Volume 298, Issue 7 pp. 2327-2379
ORIGINAL ARTICLE
Open Access

Existence of a local strong solution to the beam–polymeric fluid interaction system

Dominic Breit

Corresponding Author

Dominic Breit

Institute of Mathematics, TU Clausthal, Erzstraße, Clausthal-Zellerfeld, Germany

Correspondence

Dominic Breit, Institute of Mathematics, TU Clausthal, Erzstraße 1, 38678 Clausthal-Zellerfeld, Germany.

Email: [email protected]

Search for more papers by this author
Prince Romeo Mensah

Prince Romeo Mensah

Institute of Mathematics, TU Clausthal, Erzstraße, Clausthal-Zellerfeld, Germany

Search for more papers by this author
First published: 27 June 2025

Abstract

We construct a unique local strong solution to the finitely extensible nonlinear elastic (FENE) dumbbell model of Warner-type for an incompressible polymer fluid (described by the Navier–Stokes–Fokker–Planck equations) interacting with a flexible elastic shell. The latter occupies the flexible boundary of the polymer fluid domain and is modeled by a beam equation coupled through kinematic boundary conditions and the balance of forces. In the 2D case for the co-rotational Fokker–Planck model we obtain global-in-time strong solutions.

A main step in our approach is the proof of local well-posedness for just the solvent–structure system in higher-order topologies which is of independent interest. Different from most of the previous results in the literature, the reference spatial domain is an arbitrary smooth subset of R 3 $\mathbb {R}^3$ , rather than a flat one. That is, we cover viscoelastic shells rather than elastic plates. Our results also supplement the existing literature on the Navier–Stokes–Fokker–Planck equations posed on a fixed bounded domain.

1 INTRODUCTION

1.1 Motivation

The mathematical theory of fluid–structure interactions has seen vast progress in the last two decades. This has largely been motivated by the variety of applications ranging from hydroelasticity and aeroelasticity to biomechanics and hemodynamics. Many analytical results in the literature are concerned with the existence of solutions as well as the qualitative properties of the underlying systems of nonlinear partial differential equations (PDEs). See Section 1.3 for an overview. Most of these results are focused on incompressible Newtonian fluids. Clearly, only simple fluids such as water can be realistically described in such a way. Complex fluids, on the other hand, require more complicated models. Nevertheless, it is also common to work with Newton's rheological law for the viscous stress tensor even in the context of complex fluids. A particular instance is hemodynamics where one studies the flow of blood in vessels, which deform elastically as a response. Blood has a very complex behavior and the incompressible Navier–Stokes equations fail to capture all of it. In fact, there only exists a few results on the mathematical analysis of non-Newtonian fluids (where Newton's rheological law is replaced by a nonlinear stress–strain relation) interacting with elastic structures, see [32, 37]. A different Ansatz to model the behavior of complex fluids is to consider polymeric fluid models. Here, an additional stress tensor is obtained which describes the prolongation vector of polymer chains arising from a micro- or mesoscopic model, see the next subsection. The mathematical theory for such models (in fixed domains) is in a mature state (we give an overview of the literature below). Although they arise naturally in many applications, mathematical results concerning the interaction of a polymeric fluid with a flexible structure are virtually missing in the literature.

Motivated by this absence, we introduced in our previous work [12], a model for the interaction of a polymeric fluid with a flexible Koiter shell whose energy is a nonlinear function of the first and second fundamental forms of the moving boundary. The full system is a solute–solvent–structure three-scale model, where the solute (dilute polymer molecules) is described on a mesoscopic scale by a Fokker–Planck equation (Kolmogorov forward equation) for the probability density function of the bead–spring polymer chain configuration, the solvent is described on the macroscopic scale by the incompressible Navier–Stokes equation, and also on the macroscopic scale, the structure is a fully nonlinear fourth-order hyperbolic Koiter model that describes the shell movement. We proved the existence of a weak solution for the aforementioned system with an existence time that is only restricted by a possible self-intersection of the structure. That is the only result that we are aware of for such a complex multi-scale polymeric fluid structure interaction problem. A fully macroscopic variant is also a subject of current research [48-50]. We continue in this direction and construct a strong solution to the earlier (linearized) multi-scale polymeric fluid–structure problem which exists locally in time.

