Lysophosphatidic acid LPA1 receptor close-up
S. Eréndira Avendaño-Vázquez
Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México. Fax: +52 55 5616-2282
Search for more papers by this authorAlejandro Cabrera-Wrooman
Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México. Fax: +52 55 5616-2282
Search for more papers by this authorChristian C. Colín-Santana
Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México. Fax: +52 55 5616-2282
Search for more papers by this authorS. Eréndira Avendaño-Vázquez
Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México. Fax: +52 55 5616-2282
Search for more papers by this authorAlejandro Cabrera-Wrooman
Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México. Fax: +52 55 5616-2282
Search for more papers by this authorChristian C. Colín-Santana
Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México. Fax: +52 55 5616-2282
Search for more papers by this authorAbstract
Lysophosphatidic acid is a local hormone / autacoid / growth factor, which induces a plethora of actions in the majority of cells in our organism. These actions include, among many others, the following: cell migration, proliferation and surviving, induction of gene transcription, platelet aggregation, smooth muscle contraction, myelinization, neurotransmitter release, cytoskeletal reorganization during the stress fiber formation, establishment of focal adhesions, neurite retraction, and cell rounding. The actions of lysophosphatidic acid are mediated through a family of G protein coupled receptors that includes five receptor subtypes, i.e. LPA1,–5 receptors. These receptors couple to different G proteins, mainly Gi, Gq and G12/13 and their signaling pathways, besides there is evidence that they can transactivate EGF receptors to mediate some of their actions. The LPA1 receptor was the first subtype to be cloned for this lysophospholipid. It plays an important role in development, is expressed in many cells and tissues and has been the most extensively studied. The present review presents current knowledge on the structure, function and regulation of this receptor subtype, its possible involvement in pathological conditions and suggests certain areas in which current knowledge is insufficient and further research is required.
References
- [1] Tokumura, A., Kume, T., Fukuzawa, K., Tsukatani, H. (1981) Cardiovascular effects of lysophosphatidic acid and its structural analogs in rats. J. Pharmacol. Exp. Ther. 219: 219–224.
- [2] Tokumura, A., Harada, K., Fukuzawa, K., Tsukatani, H. (1986) Involvement of lysophospholipase D in the production of lysophosphatidic acid in rat plasma. Biochim. Biophys. Acta 875: 31–38.
- [3] Tokumura, A., Fukuzawa, K., Tsukatani, H. (1982) Contractile actions of lysophosphatidic acids with a chemically-defined fatty acyl group on longitudinal muscle from guinea-pig ileum. J. Pharm. Pharmacol. 34: 514–516.
- [4] Tokumura, A., Fukuzawa, K., Yamada, S., Tsukatani, H. (1980) Stimulatory effect of lysophosphatidic acids on uterine smooth muscles of non-pregant rats. Arch. Int. Pharmacodyn. Ther. 245: 74–83.
- [5] Tokumura, A., Fukuzawa, K., Isobe, J., Tsukatani, H. (1981) Lysophosphatidic acid-induced aggregation of human and feline platelets: structure-activity relationship. Biochem. Biophys. Res. Commun. 99: 391–398.
- [6] Moolenaar, W.H. (1994) LPA: a novel lipid mediator with diverse biological actions. Trends Cell. Biol. 4: 213–219.
- [7] Jalink, K., van Corven, E.J., Moolenaar, W.H. (1990) Lysophosphatidic acid, but not phosphatidic acid, is a potent Ca2(+)-mobilizing stimulus for fibroblasts. Evidence for an extracellular site of action. J. Biol. Chem. 265: 12232–12239.
- [8] Gerrard, J.M., Clawson, C.C., White, J.G. (1980) Lysophosphatidic acids: III. Enhancement of neutrophil chemotaxis. Am. J. Pathol. 100: 609–618.
- [9] Lummen, G., Virchow, S., Rumenapp, U., Schmidt, M., Wieland, T., Otto, T., Rubben, H., Jakobs, K.H. (1997) Identification of G protein-coupled receptors potently stimulating migration of human transitional-cell carcinoma cells. Naunyn-Schmiedebergs Arch. Pharmacol. 356: 769–776.
- [10] van Corven, E.J., Hordijk, P.L., Medema, R.H., Bos, J.L., Moolenaar, W.H. (1993) Pertussis toxin-sensitive activation of p21ras by G protein-coupled receptor agonists in fibroblasts. Proc. Natl. Acad. Sci. U. S. A. 90: 1257–1261.
- [11] Moolenaar, W.H., van Corven, E.J. (1990) Growth factor-like action of lysophosphatidic acid: mitogenic signalling mediated by G proteins. Ciba Found Symp. 150: 99–106; discussion 106–111.
- [12] van Corven, E.J., Groenink, A., Jalink, K., Eichholtz, T., Moolenaar, W.H. (1989) Lysophosphatidate-induced cell proliferation: identification and dissection of signaling pathways mediated by G proteins. Cell 59: 45–54.
- [13] van Corven, E.J., van Rijswijk, A., Jalink, K., van der Bend, R.L., van Blitterswijk, W.J., Moolenaar, W.H. (1992) Mitogenic action of lysophosphatidic acid and phosphatidic acid on fibroblasts. Dependence on acyl-chain length and inhibition by suramin. Biochem. J. 281 (Pt 1): 163–169.
