Cobalt Nanoparticles Loaded on MXene for Li-S Batteries: Anchoring Polysulfides and Accelerating Redox Reactions
Qinhua Gu
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016 China
Search for more papers by this authorYujie Qi
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016 China
Search for more papers by this authorJunnan Chen
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016 China
Search for more papers by this authorCorresponding Author
Ming Lu
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 China
Key Laboratory of Preparation and Application of Environmental Friendly Materials of the Ministry of Education, The Joint Laboratory of MXene Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Bingsen Zhang
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorQinhua Gu
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016 China
Search for more papers by this authorYujie Qi
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016 China
Search for more papers by this authorJunnan Chen
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016 China
Search for more papers by this authorCorresponding Author
Ming Lu
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 China
Key Laboratory of Preparation and Application of Environmental Friendly Materials of the Ministry of Education, The Joint Laboratory of MXene Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Bingsen Zhang
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Catalysis is regarded as an effective strategy to fundamentally increase sulfur utilization, accelerating the kinetics of the transformation between lithium polysulfides (LiPSs) and lithium sulfide (Li2S) on a substrate. However, the intermodulation of catalysts and sulfur species is elusive, which is limited to the comprehensive analysis of electrochemical performance in the dynamic reaction process. Herein, cobalt nanoparticles loaded on MXene nanosheets (Co/Ti2C) are selected as sulfur hosts and the representative catalyst. By combining ex situ electrochemical results and interfacial structural chemical monitoring, the catalysis process of Co/Ti2C toward LiPSs conversion is revealed, and the outstanding performance originates from the optimization of chemical adsorption, catalytic activity, and lithium-ion transfer behaviors, which is based on electronic/ion modulation and sufficient interfaces among catalysts and electrolyte. This work can guide the construction of electronic modulation at triple-phase interface catalysis to overcome the shuttle effect and facilitate sulfur redox kinetics in Li-S batteries.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202204005-sup-0001-SuppMat.pdf1.2 MB | Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1G. Zhang, Z.-W. Zhang, H.-J. Peng, J.-Q. Huang, Q. Zhang, Small Methods 2017, 1, 1700134.
- 2Y. Chen, T. Wang, H. Tian, D. Su, Q. Zhang, G. Wang, Adv. Mater. 2021, 33, 2003666.
- 3Y. Dong, D. Cai, T. Li, S. Yang, X. Zhou, Y. Ge, H. Tang, H. Nie, Z. Yang, ACS Nano 2022, 16, 6414.
- 4X. Hong, R. Wang, Y. Liu, J. Fu, J. Liang, S. Dou, J. Energy Chem. 2020, 42, 144.
- 5T. Li, C. He, W. Zhang, J. Energy Chem. 2021, 52, 121.
- 6Y. Qi, N. Chai, Q. Gu, J. Chen, M. Lu, X. Zhang, B. Zhang, Chem. Eng. J. 2022, 435, 135112.
- 7K. Chen, Z. Sun, R. Fang, F. Li, H. Cheng, Acta Phys.-Chim. Sin. 2018, 34, 377.
- 8G. Zhu, C. Zhao, H. Yuan, H. Nan, B. Zhao, L. Hou, C. He, Q. Liu, J. Huang, Acta Phys.-Chim. Sin. 2021, 37, 2005003.
- 9Q. Wang, K. Wu, H. Wang, W. Liu, H. Zhou, Acta Phys.-Chim. Sin. 2021, 37, 2007092.
- 10Y. Cai, Q. Jin, K. Zhao, X. Ma, X. Zhang, Chin. Chem. Lett. 2022, 33, 457.
- 11S. Jiang, S. Huang, M. Yao, J. Zhu, L. Liu, Z. Niu, Chin. Chem. Lett. 2020, 31, 2347.
- 12B. Guan, X. Sun, Y. Zhang, X. Wu, Y. Qiu, M. Wang, L. Fan, N. Zhang, Chin. Chem. Lett. 2021, 32, 2249.
- 13D. Cao, X. Shen, A. Wang, F. Yu, Y. Wu, S. Shi, S. A. Freunberger, Y. Chen, Nat. Catal. 2022, 5, 193.
- 14Z. Yuan, H.-J. Peng, T.-Z. Hou, J.-Q. Huang, C.-M. Chen, D.-W. Wang, X.-B. Cheng, F. Wei, Q. Zhang, Nano Lett. 2016, 16, 519.
- 15B. Yan, X. Li, W. Xiao, J. Hu, L. Zhang, X. Yang, J. Mater. Chem. A 2020, 8, 17848.
- 16R. Li, Z. Bai, W. Hou, J. Qiao, W. Sun, Y. Bai, Z. Wang, K. Sun, Chin. Chem. Lett. 2021, 32, 4063.