1.2 The model

We consider a solute–solvent–structure mutually coupled problem describing the interaction between a polymeric fluid and a flexible structure. Here, the polymeric fluid consists of a mixture of a solvent, say, water, and a solute made up of a pair of monomers linked by a finitely extensible nonlinear elastic (FENE) spring described by the FENE dumbbell model of Warner-type [58]. More precisely, our system is described by the three-dimensional incompressible Navier–Stokes–Fokker–Planck system of equations defined on I × Ω η ( t ) × B $I \times \Omega _{\eta (t)}\times B$ coupled with a two-dimensional viscous beam equation defined on I × ω $I \times \omega$ . Here, I : = ( 0 , T ) $I:=(0,T)$ is the time interval, Ω η ( t ) R 3 $ \Omega _{\eta (t)}\subset \mathbb {R}^3$ is the configuration of the moving spatial domain at a time t I $t\in I$ (which arises by deforming the reference domain Ω R 3 $\Omega \subset \mathbb {R}^3$ in the normal direction with amplitude η ( t ) $\eta (t)$ , see Section 2 for the set-up), and the domain for the elongation vector q = ( q 1 , q 2 , q 3 ) $\mathbf {q}=(q_1,q_2,q_3)$ of the monomer molecules is taken as the ball B R 3 $B\subset \mathbb {R}^3$ centered at the origin with radius b $\sqrt {b}$ . Finally, ω $\omega$ represents Ω $\partial \Omega$ ; the boundary of the reference domain Ω $\Omega$ . For technical simplification, we identify ω $\omega$ with the two-dimensional torus. The normal vectors on Ω $\partial \Omega$ and Ω η ( t ) $\partial \Omega _{\eta (t)}$ are denoted by n $\mathbf {n}$ and n η $\mathbf {n}_\eta$ , respectively.