- [14] Perkins, L.M., Ramirez, F.E., Kumar, C.C., Thomson, F.J., Clark, M.A. (1994) Activation of serum response element-regulated genes by lysophosphatidic acid. Nucleic Acids Res. 22: 450–452.
- [15] Gerrard, J.M., Kindom, S.E., Peterson, D.A., Peller, J., Krantz, K.E., White, J.G. (1979) Lysophosphatidic acids. Influence on platelet aggregation and intracellular calcium flux. Am. J. Pathol. 96: 423–438.
- [16] Sandmann, G., Siess, W., Essler, M. (2003) Lysophosphatidic acid is the unique platelet-activating substance in human malignant ascites. Eur. J. Med. Res. 8: 397–404.
- [17] Mori, M., Tsushima, H. (2000) Activation of Rho signaling contributes to lysophosphatidic acid-induced contraction of intact ileal smooth muscle of guinea-pig. Can. J. Physiol. Pharmacol. 78: 729–736.
- [18] Toews, M.L., Ustinova, E.E., Schultz, H.D. (1997) Lysophosphatidic acid enhances contractility of isolated airway smooth muscle. J. Appl. Physiol. 83: 1216–1222.
- [19] Baillie, G.S., Sood, A., McPhee, I., Gall, I., Perry, S.J., Lefkowitz, R.J., Houslay, M.D. (2003) beta-Arrestin-mediated PDE4 cAMP phosphodiesterase recruitment regulates beta-adrenoceptor switching from Gs to Gi. Proc. Natl. Acad. Sci. U. S. A. 100: 940–945.
- [20]
Weiner, J.A.,
Hecht, J.H.,
Chun, J.
(1998)
Lysophosphatidic acid receptor gene vzg-1/lpA1/edg-2 is expressed by mature oligodendrocytes during myelination in the postnatal murine brain.
J. Comp. Neurol.
398:
587–598.
10.1002/(SICI)1096-9861(19980907)398:4<587::AID-CNE10>3.0.CO;2-5 CAS PubMed Web of Science® Google Scholar
- [21] Renback, K., Inoue, M., Ueda, H. (1999) Lysophosphatidic acid-induced, pertussis toxin-sensitive nociception through a substance P release from peripheral nerve endings in mice. Neurosci. Lett. 270: 59–61.
- [22] Shiono, S., Kawamoto, K., Yoshida, N., Kondo, T., Inagami, T. (1993) Neurotransmitter release from lysophosphatidic acid stimulated PC12 cells: involvement of lysophosphatidic acid receptors. Biochem. Biophys. Res. Commun. 193: 667–673.
- [23] Jalink, K., Eichholtz, T., Postma, F.R., van Corven, E.J., Moolenaar, W.H. (1993) Lysophosphatidic acid induces neuronal shape changes via a novel, receptor-mediated signaling pathway: similarity to thrombin action. Cell Growth Differ. 4: 247–255.
- [24] Jalink, K., van Corven, E.J., Hengeveld, T., Morii, N., Narumiya, S., Moolenaar, W.H. (1994) Inhibition of lysophosphatidate- and thrombin-induced neurite retraction and neuronal cell rounding by ADP ribosylation of the small GTP-binding protein Rho. J. Cell. Biol. 126: 801–810.
- [25]
Manning, T.J. Jr.,
Rosenfeld, S.S.,
Sontheimer, H.
(1998)
Lysophosphatidic acid stimulates actomyosin contraction in astrocytes.
J. Neurosci. Res.
53:
343–352.
10.1002/(SICI)1097-4547(19980801)53:3<343::AID-JNR8>3.0.CO;2-A CAS PubMed Web of Science® Google Scholar
- [26] Tigyi, G., Fischer, D.J., Sebok, A., Marshall, F., Dyer, D.L., Miledi, R. (1996) Lysophosphatidic acid-induced neurite retraction in PC12 cells: neurite-protective effects of cyclic AMP signaling. J. Neurochem. 66: 549–558.
- [27] Tigyi, G., Fischer, D.J., Sebok, A., Yang, C., Dyer, D.L., Miledi, R. (1996) Lysophosphatidic acid-induced neurite retraction in PC12 cells: control by phosphoinositide-Ca2+ signaling and Rho. J. Neurochem. 66: 537–548.
- [28] van der Bend, R.L., de Widt, J., van Corven, E.J., Moolenaar, W.H., van Blitterswijk, W.J. (1992) The biologically active phospholipid, lysophosphatidic acid, induces phosphatidylcholine breakdown in fibroblasts via activation of phospholipase D. Comparison with the response to endothelin. Biochem. J. 285 (Pt 1): 235–240.
- [29] Laffargue, M., Raynal, P., Yart, A., Peres, C., Wetzker, R., Roche, S., Payrastre, B., Chap, H. (1999) An epidermal growth factor receptor/Gab1 signaling pathway is required for activation of PI3K by lysophosphatidic acid. J. Biol. Chem. 274: 32835–32841.
- [30] Takeda, H., Matozaki, T., Takada, T., Noguchi, T., Yamao, T., Tsuda, M., Ochi, F., Fukunaga, K., Inagaki, K., Kasuga, M. (1999) PI 3-kinase gamma and protein kinase C-zeta mediate RAS-independent activation of MAP kinase by a Gi protein-coupled receptor. Embo. J. 18: 386–395.
