraction improved from 2.5 to 1.1 Å after flash-annealing, whereas a room-temperature
data set diffracted to 1.8 Å (Ellis et al., 2002). The authors concluded that flash-annealing (in situ annealing) provided genuine improvement in crystal order and thus the resolution.
In this study, the measured reflection profiles and mosaicity values from glycerol
kinase crystals were used to obtain a more precise model of the mosaic domain structure
and composition of the crystals before and after flash-annealing. Reflection profiles
were obtained via a fine φ-slicing method using highly monochromatic and parallel synchrotron radiation (Bellamy
et al., 2000). The mosaicity, η, is deconvoluted from the measured angular width of each profile, φR, by applying corrections for the beam parameters and the Lorentz factor (Bellamy
et al., 2000
; Colapietro et al., 1992
; Greenhough & Helliwell, 1982
). The number, shape and size of mosaic domains can be estimated from curve-fitting
the complete reflection profile (Otálora et al., 1999
).
2. Methods
2.1. Crystal growth
Crystals of Enterococcus casseliflavus glycerol kinase were obtained by the hanging-drop technique from a solution containing
29% polyethylene glycol 400, 0.1 M sodium acetate pH 4.5, 0.1 M calcium acetate and 10% glycerol. Crystals appeared in varying sizes from small needles
to large rod-like crystals that were 0.7 mm long and 0.25 mm thick. The was determined as P21212, with a solvent content of 56%, resulting in an occupancy of one dimer per The unit-cell parameters were a = 93.77, b = 195.26, c = 55.31 Å. This crystallization condition is different from that first found for
the glycerol kinase crystals used in the original study (Yeh & Hol, 1998) as are the and unit-cell parameters, although the solvent content remains very similar.
2.2. Flash-annealing
Annealing experiments were performed with a new device, the Cryo-Shutter, shown in
Fig. 1, which was fabricated at Brookhaven National Laboratories. The Cryo-Shutter is a
simple device that allows blocking for programmed amounts of time of the 100 K nitrogen
stream that surrounds the sample. The shutter is controlled by EPICS (Experimental Physics and Industrial Control System) and activated by air pressure. The opening and closing time of the Cryo-Shutter
is of the order of milliseconds, which is insignificant compared with the total annealing
time. The main advantage of the shutter is that it allows a controlled instant re-cooling
of the crystals and avoids significant turbulence induced by traditional annealing
`devices' such as a piece of hard thin plastic.
![]() |
Figure 1 Image of the Cryo-Shutter in the (a) open and (b) closed state. |
Although the glycerol kinase crystals can be mounted directly into cryoloops and flash-cooled in a 100 K nitrogen gas stream without apparent icing problems, it was found that this concentration of cryoprotectant (29% PEG 400) was `borderline' upon closer inspection. Apparently, at this concentration of PEG 400 the crystallization solution exhibited varying minute degrees of opacity upon cryocooling. The amount of opacity and icing, as indicated by a higher background of diffraction between 3.4 and 3.8 Å, was dependent on the age of the crystals and the mounting technique (i.e. the length of time a drop was open prior to mounting in a loop and cooling). We attributed this to dehydration, effectively increasing the concentration of PEG 400 to a concentration that prevented `residual' icing, which correlated with the increased visual transparency of the cryocooled solution. We initially added an additional 4% PEG 400 to the artificial mother liquor (29% PEG 400, 0.1 M sodium acetate pH 4.5, 0.1 M calcium acetate and 10% glycerol) and used this solution for mounting and cryocooling. However, we found that we could grow the crystals in the presence of 33% PEG 400, which allowed us to mount the crystals and directly flash-cool them.
For flash-annealing, the Cryo-Shutter controller software was set to a 4 s annealing cycle. The annealing was repeated two times for each crystal as it was found from previous experiments that between two and three cool–thaw cycles improved the mosaicity and resolution, whereas greater numbers of cool–thaw cycles eventually degraded diffraction qualities. Thawing and re-cooling of the buffer and crystal were observed on a monitor during the flash-annealing process and the crystal remained transparent throughout the flash-annealing process.