We wish to find the structure displacement η : ( t , y ) I × ω η ( t , y ) R $\eta:(t, \mathbf {y})\in I \times \omega \mapsto \eta (t,\mathbf {y})\in \mathbb {R}$ , the fluid's velocity field u : ( t , x ) I × Ω η ( t ) u ( t , x ) R 3 $\mathbf {u}:(t, \mathbf {x})\in I \times \Omega _{\eta (t)}\mapsto \mathbf {u}(t, \mathbf {x}) \in \mathbb {R}^3$ , the fluid's pressure π : ( t , x ) I × Ω η ( t ) π ( t , x ) R $\pi:(t, \mathbf {x})\in I \times \Omega _{\eta (t)}\mapsto \pi (t, \mathbf {x}) \in \mathbb {R}$ and the probability density function f : ( t , x , q ) I × Ω η ( t ) × B f ( t , x , q ) [ 0 , ) $f:(t, \mathbf {x}, \mathbf {q})\in I \times \Omega _{\eta (t)}\times B \mapsto f (t, \mathbf {x}, \mathbf {q}) \in [0,\infty)$ such that for f ̂ : = f / M $\widehat{f}:=f/M$ , where M = M ( q ) > 0 $M=M(\mathbf {q})>0$ is given in (1.8), the equations
ϱ s t 2 η γ t Δ y η + α Δ y 2 η = g n T φ η n η det ( y φ η ) , $$\begin{align} \varrho _s\partial _t^2\eta -\gamma \partial _t\Delta _{\mathbf {y}}\eta + \alpha \Delta _{\mathbf {y}}^2\eta &=g-\mathbf {n}^\top \mathbb {T}\circ \bm {\varphi }_\eta \mathbf {n}_\eta \det (\nabla _{\mathbf {y}}\bm {\varphi }_\eta) , \end{align}$$ ()
ϱ f t u + ( u · x ) u = μ Δ x u x π + f + div x S q ( f ̂ ) , $$\begin{align} \varrho _f{\left(\partial _t \mathbf {u}+ (\mathbf {u}\cdot \nabla _{\mathbf {x}})\mathbf {u} \right)} &= \mu \Delta _{\mathbf {x}}\mathbf {u}-\nabla _{\mathbf {x}}\pi + \mathbf {f}+ \mathrm{div}_{\mathbf {x}}\mathbb {S}_\mathbf {q}(\widehat{f}), \end{align}$$ ()
div x u = 0 , $$\begin{align} \mathrm{div}_{\mathbf {x}}\mathbf {u}&=0, \end{align}$$ ()
M t f ̂ + ( u · x ) f ̂ + div q ( x u ) q M f ̂ = ε Δ x ( M f ̂ ) + κ div q M q f ̂ $$\begin{align} M{\left(\partial _t \widehat{f} + (\mathbf {u}\cdot \nabla _{\mathbf {x}}) \widehat{f}\right)} + \mathrm{div}_{\mathbf {q}}{\left((\nabla _{\mathbf {x}}\mathbf {u}) \mathbf {q}M\widehat{f} \right)} &= \varepsilon \Delta _{\mathbf {x}}(M \widehat{f}) + \kappa \, \mathrm{div}_{\mathbf {q}}{\left(M \nabla _{\mathbf {q}}\widehat{f} \right)} \end{align}$$ ()
are satisfied almost everywhere in I × Ω η ( t ) × B $I \times \Omega _{\eta (t)}\times B$ . Here, the tensor field T $\mathbb {T}$ is given by
T : = T ( u , π , f ̂ ) = μ ( x u + x u ) π I 3 × 3 + S q ( f ̂ ) $$\begin{align} \mathbb {T}:=\mathbb {T}(\mathbf {u}, \pi,\widehat{f})=\mu (\nabla _{\mathbf {x}}\mathbf {u}+\nabla _{\mathbf {x}}\mathbf {u}^\top)-\pi \mathbb {I}_{3\times 3}+\mathbb {S}_\mathbf {q}(\widehat{f}) \end{align}$$ ()
and ϱ s , γ , α , ϱ f , μ , ε , κ $\varrho _s, \gamma, \alpha, \varrho _f, \mu, \varepsilon,\kappa$ are positive parameters all of which we henceforth set to 1 for simplicity. There are two external forcing terms given by f : ( t , x ) I × Ω η ( t ) f ( t , x ) R 3 $\mathbf {f}:(t, \mathbf {x})\in I \times \Omega _{\eta (t)}\mapsto \mathbf {f}(t, \mathbf {x}) \in \mathbb {R}^3$ and g : ( t , y ) I × ω g ( t , y ) R $g:(t, \mathbf {y})\in I \times \omega \mapsto g(t,\mathbf {y})\in \mathbb {R}$ . The elastic stress tensor S q $\mathbb {S}_\mathbf {q}$ in the momentum equation (1.2) is given by