- [31] Gohla, A., Harhammer, R., Schultz, G. (1998) The G-protein G13 but not G12 mediates signaling from lysophosphatidic acid receptor via epidermal growth factor receptor to Rho. J. Biol. Chem. 273: 4653–4659.
- [32] Itagaki, K., Kannan, K.B., Hauser, C.J. (2005) Lysophosphatidic acid triggers calcium entry through a non-store-operated pathway in human neutrophils. J. Leukoc. Biol. 77: 181–189.
- [33] Cook, S.J., Rubinfeld, B., Albert, I., McCormick, F. (1993) RapV12 antagonizes Ras-dependent activation of ERK1 and ERK2 by LPA and EGF in Rat-1 fibroblasts. Embo. J. 12: 3475–3485.
- [34] Hordijk, P.L., Verlaan, I., van Corven, E.J., Moolenaar, W.H. (1994) Protein tyrosine phosphorylation induced by lysophosphatidic acid in Rat-1 fibroblasts. Evidence that phosphorylation of map kinase is mediated by the Gi-p21ras pathway. J. Biol. Chem. 269: 645–651.
- [35] Daub, H., Wallasch, C., Lankenau, A., Herrlich, A., Ullrich, A. (1997) Signal characteristics of G protein-transactivated EGF receptor. Embo. J. 16: 7032–7044.
- [36] Daub, H., Weiss, F.U., Wallasch, C., Ullrich, A. (1996) Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 379: 557–560.
- [37] Prenzel, N., Zwick, E., Daub, H., Leserer, M., Abraham, R., Wallasch, C., Ullrich, A. (1999) EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402: 884–888.
- [38] Zwick, E., Wallasch, C., Daub, H., Ullrich, A. (1999) Distinct calcium-dependent pathways of epidermal growth factor receptor transactivation and PYK2 tyrosine phosphorylation in PC12 cells. J. Biol. Chem. 274: 20989–20996.
- [39] Bandoh, K., Aoki, J., Taira, A., Tsujimoto, M., Arai, H., Inoue, K. (2000) Lysophosphatidic acid (LPA) receptors of the EDG family are differentially activated by LPA species. Structure-activity relationship of cloned LPA receptors. FEBS Lett. 478: 159–165.
- [40] Jalink, K., Hengeveld, T., Mulder, S., Postma, F.R., Simon, M.F., Chap, H., van der Marel, G.A., van Boom, J.H., van Blitterswijk, W.J., Moolenaar, W.H. (1995) Lysophosphatidic acid-induced Ca2+ mobilization in human A431 cells: structure-activity analysis. Biochem. J. 307 (Pt 2): 609–616.
- [41] Lynch, K.R., Macdonald, T.L. (2001) Structure activity relationships of lysophospholipid mediators. Prostaglandins Other Lipid Mediat. 64: 33–45.
- [42] Tokumura, A., Fukuzawa, K., Tsukatani, H. (1978) Effects of synthetic and natural lysophosphatidic acids on the arterial blood pressure of different animal species. Lipids 13: 572–574.
- [43] Aoki, J., Taira, A., Takanezawa, Y., Kishi, Y., Hama, K., Kishimoto, T., Mizuno, K., Saku, K., Taguchi, R., Arai, H. (2002) Serum lysophosphatidic acid is produced through diverse phospholipase pathways. J. Biol. Chem. 277: 48737–48744.
- [44]
Sano, T.,
Baker, D.,
Virag, T.,
Wada, A.,
Yatomi, Y.,
Kobayashi, T.,
Igarashi, Y.,
Tigyi, G.
(2002)
Multiple mechanisms linked to platelet activation result in lysophosphatidic acid and sphingosine 1-phosphate generation in blood.
J. Biol. Chem.
277:
21197–21206.
10.1074/jbc.M201289200 Google Scholar
- [45] Tigyi, G., Miledi, R. (1992) Lysophosphatidates bound to serum albumin activate membrane currents in Xenopus oocytes and neurite retraction in PC12 pheochromocytoma cells. J. Biol. Chem. 267: 21360–21367.
- [46] Eichholtz, T., Jalink, K., Fahrenfort, I., Moolenaar, W.H. (1993) The bioactive phospholipid lysophosphatidic acid is released from activated platelets. Biochem. J. 291(Pt 3): 677–680.
- [47] Gerrard, J.M., Robinson, P. (1989) Identification of the molecular species of lysophosphatidic acid produced when platelets are stimulated by thrombin. Biochim. Biophys. Acta 1001: 282–285.
- [48] Sugiura, T., Nakane, S., Kishimoto, S., Waku, K., Yoshioka, Y., Tokumura, A. (2002) Lysophosphatidic acid, a growth factor-like lipid, in the saliva. J. Lipid Res. 43: 2049–2055.
- [49] Tanaka, M., Kishi, Y., Takanezawa, Y., Kakehi, Y., Aoki, J., Arai, H. (2004) Prostatic acid phosphatase degrades lysophosphatidic acid in seminal plasma. FEBS Lett. 571: 197–204.