2.3. Fine φ-sliced data collection and processing
A highly parallel unfocused beam from a bending magnet on beamline X6a at the National
Synchrotron Light Source (NSLS) was used to minimize beam divergence. The beam properties
were calculated from the source size and slit apertures using the SHADOW software (Cerrina et al., 1998). The vertical and horizontal beam divergences were calculated to be 52.2 and 33.4 µrad,
respectively, with primary slits set to 1.2 × 0.8 mm just before the Si(111) channel-cut
monochromator (Allaire et al., 2003
) located at 7.8 m from the source. The secondary slits were set to 0.5 × 0.5 mm 16.9 m
from the source and Δλ/λ was calculated to be 2 × 10−4.
Data were collected with a Quantum-4 CCD detector (ADSC) using rotation-camera geometry
as described previously (Bellamy et al., 2000; Borgstahl et al., 2001
; Snell et al., 2001
). To determine the crystal orientation, two orthogonal 3–6° swaths of coarse data
were collected (Δφ = 1° with 20 s exposure) and processed with MOSFLM (Powell, 1999
). From each swath, a 1.5° range was then selected and fine φ-sliced data corresponding to that range were collected for mosaicity measurements.
Data were collected on three glycerol kinase crystals (denoted xtl1, xt2 and xtl3).
Each crystal was cryocooled directly in the nitrogen cryostream at 100 K, data were
collected (data denoted as `cryo' and `cr') and then the crystal was flash-annealed
(data denoted as `flash-annealed' and `FA'). The same data-collection parameters were
used for each data set. Fine φ-sliced data were collected as stills spaced by 0.003° with 2 s X-ray exposures and
a total of 500 frames were collected for each crystal at 100 K. The crystal-to-detector
distance was 225 mm and the resolution at the edge of the detector was 2.3 and 1.8 Å
at the corners. The wavelength was 1.033 Å and the beam was collimated to 0.141 mm
diameter. Each data set took less than 20 min per crystal, therefore decay in the
beam over time was ignored in the analysis. Crystal decay, as indicated by the DENZO scale factor per frame, was negligible. The fine φ-sliced data were processed and analyzed using BEAM-ish 2.0 (Lovelace et al., 2000
). The program BEAM-ish deconvolutes the reflection mosaicity, η, using the measured reflection full-width at half-maximum, φR, as described by Bellamy et al. (2000
) and Helliwell (1988
). To reduce noise, the data points were averaged over 0.006°, with two slicing events
in a 0.003° window. In order to be accepted for profile analysis the reflections had
to have Imax > 100 and I/σ(I) > 5. Gaussian curves were fit to the reflection profiles using a (Wormington et al., 1999
) and the inter-process communication feature of BEAM-ish 2.0 was used to search for identical reflections across multiple data sets (Lovelace
et al., 2000
).
3. Results and discussion
3.1. Effects of flash-annealing on mosaicity, peak intensity and resolution
Annealing approaches have been proposed by several groups (Yeh & Hol, 1998; Bunick et al., 1998
; Harp et al., 1998
, 1999
; Kriminski et al., 2002
) to overcome the disadvantage of increased mosaicity as a result of cryocooling or
to generally improve data quality. In the current study, mosaic domain theory was
applied to the interpretation of the reflection profiles (Vahedi-Faridi et al., 2003
) measured from the glycerol kinase crystals. A total of three glycerol kinase crystals
(xtl1, xtl2 and xtl3) were examined to study the effects of flash-annealing on crystal
quality. 500 images each with an oscillation angle of 0.003° were collected before
(denoted as `cryo' and `cr') and after annealing (denoted as `flash-annealed' and
`FA') to obtain reflection profiles and to deconvolute reflection mosaicity and peak-intensity
values. Mosaicity data were measured from the full-width at half-maximum (FWHM) and
full-width at quarter-maximum (FWQM) of reflection profiles. Table 1
shows a summary of the averaged diffraction statistics for each of the three crystals
examined. Flash-annealing resulted in a noticeable overall decrease of the averaged
reflection mosaicities, ranging from 26.3% (xtl1) to a decrease of 38.2% for xtl3
(see Fig. 2
a). The averaged maximum pixel count for all reflections decreased slightly, as indicated
by the change in However, the overall decrease in maximum intensities can be attributed to the fact
that a filter was imposed for reflections to be included in the statistical analysis
[I/σ(I) > 5 and IMAX > 100; see §
2.3]. The improvement in crystal quality as a result of flash-annealing allowed many
more reflections to pass this filter (e.g. an increase of 48 reflections for xtl3). Most of these additional reflections have
a peak count slightly above 100, thus contributing to the small overall decrease in
the averaged values. The peak count is also referred to as `maximum intensity' in
the figures and is the count at the peak of the rocking curve. Fig. 2
(b) shows a plot of the maximum peak intensities as a function of resolution for crystal
xtl3. The plot shows `annealed' low-intensity reflections at a resolution greater
than 2.5 Å, showing an increase in diffractive resolution as a result of flash-annealing.