- 17M. Zhao, H.-J. Peng, Z.-W.3. Zhang, B.-Q. Li, X. Chen, J. Xie, X. Chen, J.-Y. Wei, Q. Zhang, J.-Q. Huang, Angew. Chem., Int. Ed. 2019, 58, 3779.
- 18S. Fan, S. Huang, M. E. Pam, S. Chen, Q. Wu, J. Hu, Y. Wang, L. K. Ang, C. Yan, Y. Shi, H. Y. Yang, Small 2019, 15, 1906132.
- 19S. Yu, W. Cai, L. Chen, L. Song, Y. Song, J. Energy Chem. 2021, 55, 533.
- 20J. Cheng, D. Zhao, L. Fan, X. Wu, M. Wang, H. Wu, B. Guan, N. Zhang, K. Sun, Chem. - Eur. J. 2018, 24, 13253.
- 21L. Wang, W. Hua, X. Wan, Z. Feng, Z. Hu, H. Li, J. Niu, L. Wang, A. Wang, J. Liu, X. Lang, G. Wang, W. Li, Q.-H. Yang, W. Wang, Adv. Mater. 2022, 34, 2110279.
- 22C. Geng, W. Hua, G. Ling, Y. Tao, C. Zhang, Q. Yang, J. Chin. Univ. 2021, 42, 1331.
- 23M. Zhao, X. Chen, X.-Y. Li, B.-Q. Li, J.-Q. Huang, Adv. Mater. 2021, 33, 2007298.
- 24J. He, Y. Chen, A. Manthiram, Adv. Energy Mater. 2019, 9, 1900584.
- 25G. Zhou, H. Tian, Y. Jin, X. Tao, B. Liu, R. Zhang, Z. W. Seh, D. Zhuo, Y. Liu, J. Sun, J. Zhao, C. Zu, D. S. Wu, Q. Zhang, Y. Cui, Proc. Natl. Acad. Sci. USA 2017, 114, 840.
- 26H. Jiang, Z. Wang, L. Dong, M. Dong, Electrochim. Acta 2020, 353, 136607.
- 27M. Naguib, O. Mashtalir, M. R. Lukatskaya, B. Dyatkin, C. Zhang, V. Presser, Y. Gogotsi, M. W. Barsoum, Chem. Commun. 2014, 50, 7420.
- 28Q. Yang, T. Yang, W. Gao, Y. Qi, B. Guo, W. Zhong, J. Jiang, M. Xu, Inorg. Chem. Front. 2020, 7, 4396.
- 29Y. Wang, M. Liu, Z. Wang, Q. Gu, B. Liu, C. Zhao, J. Zhang, S. Xu, M. Lu, H. Li, B. Zhang, J. Energy Chem. 2022, 68, 306.
- 30W. Hua, H. Li, C. Pei, J. Xia, Y. Sun, C. Zhang, W. Lv, Y. Tao, Y. Jiao, B. Zhang, S.-Z. Qiao, Y. Wan, Q.-H. Yang, Adv. Mater. 2021, 33, 2101006.
- 31J. Xia, W. Hua, L. Wang, Y. Sun, C. Geng, C. Zhang, W. Wang, Y. Wan, Q.-H. Yang, Adv. Funct. Mater. 2021, 31, 2101980.
- 32Y. Cao, C. Liu, M. Wang, H. Yang, S. Liu, H. Wang, Z. Yang, F. Pan, Z. Jiang, J. Sun, Energy Storage Mater. 2020, 29, 207.
- 33W. Wang, L. Huai, S. Wu, J. Shan, J. Zhu, Z. Liu, L. Yue, Y. Li, ACS Nano 2021, 15, 11619.
- 34X. Liang, Y. Rangom, C. Y. Kwok, Q. Pang, L. F. Nazar, Adv. Mater. 2017, 29, 1603040.
- 35F. Y. Fan, W. C. Carter, Y.-M. Chiang, Adv. Mater. 2015, 27, 5203.
- 36Z. Qiao, Y. Zhang, Z. Meng, Q. Xie, L. Lin, H. Zheng, B. Sa, J. Lin, L. Wang, D.-L. Peng, Adv. Funct. Mater. 2021, 31, 2100970.
- 37L. Zhang, D. Liu, Z. Muhammad, F. Wan, W. Xie, Y. Wang, L. Song, Z. Niu, J. Chen, Adv. Mater. 2019, 31, 1903955.
- 38S. Zhou, S. Yang, D. Cai, C. Liang, S. Yu, Y. Hu, H. Nie, Z. Yang, Adv. Sci. 2022, 9, 2104205.
- 39Q. Gu, M. Lu, J. Chen, Y. Qi, B. Zhang, Particuology 2021, 57, 139.
- 40Z. Li, Y. Zhou, Y. Wang, Y.-C. Lu, Adv. Energy Mater. 2019, 9, 1802207.