- [50] Hama, K., Bandoh, K., Kakehi, Y., Aoki, J., Arai, H. (2002) Lysophosphatidic acid (LPA) receptors are activated differentially by biological fluids: possible role of LPA-binding proteins in activation of LPA receptors. FEBS Lett. 523: 187–192.
- [51] Tokumura, A., Miyake, M., Nishioka, Y., Yamano, S., Aono, T., Fukuzawa, K. (1999) Production of lysophosphatidic acids by lysophospholipase D in human follicular fluids of In vitro fertilization patients. Biol. Reprod. 61: 195–199.
- [52] Tigyi, G., Hong, L., Yakubu, M., Parfenova, H., Shibata, M., Leffler, C.W. (1995) Lysophosphatidic acid alters cerebrovascular reactivity in piglets. Am. J. Physiol. 268: H2048–2055.
- [53] Westermann, A.M., Havik, E., Postma, F.R., Beijnen, J.H., Dalesio, O., Moolenaar, W.H., Rodenhuis, S. (1998) Malignant effusions contain lysophosphatidic acid (LPA)-like activity. Ann. Oncol. 9: 437–442.
- [54] Xiao, Y.J., Schwartz, B., Washington, M., Kennedy, A., Webster, K., Belinson, J., Xu, Y. (2001) Electrospray ionization mass spectrometry analysis of lysophospholipids in human ascitic fluids: comparison of the lysophospholipid contents in malignant vs nonmalignant ascitic fluids. Anal. Biochem. 290: 302–313.
- [55] Mauco, G., Chap, H., Simon, M.F., Douste-Blazy, L. (1978) Phosphatidic and lysophosphatidic acid production in phospholipase C-and thrombin-treated platelets. Possible involvement of a platelet lipase. Biochimie 60: 653–661.
- [56] Schumacher, K.A., Classen, H.G., Spath, M. (1979) Platelet aggregation evoked in vitro and in vivo by phosphatidic acids and lysoderivatives: identity with substances in aged serum (DAS). Thromb. Haemost. 42: 631–640.
- [57] Simon, M.F., Chap, H., Douste-Blazy, L. (1982) Human platelet aggregation induced by 1-alkyl-lysophosphatidic acid and its analogs: a new group of phospholipid mediators? Biochem. Biophys. Res. Commun. 108: 1743–1750.
- [58] Watson, S.P., McConnell, R.T., Lapetina, E.G. (1985) Decanoyl lysophosphatidic acid induces platelet aggregation through an extracellular action. Evidence against a second messenger role for lysophosphatidic acid. Biochem. J. 232: 61–66.
- [59] Zheng, Y., Kong, Y., Goetzl, E.J. (2001) Lysophosphatidic acid receptor-selective effects on Jurkat T cell migration through a Matrigel model basement membrane. J. Immunol. 166: 2317–2322.
- [60] Inoue, C.N., Epstein, M., Forster, H.G., Hotta, O., Kondo, Y., Iinuma, K. (1999) Lysophosphatidic acid and mesangial cells: implications for renal diseases. Clin. Sci. (Lond.) 96: 431–436.
- [61] Zhang, Z., Liu, Z., Meier, K.E. (2006) Lysophosphatidic acid as a mediator for proinflammatory agonists in a human corneal epithelial cell line. Am. J. Physiol. Cell Physiol. 291: C1089–1098.
- [62] Pages, G., Girard, A., Jeanneton, O., Barbe, P., Wolf, C., Lafontan, M., Valet, P., Saulnier-Blache, J.S. (2000) LPA as a paracrine mediator of adipocyte growth and function. Ann. N. Y. Acad. Sci. 905: 159–164.
- [63] Tigyi, G., Parrill, A.L. (2003) Molecular mechanisms of lysophosphatidic acid action. Prog. Lipid Res. 42: 498–526.
- [64] Aoki, J. (2004) Mechanisms of lysophosphatidic acid production. Semin. Cell Dev. Biol. 15: 477–489.
- [65] Hiramatsu, T., Sonoda, H., Takanezawa, Y., Morikawa, R., Ishida, M., Kasahara, K., Sanai, Y., Taguchi, R., Aoki, J., Arai, H. (2003) Biochemical and molecular characterization of two phosphatidic acid-selective phospholipase A1s, mPA-PLA1alpha and mPA-PLA1beta. J. Biol. Chem. 278: 49438–49447.
- [66] Umezu-Goto, M., Kishi, Y., Taira, A., Hama, K., Dohmae, N., Takio, K., Yamori, T., Mills, G.B., Inoue, K., Aoki, J., Arai, H. (2002) Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. J. Cell. Biol. 158: 227–233.
- [67] Tokumura, A., Majima, E., Kariya, Y., Tominaga, K., Kogure, K., Yasuda, K., Fukuzawa, K. (2002) Identification of human plasma lysophospholipase D, a lysophosphatidic acid-producing enzyme, as autotaxin, a multifunctional phosphodiesterase. J. Biol. Chem. 277: 39436–39442.
- [68] Moolenaar, W.H. (2002) Lysophospholipids in the limelight: autotaxin takes center stage. J. Cell. Biol. 158: 197–199.
- [69] Gesta, S., Simon, M.F., Rey, A., Sibrac, D., Girard, A., Lafontan, M., Valet, P., Saulnier-Blache, J.S. (2002) Secretion of a lysophospholipase D activity by adipocytes: involvement in lysophosphatidic acid synthesis. J. Lipid Res. 43: 904–910.