|
![]() |
Figure 2 Crystal-quality comparison of glycerol kinase before (cryocooled, red crosses) and after flash-annealing (flash-annealed, blue diamonds) by plotting individual reflection (a) mosaicity and (b) peak count (`maximum intensity') against resolution. |
Detailed comparisons of orientation matrices and observed reflection profiles showed
that crystals xtl1 and xtl2 underwent a noticeable shift in position within the cryoloop
during the flash-annealing process. As a result, identical reflections were not recorded
for these crystals within the two measured 1.5° swaths. Crystal xtl3, however, moved
to a far lesser degree, allowing the comparison of 79 identical reflections before
and after flash-annealing (see Table 2). The averaged mosaicity decrease for all 79 reflections is 25.7%. We integrated
the peak areas of seven reflections to quantify the change before and after flash-annealing
(Table 3
, column ΔArea). For the seven reflections, all but one exhibited a small decrease in peak areas;
however, for the one reflection (3, −11, −69) whose increased, the gain after annealing was significant (+50.8%). Contrary to the averaged
value for all reflections, the averaged maximum peak intensity counts in the most
intense pixels for all identical reflections actually increased by 28.8%. The increase
of 46% in the standard deviation for the reflection mosaicities indicates that although
reflection profiles become narrower overall as a result of flash-annealing, the mosaicity
distribution for individual reflection increases overall. This fact is evident in
Fig. 2
(a), showing annealed reflections with smaller mosaicities but wider mosaicity distribution
as a function of resolution. Figs. 3
(a) and 3
(b) show a plot of the mosaicity and peak-count change (`maximum intensity change',
in percent) as a function of resolution. Approximately 93% of all observed identical
reflections showed a decrease in their reflection mosaicities along with an increase
in the corresponding peak intensities.
|
|
![]() |
Figure 3 Crystal-quality comparison of glycerol kinase as a result of flash-annealing by plotting identical reflection (a) mosaicity change and (b) peak-count change (`maximum intensity change') against resolution. |
3.2. Effect of flash-annealing on reflection profiles and domain structure
The availability of a large number of identical reflections allows detailed characterization
of the annealing effects on the reflection profiles and domain structure. Fig. 4 shows 14 representative reflection profiles corresponding to seven identical reflections
from crystal xtl3. In general, the cryocooled reflection profiles had a similar number
of mosaic domains as the `annealed' reflections (Figs. 4). All of the `annealed' peak
profiles were described by two Gaussian curves. Thus, `annealed' reflections still
retain a dual-domain conformation with a small shoulder adjacent to the main peak.
Most cryocooled profiles were also described by two Gaussians, with a few exceptions
which were fitted with an additional third small Gaussian (Figs. 4
d and 4
g). The most noticeable effect of flash-annealing is the gain in maximum peak height
along with a decrease in peak width for one fitted Gaussian at the expense of the
second (Table 3
). These plots suggest that the decreased mosaicity can arise from improved alignment
of non-resolvable domains or a decrease in the variation of lattice spacings. Overall
peak profiles are much more homogeneous and symmetrical. As a result of the enhancement
of a single domain after flash-annealing, the signal-to-noise ratio of the data is
improved by increasing the peak height of the reflections, making the weaker and higher
resolution data easier to measure.