S q ( f ̂ ) = B M ( q ) f ̂ ( t , x , q ) q U ( 1 2 | q | 2 ) q d q , $$\begin{align} \mathbb {S}_\mathbf {q}(\widehat{f}) = \int _B M(\mathbf {q}) \widehat{f} (t, \mathbf {x},\mathbf {q})\nabla _{\mathbf {q}}U(\tfrac{1}{2}\vert \mathbf {q}\vert ^2) \otimes \mathbf {q} \, {d} \mathbf {q}, \end{align}$$ ()
where the spring potential U $U$ is given by
U ( s ) = b 2 ln 1 2 s b , s [ 0 , b / 2 ) , b > 2 . $$\begin{align} U(s) =-\frac{b}{2}\ln {\left(1-\frac{2s}{b}\right)}, \qquad s\in [0,b/2), \quad b>2. \end{align}$$ ()
The spring potential is also related to the associated Maxwellian M $M$ via the relation
M ( q ) = e U ( 1 2 | q | 2 ) B e U ( 1 2 | q | 2 ) d q . $$\begin{align} M(\mathbf {q}) = \frac{\text{e}^{-U(\tfrac{1}{2}\vert \mathbf {q}\vert ^2) }}{\int _{B}\text{e}^{-U (\tfrac{1}{2}\vert \mathbf {q}\vert ^2)}\,d\mathbf {q}}. \end{align}$$ ()
The initial conditions for the polymer fluid are
η ( 0 , · ) = η 0 , t η ( 0 , · ) = η on ω , $$\begin{equation} \def\eqcellsep{&}\begin{array}{ccc}& \eta \operatorname{(}0,\cdot )={\eta}_{0},\quad {\partial}_{t}\eta \operatorname{(}0,\cdot )={\eta}_{\star}& \quad \text{on}\ \omega ,\end{array} \end{equation}$$ ()
u ( 0 , · ) = u 0 in Ω η 0 , $$\begin{align} &\mathbf {u}(0, \cdot) = \mathbf {u}_0 \quad \text{in } \Omega _{\eta _0}, \end{align}$$ ()
f ̂ ( 0 , · , · ) = f ̂ 0 0 in Ω η 0 × B $$\begin{align} &\widehat{f}(0, \cdot, \cdot) =\widehat{f}_0 \ge 0 \quad \text{in }\Omega _{\eta _0} \times B \end{align}$$ ()
with given functions η 0 , η : y ω η 0 ( y ) , η ( y ) R $\eta _0,\eta _\star:\mathbf {y}\in \omega \mapsto \eta _0(\mathbf {y}),\eta _\star (\mathbf {y})\in \mathbb {R}$ , u 0 : x Ω η 0 u 0 ( x ) R 3 $\mathbf {u}_0:\mathbf {x}\in \Omega _{\eta _0} \mapsto \mathbf {u}_0(\mathbf {x})\in \mathbb {R}^3$ and f ̂ 0 : ( x , q ) Ω η 0 × B f ̂ 0 ( x , q ) [ 0 , ) $\widehat{f}_0:(\mathbf {x},\mathbf {q})\in \Omega _{\eta _0}\times B \mapsto \widehat{f}_0(\mathbf {x},\mathbf {q})\in [0,\infty)$ . With respect to boundary conditions, we supplement the viscous beam equation (1.1) with periodic boundary conditions and we impose
u φ η = ( t η ) n on I × ω $$\begin{align} &\mathbf {u}\circ \bm {\varphi }_{\eta } =(\partial _t\eta)\mathbf {n}\quad \text{on }I \times \omega \end{align}$$ ()
at the polymer fluid-structure interface with the normal vector n $\mathbf {n}$ on Ω $\partial \Omega$ . Finally, for the solute, we have
x f ̂ · n η = 0 on I × Ω η × B , $$\begin{align} & \nabla _{\mathbf {x}}\widehat{f}\cdot \mathbf {n}_\eta =0 \quad \text{on }I \times \partial \Omega _\eta \times B, \end{align}$$ ()
M q f ̂ ( x u ) q f ̂ · q | q | = 0 on I × Ω η × B ¯ . $$\begin{align} &M{\left(\nabla _{\mathbf {q}}\widehat{f} - (\nabla _{\mathbf {x}}\mathbf {u}) \mathbf {q}\widehat{f} \right)} \cdot \frac{\mathbf {q}}{\vert \mathbf {q}\vert } =0 \quad \text{on }I \times \Omega _\eta \times \partial \overline{B}. \end{align}$$ ()