- [70] Siess, W., Zangl, K.J., Essler, M., Bauer, M., Brandl, R., Corrinth, C., Bittman, R., Tigyi, G., Aepfelbacher, M. (1999) Lysophosphatidic acid mediates the rapid activation of platelets and endothelial cells by mildly oxidized low density lipoprotein and accumulates in human atherosclerotic lesions. Proc. Natl. Acad. Sci. U S A 96: 6931–6936.
- [71] van Meeteren, L.A., Ruurs, P., Christodoulou, E., Goding, J.W., Takakusa, H., Kikuchi, K., Perrakis, A., Nagano, T., Moolenaar, W.H. (2005) Inhibition of autotaxin by lysophosphatidic acid and sphingosine 1-phosphate. J. Biol. Chem. 280: 21155–21161.
- [72] Roberts, R., Sciorra, V.A., Morris, A.J. (1998) Human type 2 phosphatidic acid phosphohydrolases. Substrate specificity of the type 2a, 2b, and 2c enzymes and cell surface activity of the 2a isoform. J. Biol. Chem. 273: 22059–22067.
- [73] Brindley, D.N., Waggoner, D.W. (1998) Mammalian lipid phosphate phosphohydrolases. J. Biol. Chem. 273: 24281–24284.
- [74] Eberhardt, C., Gray, P.W., Tjoelker, L.W. (1997) Human lysophosphatidic acid acyltransferase. cDNA cloning, expression, and localization to chromosome 9q34.3. J. Biol. Chem. 272: 20299–20305.
- [75] Yamashita, A., Kawagishi, N., Miyashita, T., Nagatsuka, T., Sugiura, T., Kume, K., Shimizu, T., Waku, K. (2001) ATP-independent fatty acyl-coenzyme A synthesis from phospholipid: coenzyme A-dependent transacylation activity toward lysophosphatidic acid catalyzed by acyl-coenzyme A:lysophosphatidic acid acyltransferase. J. Biol. Chem. 276: 26745–26752.
- [76] Thompson, F.J., Clark, M.A. (1994) Purification of a lysophosphatidic acid-hydrolysing lysophospholipase from rat brain. Biochem. J. 300(Pt 2): 457–461.
- [77] Fernhout, B.J., Dijcks, F.A., Moolenaar, W.H., Ruigt, G.S. (1992) Lysophosphatidic acid induces inward currents in Xenopus laevis oocytes; evidence for an extracellular site of action. Eur. J. Pharmacol. 213: 313–315.
- [78] van der Bend, R.L., Brunner, J., Jalink, K., van Corven, E.J., Moolenaar, W.H., van Blitterswijk, W.J. (1992) Identification of a putative membrane receptor for the bioactive phospholipid, lysophosphatidic acid. Embo. J. 11: 2495–2501.
- [79] Hecht, J.H., Weiner, J.A., Post, S.R., Chun, J. (1996) Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex. J. Cell Biol. 135: 1071–1083.
- [80] An, S., Dickens, M.A., Bleu, T., Hallmark, O.G., Goetzl, E.J. (1997) Molecular cloning of the human Edg2 protein and its identification as a functional cellular receptor for lysophosphatidic acid. Biochem. Biophys. Res. Commun. 231: 619–622.
- [81] An, S., Bleu, T., Hallmark, O.G., Goetzl, E.J. (1998) Characterization of a novel subtype of human G protein-coupled receptor for lysophosphatidic acid. J. Biol. Chem. 273: 7906–7910.
- [82] Bandoh, K., Aoki, J., Hosono, H., Kobayashi, S., Kobayashi, T., Murakami-Murofushi, K., Tsujimoto, M., Arai, H., Inoue, K. (1999) Molecular cloning and characterization of a novel human G-protein-coupled receptor, EDG7, for lysophosphatidic acid. J. Biol. Chem. 274: 27776–27785.
- [83] Hla, T., Maciag, T. (1990) Isolation of immediate-early differentiation mRNAs by enzymatic amplification of subtracted cDNA from human endothelial cells. Biochem. Biophys. Res. Commun. 167: 637–643.
- [84] Chun, J., Goetzl, E.J., Hla, T., Igarashi, Y., Lynch, K.R., Moolenaar, W., Pyne, S., Tigyi, G. (2002) International Union of Pharmacology. XXXIV. Lysophospholipid receptor nomenclature. Pharmacol. Rev. 54: 265–269.
- [85] Noguchi, K., Ishii, S., Shimizu, T. (2003) Identification of p2y9/GPR23 as a novel G protein-coupled receptor for lysophosphatidic acid, structurally distant from the Edg family. J. Biol. Chem. 278: 25600–25606.
- [86] Contos, J.J., Fukushima, N., Weiner, J.A., Kaushal, D., Chun, J. (2000) Requirement for the lpA1 lysophosphatidic acid receptor gene in normal suckling behavior. Proc. Natl. Acad. Sci. U. S. A. 97: 13384–13389.
- [87] Contos, J.J., Ishii, I., Fukushima, N., Kingsbury, M.A., Ye, X., Kawamura, S., Brown, J.H., Chun, J. (2002) Characterization of lpa(2) (Edg4) and lpa(1)/lpa(2) (Edg2/Edg4) lysophosphatidic acid receptor knockout mice: signaling deficits without obvious phenotypic abnormality attributable to lpa(2). Mol. Cell. Biol. 22: 6921–6929.