![]() |
Figure 4 Seven representative reflection profiles out of 79 available identical reflections for crystals xtl3 (see Table 3 ![]() |
Another mechanism for decreased mosaicity is through improved domain misalignment
and this may be exhibited through decreased peak separation of the Gaussian profiles
of reflections after annealing. Our results indicate that two are approximately the
same, three are reduced and two are increased (Table 3). Consequently, within the subset of reflections that we analyzed there appears to
be a random distribution, although a trend may possibly be detected with a larger
database for analysis.
4. Conclusions
Overall, the mosaic domain structure was changed as a result of flash-annealing, resulting in clearly improved profile shapes for the `flash-annealed' crystals. Flash-annealing significantly decreased the mosaicity of glycerol kinase crystals. The sharpening of individual domains suggests that there is a decrease in unit-cell variation within the domain. Reflections had improved signal-to-noise ratios as a result of flash-annealing, thus contributing significantly to the detection and measurement of higher resolution data.
Footnotes
‡These authors contributed equally to this work.
Acknowledgements
We thank Anthony Lenhard and Zhihiang Yin of the National Synchrotron Light Source, Brookhaven National Laboratory for their assistance. This work was supported by NIH (GM/AI66466) and March of Dimes Foundation (5-FY00-564) to JIY. The National Synchrotron Light Source, Brookhaven National Laboratory is supported by the US Department, and X6A is funded by NIH/NIGMS under agreement Y1 GM-0080 Energy under contract No. DE-AC02-98CH10886.
References
Allaire, M., Aslantas, M., Berntson, A., Berman, L., Cheung, S., Clay, B., Greene,
R., Jakoncic, J., Johnson, E., Kao, C. C., Lenhard, A., Pjerov, S., Siddons, D. P.,
Stober, W., Venkatagiriyappa, V., Yin, Z. & Stojanoff, V. (2003). Synchrotron Radiat. News, 16, 20–25. CrossRef Google Scholar
Bellamy, H. D., Snell, E. H., Lovelace, J., Pokross, M. & Borgstahl, G. E. O. (2000).
Acta Cryst. D56, 986–995. Web of Science CrossRef CAS IUCr Journals Google Scholar
Boggon, T. J., Helliwell, J. R., Judge, R. A., Olczak, A., Siddons, D. P., Snell,
E. H. & Stojanoff, V. (2000). Acta Cryst. D56, 868–880. Web of Science CrossRef CAS IUCr Journals Google Scholar
Borgstahl, G. E. O., Vahedi-Faridi, A., Lovelace, J., Bellamy, H. D. & Snell, E. H.
(2001). Acta Cryst. D57, 1204–1207. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bunick, G., Harp, J., Timm, D. & Hanson, L. (1998). Rigaku J. 15, 6–13. CAS Google Scholar
Cerrina, F., Lai, B., Chapman, K., Welnak, C. & Runkle, P. (1998). SHADOW v.2.3.3. A System for the Study of Optical Sytems. University of Wisconsin-Madison, USA. Google Scholar
Colapietro, M., Cappuccio, G., Marciante, C., Pifferi, A., Spagna, R. & Helliwell,
J. R. (1992). J. Appl. Cryst. 25, 192–194. CrossRef Web of Science IUCr Journals Google Scholar
Darwin, C. G. (1922). Philos. Mag. 43, 800–829. CrossRef CAS Google Scholar
Ellis, M. J., Antonyuk, S. & Hasnain, S. S. (2002). Acta Cryst. D58, 456–458. Web of Science CrossRef CAS IUCr Journals Google Scholar
Garman, E. F. & Schneider, T. R. (1997). J. Appl. Cryst. 30, 211–237. CrossRef Web of Science IUCr Journals Google Scholar
Greenhough, T. J. & Helliwell, J. R. (1982). J. Appl. Cryst. 15, 338–351. CrossRef CAS Web of Science IUCr Journals Google Scholar
Harp, J. M., Hanson, B. L., Timm, D. E. & Bunick, G. J. (1999). Acta Cryst. D55, 1329–1334. Web of Science CrossRef CAS IUCr Journals Google Scholar
Harp, J. M., Timm, D. E. & Bunick, G. J. (1998). Acta Cryst. D54, 622–628. Web of Science CrossRef CAS IUCr Journals Google Scholar
Helliwell, J. R. (1988). J. Cryst. Growth, 90, 259–272. CrossRef CAS Web of Science Google Scholar
Juers, D. H. & Matthews, B. W. (2004). Acta Cryst. D60, 412–421. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kriminski, S., Caylor, C. L., Nonato, M. C., Finkelstein, K. D. & Thorne, R. E. (2002).