When the probability density function f $f$ is identically zero, the system (1.3) and (1.4) reduces to a normal fluid–structure problem for an unsteady three-dimensional viscous incompressible fluid interacting with an elastic structure. Let us point out that the reference spatial domain in our set-up is an arbitrary smooth subset of R 3 $\mathbb {R}^3$ (such as cylinders or spheres), rather than a flat one. That is, we cover viscoelastic shells rather than simple elastic plates.

1.3 Bibliographical overview

We may broadly classify analytic works on fluid–structure interaction problems into the construction of weak and strong solutions. In this paper, we are only interested in strong solutions but let us refer to [2, 3, 10, 17, 22, 28, 38, 51] for some important works on the construction of weak solutions.

When it comes to strong solutions, the short time existence and uniqueness of solutions in Sobolev spaces iss studied in [18, 19] for a viscous incompressible fluid interacting with a nonlinear thin elastic shell. The shell equation, for the former [18], is modeled by the nonlinear Saint–Venant–Kirchhoff constitutive law whereas that of the latter [19] is modeled by the nonlinear Koiter shell model. In [23], however, the authors prove the existence of a unique local strong solution, without restriction on the size of the data, when the elastic structure is now governed by quasilinear elastodynamics.

In [33], the elastic structure is modeled by a damped wave equation with additional boundary stabilization terms. For sufficiently small initial data, subject to said boundary stabilization terms, global-in-time existence of strong solutions and exponential decay of the solutions are shown. The free boundary fluid–structure interaction problem consisting of a Navier–Stokes equation and a wave equation defined in two different but adjacent domains is studied in [36]. A local strong solution is constructed under suitable compatibility conditions for the data. In [40], however, a damped wave equation describes the displacement of a part of the boundary of the fluid domain. The local existence of a unique strong solution for any initial data or the global existence of a unique strong solution for small initial data are shown. This replicate an earlier result by the same author [39], where the damped wave equation was replaced by the damped beam equation.

When the elastic response of the fluid's domain is modeled by a damped Kirchhoff plate model, the authors in [24] construct a unique strong solution for small data in the L p $L^p$ -framework and in general dimension. A similar L p $L^p$ -theory for strong solutions can be found in [1], where the authors study the coupling of both Newtonian and non-Newtonian fluids with a moving rigid body.

Another local-in-time strong existence result is [44], where the viscous Newtonian fluid is now interacting with an elastic structure modeled by a nonlinear damped shell equation. Finally, a local strong solution is constructed for the motion of a linearly elastic Lamé solid moving in a viscous fluid in [52].

For a fixed geometry and an identically zero solution of the structure equation, the system (1.3) and (1.4) reduces to an incompressible Navier–Stokes–Fokker–Planck system for a polymeric fluid with center-of-mass diffusion. Weak solutions for such a system have been studied in, for example, [4-9, 27, 31, 43].

For strong solutions, however, a unique local-in-time strong solution was first shown to exist in [53], which unfortunately excludes the physically relevant FENE dumbbell models. The local theory was then revisited in [34] for the stochastic FENE model for the simple Couette flow and in [26] where the authors analyzed the incompressible Navier–Stokes equations coupled with a system of SDEs describing the configuration of the spring. The corresponding deterministic system was then studied in [41, 59]. The existence of Lyapunov functionals and smooth solutions was shown to exist in [20]. Finally, a global-in-time strong solution for the 2D system is shown in [46](see also [21, 42]).

The only result on the fully coupled system (1.3) and (1.4) is our previous paper [12], in which we prove the existence of a weak solution (allowing even the fully nonlinear original Koiter model for the structure displacement).

1.4 Main result and novelties

Our main result is the existence of a unique local-in-time strong solution to (1.1)–(1.4). The precise statement can be found in Theorem 2.4. The proof consists of constructing a fixed point of the following solution map in a suitable topology (see Section 5 for details): given a probability density function f ̂ $\widehat{f}$ , we solve the solvent–structure problem (1.1)–(1.3) leading to a solution ( η , u , π ) $(\eta,\mathbf {u},\pi)$ . Eventually, we solve the Fokker–Planck equation (1.4) in a given moving domain Ω η $\Omega _\eta$ with a given velocity field u $\mathbf {u}$ yielding a solution h ̂ $\widehat{h}$ . Then, we consider the map
T : X X , f ̂ h ̂ , $$\begin{equation*} \mathtt {T}:X\rightarrow X,\quad \widehat{f}\mapsto \widehat{h}, \end{equation*}$$
in (a subset of) a function space X $X$ . Such a strategy is also applied in [46] and other papers and it turns out that the velocity field needs to belong at least to W 1 , $W^{1,\infty }$ with respect to the spatial variable to close the argument. In [46], the Navier–Stokes–Fokker–Planck system is considered without center-of-mass diffusion (in a fixed domain). At first glance, it will seem easier to do the same in the case ε > 0 $\varepsilon >0$ (leaving the difficulty of a moving boundary beside for the moment). This is certainly true if the Navier–Stokes–Fokker–Planck equations are studied on the whole space or with respect to periodic boundary conditions. However, in the case of bounded domains, where (1.4) must be complemented with Neumann boundary conditions as in (1.13) and (1.14), it is not clear if one can obtain higher-order spatial derivatives for the probability density function even for smooth velocity fields. As a consequence, a result similar to [46] for the problem with center-of-mass diffusion and a nontrivial boundary does not seem to exist in the literature.