- [88] Ye, X., Hama, K., Contos, J.J., Anliker, B., Inoue, A., Skinner, M.K., Suzuki, H., Amano, T., Kennedy, G., Arai, H., Aoki, J., Chun, J. (2005) LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing. Nature 435: 104–108.
- [89] Fischer, D.J., Liliom, K., Guo, Z., Nusser, N., Virag, T., Murakami-Murofushi, K., Kobayashi, S., Erickson, J.R., Sun, G., Miller, D.D., Tigyi, G. (1998) Naturally occurring analogs of lysophosphatidic acid elicit different cellular responses through selective activation of multiple receptor subtypes. Mol. Pharmacol. 54: 979–988.
- [90] Heise, C.E., Santos, W.L., Schreihofer, A.M., Heasley, B.H., Mukhin, Y.V., Macdonald, T.L., Lynch, K.R. (2001) Activity of 2-substituted lysophosphatidic acid (LPA) analogs at LPA receptors: discovery of a LPA1/LPA3 receptor antagonist. Mol. Pharmacol. 60: 1173–1180.
- [91] Jiang, G., Xu, Y., Fujiwara, Y., Tsukahara, T., Tsukahara, R., Gajewiak, J., Tigyi, G., Prestwich, G.D. (2007) alpha-Substituted Phosphonate Analogues of Lysophosphatidic Acid (LPA) Selectively Inhibit Production and Action of LPA. Chem. Med. Chem. 2: 679–690.
- [92] Ohta, H., Sato, K., Murata, N., Damirin, A., Malchinkhuu, E., Kon, J., Kimura, T., Tobo, M., Yamazaki, Y., Watanabe, T., Yagi, M., Sato, M., Suzuki, R., Murooka, H., Sakai, T., Nishitoba, T., Im, D.S., Nochi, H., Tamoto, K., Tomura, H., Okajima, F. (2003) Ki16425, a subtype-selective antagonist for EDG-family lysophosphatidic acid receptors. Mol. Pharmacol. 64: 994–1005.
- [93] Fischer, D.J., Nusser, N., Virag, T., Yokoyama, K., Wang, D., Baker, D.L., Bautista, D., Parrill, A.L., Tigyi, G. (2001) Short-chain phosphatidates are subtype-selective antagonists of lysophosphatidic acid receptors. Mol. Pharmacol. 60: 776–784.
- [94] Contos, J.J., Chun, J. (1998) Complete cDNA sequence, genomic structure, and chromosomal localization of the LPA receptor gene, lpA1/vzg-1/Gpcr26. Genomics 51: 364–378.
- [95] Macrae, A.D., Premont, R.T., Jaber, M., Peterson, A.S., Lefkowitz, R.J. (1996) Cloning, characterization, and chromosomal localization of rec1.3, a member of the G-protein-coupled receptor family highly expressed in brain. Brain Res. Mol. Brain Res. 42: 245–254.
- [96]
Allard, J.,
Barron, S.,
Trottier, S.,
Cervera, P.,
Daumas-Duport, C.,
Leguern, E.,
Brice, A.,
Schwartz, J.C.,
Sokoloff, P.
(1999)
Edg-2 in myelin-forming cells: isoforms, genomic mapping, and exclusion in Charcot-Marie-Tooth disease.
Glia
26:
176–185.
10.1002/(SICI)1098-1136(199904)26:2<176::AID-GLIA8>3.0.CO;2-K CAS PubMed Web of Science® Google Scholar
- [97] Blom, N., Gammeltoft, S., Brunak, S. (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol. 294: 1351–1362.
- [98] Obenauer, J.C., Cantley, L.C., Yaffe, M.B. (2003) Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res. 31: 3635–3641.
- [99] Yamada, T., Ohoka, Y., Kogo, M., Inagaki, S. (2005) Physical and functional interactions of the lysophosphatidic acid receptors with PDZ domain-containing Rho guanine nucleotide exchange factors (RhoGEFs). J. Biol. Chem. 280: 19358–19363.
- [100] Waters, C.M., Saatian, B., Moughal, N.A., Zhao, Y., Tigyi, G., Natarajan, V., Pyne, S., Pyne, N.J. (2006) Integrin signalling regulates the nuclear localization and function of the lysophosphatidic acid receptor-1 (LPA1) in mammalian cells. Biochem. J. 398: 55–62.
- [101] Marrache, A.M., Gobeil, F., Zhu, T., Chemtob, S. (2005) Intracellular signaling of lipid mediators via cognate nuclear G protein-coupled receptors. Endothelium 12: 63–72.
- [102] Gobeil, F. Jr., Bernier, S.G., Vazquez-Tello, A., Brault, S., Beauchamp, M.H., Quiniou, C., Marrache, A.M., Checchin, D., Sennlaub, F., Hou, X., Nader, M., Bkaily, G., Ribeiro-da-Silva, A., Goetzl, E.J., Chemtob, S. (2003) Modulation of pro-inflammatory gene expression by nuclear lysophosphatidic acid receptor type-1. J. Biol. Chem. 278: 38875–38883.