Acta Cryst. D58, 459–471. Web of Science CrossRef CAS IUCr Journals Google Scholar
Lovelace, J., Snell, E. H., Pokross, M., Arvai, A. S., Nielsen, C., Xuong, N., Bellamy,
H. D. & Borgstahl, G. E. O. (2000). J. Appl. Cryst. 33, 1187–1188. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mitchell, E. P. & Garman, E. F. (1994). J. Appl. Cryst. 27, 1070–1074. CrossRef CAS IUCr Journals Google Scholar
Nave, C. (1998). Acta Cryst. D54, 848–853. Web of Science CrossRef CAS IUCr Journals Google Scholar
Otálora, F., Capelle, B., Ducruix, A. & García-Ruiz, J. M. (1999). Acta Cryst. D55, 644–649. Web of Science CrossRef IUCr Journals Google Scholar
Otwinowski, Z. (2005). Personal communication. Google Scholar
Otwinowski, Z. & Minor, W. (2001). International Tables for Crystallography, Vol. F, edited by M. G. Rossmann & E. Arnold, ch. 11.4. Dordrecht: Kluwer Academic Publishers.
Google Scholar
Parak, F., Hartmann, H., Aumann, K. D., Reuscher, H., Rennekamp, G., Bartunik, H.
& Steigemann, W. (1987). Eur. Biophys. J. 15, 237–249. CrossRef CAS PubMed Web of Science Google Scholar
Parkin, S. & Hope, H. (2003). Acta Cryst. D59, 2228–2236. CrossRef CAS IUCr Journals Google Scholar
Petsko, G. (1975). J. Mol. Biol. 96, 381–392. CrossRef CAS PubMed Web of Science Google Scholar
Powell, H. R. (1999). Acta Cryst. D55, 1690–1695. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rodgers, D. W. (1994). Structure, 2, 1135–1140. CrossRef CAS PubMed Web of Science Google Scholar
Rodgers, D. W. (1997). Methods Enzymol. 276, 183–202. CrossRef CAS Web of Science Google Scholar
Samygina, V. R., Antonyuk, S. V., Lamzin, V. S. & Popov, A. N. (2000). Acta Cryst. D56, 595–603. Web of Science CrossRef CAS IUCr Journals Google Scholar
Snell, E. H., Judge, R. A., Crawford, L., Forsythe, E. L., Pusey, M. L., Sportiello,
M., Todd, P., Bellamy, H., Lovelace, J., Cassanto, J. M. & Borgstahl, G. E. O. (2001).
Cryst. Growth Des. 1, 151–158. Web of Science CrossRef CAS Google Scholar
Teng, T.-Y. & Moffat, K. (1998). J. Appl. Cryst. 31, 252–257. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vahedi-Faridi, A., Lovelace, J., Bellamy, H., Snell, E. & Borgstahl, G. E. O. (2003).
Acta Cryst. D59, 2169–2182. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wormington, M., Panaccione, C., Matney, K. M. & Bowen, D. K. (1999). Philos. Trans. R. Soc. London Ser. A, 357, 2827–2848. CrossRef CAS Google Scholar
Yeh, J. I. & Hol, W. G. J. (1998). Acta Cryst. D54, 479–480. Web of Science CrossRef CAS IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.