- [103] Moughal, N.A., Waters, C., Sambi, B., Pyne, S., Pyne, N.J. (2004) Nerve growth factor signaling involves interaction between the Trk A receptor and lysophosphatidate receptor 1 systems: nuclear translocation of the lysophosphatidate receptor 1 and Trk A receptors in pheochromocytoma 12 cells. Cell. Signal. 16: 127–136.
- [104] Contos, J.J., Ishii, I., Chun, J. (2000) Lysophosphatidic acid receptors. Mol. Pharmacol. 58: 1188–1196.
- [105] Fukushima, N., Kimura, Y., Chun, J. (1998) A single receptor encoded by vzg-1/lpA1/edg-2 couples to G proteins and mediates multiple cellular responses to lysophosphatidic acid. Proc. Natl. Acad. Sci. U. S. A. 95: 6151–6156.
- [106] Weiner, J.A., Chun, J. (1999) Schwann cell survival mediated by the signaling phospholipid lysophosphatidic acid. Proc. Natl. Acad. Sci. U. S. A. 96: 5233–5238.
- [107] Moolenaar, W.H., Kranenburg, O., Postma, F.R., Zondag, G.C. (1997) Lysophosphatidic acid: G-protein signalling and cellular responses. Curr. Opin. Cell. Biol. 9: 168–173.
- [108] Pilpel, Y., Segal, M. (2006) The role of LPA1 in formation of synapses among cultured hippocampal neurons. J. Neurochem. 97: 1379–1392.
- [109] Fukushima, N., Shano, S., Moriyama, R., Chun, J. (2007) Lysophosphatidic acid stimulates neuronal differentiation of cortical neuroblasts through the LPA1-G(i/o) pathway. Neurochem. Int. 50: 302–307.
- [110] Iacovelli, L., Capobianco, L., D'Ancona, G.M., Picascia, A., De Blasi, A. (2002) Regulation of lysophosphatidic acid receptor-stimulated response by G-protein-coupled receptor kinase-2 and beta-arrestin1 in FRTL-5 rat thyroid cells. J. Endocrinol. 174: 103–110.
- [111] Murph, M.M., Scaccia, L.A., Volpicelli, L.A., Radhakrishna, H. (2003) Agonist-induced endocytosis of lysophosphatidic acid-coupled LPA1/EDG-2 receptors via a dynamin2- and Rab5-dependent pathway. J. Cell. Sci. 116: 1969–1980.
- [112] Avendano-Vazquez, S.E., Garcia-Caballero, A., Garcia-Sainz, J.A. (2005) Phosphorylation and desensitization of the lysophosphatidic acid receptor LPA1. Biochem. J. 385: 677–684.
- [113] Siess, W. (2002) Athero- and thrombogenic actions of lysophosphatidic acid and sphingosine-1-phosphate. Biochim. Biophys. Acta 1582: 204–215.
- [114] Jolly, P.S., Rosenfeldt, H.M., Milstien, S., Spiegel, S. (2002) The roles of sphingosine-1-phosphate in asthma. Mol. Immunol. 38: 1239–1245.
- [115] Xu, Y., Fang, X.J., Casey, G., Mills, G.B. (1995) Lysophospholipids activate ovarian and breast cancer cells. Biochem. J. 309(Pt 3): 933–940.
- [116] Fang, X., Yu, S., Bast, R.C., Liu, S., Xu, H.J., Hu, S.X., LaPushin, R., Claret, F.X., Aggarwal, B.B., Lu, Y., Mills, G.B. (2004) Mechanisms for lysophosphatidic acid-induced cytokine production in ovarian cancer cells. J. Biol. Chem. 279: 9653–9661.
- [117] Fang, X., Gaudette, D., Furui, T., Mao, M., Estrella, V., Eder, A., Pustilnik, T., Sasagawa, T., Lapushin, R., Yu, S., Jaffe, R.B., Wiener, J.R., Erickson, J.R., Mills, G.B. (2000) Lysophospholipid growth factors in the initiation, progression, metastases, and management of ovarian cancer. Ann. N. Y. Acad. Sci. 905: 188–208.
- [118] Mills, G.B., Eder, A., Fang, X., Hasegawa, Y., Mao, M., Lu, Y., Tanyi, J., Tabassam, F.H., Wiener, J., Lapushin, R., Yu, S., Parrott, J.A., Compton, T., Tribley, W., Fishman, D., Stack, M.S., Gaudette, D., Jaffe, R., Furui, T., Aoki, J., Erickson, J.R. (2002) Critical role of lysophospholipids in the pathophysiology, diagnosis, and management of ovarian cancer. Cancer Treat. Res. 107: 259–283.
- [119]
Schulte, K.M.,
Beyer, A.,
Kohrer, K.,
Oberhauser, S.,
Roher, H.D.
(2001)
Lysophosphatidic acid, a novel lipid growth factor for human thyroid cells: over-expression of the high-affinity receptor edg4 in differentiated thyroid cancer.
Int. J. Cancer
92:
249–256.
10.1002/1097-0215(200102)9999:9999<::AID-IJC1166>3.0.CO;2-D CAS PubMed Web of Science® Google Scholar
- [120] Shida, D., Kitayama, J., Yamaguchi, H., Okaji, Y., Tsuno, N.H., Watanabe, T., Takuwa, Y., Nagawa, H. (2003) Lysophosphatidic acid (LPA) enhances the metastatic potential of human colon carcinoma DLD1 cells through LPA1. Cancer Res. 63: 1706–1711.
- [121] Andre, F., Schartz, N.E., Movassagh, M., Flament, C., Pautier, P., Morice, P., Pomel, C., Lhomme, C., Escudier, B., Le Chevalier, T., Tursz, T., Amigorena, S., Raposo, G., Angevin, E., Zitvogel, L. (2002) Malignant effusions and immunogenic tumour-derived exosomes. Lancet 360: 295–305.
- [122] Murata, J., Lee, H.Y., Clair, T., Krutzsch, H.C., Arestad, A.A., Sobel, M.E., Liotta, L.A., Stracke, M.L. (1994) cDNA cloning of the human tumor motility-stimulating protein, autotaxin, reveals a homology with phosphodiesterases. J. Biol. Chem. 269: 30479–30484.
- [123] Clair, T., Aoki, J., Koh, E., Bandle, R.W., Nam, S.W., Ptaszynska, M.M., Mills, G.B., Schiffmann, E., Liotta, L.A., Stracke, M.L. (2003) Autotaxin hydrolyzes sphingosylphosphorylcholine to produce the regulator of migration, sphingosine-1-phosphate. Cancer Res. 63: 5446–5453.
- [124] Nam, S.W., Clair, T., Campo, C.K., Lee, H.Y., Liotta, L.A., Stracke, M.L. (2000) Autotaxin (ATX), a potent tumor motogen, augments invasive and metastatic potential of ras-transformed cells. Oncogene 19: 241–247.
- [125] Tanyi, J.L., Hasegawa, Y., Lapushin, R., Morris, A.J., Wolf, J.K., Berchuck, A., Lu, K., Smith, D.I., Kalli, K., Hartmann, L.C., McCune, K., Fishman, D., Broaddus, R., Cheng, K.W., Atkinson, E.N., Yamal, J.M., Bast, R.C., Felix, E.A., Newman, R.A., Mills, G.B. (2003) Role of decreased levels of lipid phosphate phosphatase-1 in accumulation of lysophosphatidic acid in ovarian cancer. Clin. Cancer Res. 9: 3534–3545.
- [126] Xie, Y., Gibbs, T.C., Mukhin, Y.V., Meier, K.E. (2002) Role for 18:1 lysophosphatidic acid as an autocrine mediator in prostate cancer cells. J. Biol. Chem. 277: 32516–32526.
- [127] Jemal, A., Murray, T., Ward, E., Samuels, A., Tiwari, R.C., Ghafoor, A., Feuer, E.J., Thun, M.J. (2005) Cancer statistics, 2005. CA Cancer J. Clin. 55: 10–30.
- [128] Gibbs, T.C., Xie, Y., Meier, K.E. (2000) Regulation of expression of EDG family receptors in human prostate cancer cell lines. Ann. N. Y. Acad. Sci. 905: 290–293.
- [129] Guo, R., Kasbohm, E.A., Arora, P., Sample, C.J., Baban, B., Sud, N., Sivashanmugam, P., Moniri, N.H., Daaka, Y. (2006) Expression and function of lysophosphatidic acid LPA1 receptor in prostate cancer cells. Endocrinology 147: 4883–4892.
- [130] Penson, R.T., Shannon, K.E., Sharpless, N.E., Seiden, M.V. (1998) Ovarian cancer: an update on genetics and therapy. Compr. Ther. 24: 477–487.
- [131] Hu, Y.L., Tee, M.K., Goetzl, E.J., Auersperg, N., Mills, G.B., Ferrara, N., Jaffe, R.B. (2001) Lysophosphatidic acid induction of vascular endothelial growth factor expression in human ovarian cancer cells. J. Natl. Cancer Inst. 93: 762–768.
- [132] Budnik, L.T., Mukhopadhyay, A.K. (2002) Lysophosphatidic acid and its role in reproduction. Biol. Reprod. 66: 859–865.
- [133] Sutphen, R., Xu, Y., Wilbanks, G.D., Fiorica, J., Grendys, E.C. Jr., LaPolla, J.P., Arango, H., Hoffman, M.S., Martino, M., Wakeley, K., Griffin, D., Blanco, R.W., Cantor, A.B., Xiao, Y.J., Krischer, J.P. (2004) Lysophospholipids are potential biomarkers of ovarian cancer. Cancer Epidemiol. Biomarkers Prev. 13: 1185–1191.
- [134] Boucharaba, A., Serre, C.M., Guglielmi, J., Bordet, J.C., Clezardin, P., Peyruchaud, O. (2006) The type 1 lysophosphatidic acid receptor is a target for therapy in bone metastases. Proc. Natl. Acad. Sci. U. S. A. 103: 9643–9648.
- [135] Horak, C.E., Lee, J.H., Elkahloun, A.G., Boissan, M., Dumont, S., Maga, T.K., Arnaud-Dabernat, S., Palmieri, D., Stetler-Stevenson, W.G., Lacombe, M.L., Meltzer, P.S., Steeg, P.S. (2007) Nm23-H1 suppresses tumor cell motility by down-regulating the lysophosphatidic acid receptor EDG2. Cancer Res. 67: 7238–7246.