As a by-product of our theory, we close this gap via the following idea: we first differentiate (1.4) once in space (formerly testing by Δ x f ̂ $\Delta _{\mathbf {x}}\widehat{f}$ ). As just explained, this is not sufficient to close the fixed point argument but does not create problems with the boundary conditions either. Eventually, we differentiate in time and obtain the same estimate for the time derivative of the probability density function. Details can be found in Section 4, where for a given velocity field and moving geometry, we construct a strong solution to the Fokker–Planck equation. Here, due to the linear structure of the equation, we rely on an approximation procedure similar to [13, 46]. The analysis here is, however, more complicated due to the flexible nature of the given geometry.

Let us now comment on the fluid-structure system (1.1)–(1.3). Its solvability, for a given f ̂ $\widehat{f}$ , is an intermediate step for the fixed point problem just described but it is also of independent interest. It is worth pointing out that, different from most of the previous results on strong solutions such as [19, 30, 39, 44, 54], we consider a general non-flat geometry. The first results in this direction were only provided very recently in [11], where the existence of a unique global-in-time strong solution was proved in the 2D case. The existence of a local strong solution to the 3D fluid-structure problem has been recently shown in [14]. However, this strong solution is not regular enough to couple the solvent–structure system with the Fokker–Planck equation. For this reason we devote Section 3 to obtaining higher space-time regularity for the strong solution constructed in [14] by way of a fixed-point argument. This is of independent interest, and it is the first result of the higher regularity of the strong solution to the incompressible fluid–structure problem in the case of shells. Although one might expect that taking higher-order derivatives will be easy, the problem of compatibility conditions of the data occurs (typical for parabolic equations in bounded domains, see the classical works [56, 57]). Such a condition is needed to control the initial pressure (see the proof of Proposition 3.6), a problem that is absent in [14].

In two dimensions, if the co-rotational model is considered (i.e., x u $\nabla _{\mathbf {x}}\mathbf {u}$ is replaced by W ( u ) = 1 2 ( x u x u ) $\mathcal {W}(\mathbf {u})=\frac{1}{2}(\nabla _{\mathbf {x}}\mathbf {u}-\nabla _{\mathbf {x}}\mathbf {u}^\top)$ in the drag term in (1.4)), we prove the existence of a unique global strong solution, cf. Theorem 6.8. It is a consequence of a novel estimate for the Fokker–Planck equation derived in Section 6.1 combined with the recent results from [11] on the fluid–structure problem. Again, the result for the Navier–Stokes–Fokker–Planck system seems new even for fixed domains (the counterpart without center-of-mass diffusion in the Fokker–Planck equation is given in [46]).

2 PRELIMINARIES AND MAIN RESULTS

Without loss of generality, henceforth, we set all the parameters ( ρ s $\rho _s$ , …, κ $\kappa$ ) in (1.1)–(1.14) to 1. For two non-negative quantities F $F$ and G $G$ , we write F G $F \lesssim G$ if there is a c > 0 $c>0$ such that F c G $F \le c\,G$ . If F G $F \lesssim G$ and G F $G\lesssim F$ both hold, we use the notation F G $F\sim G$ . The symbol | · | $\vert \cdot \vert$ may be used in four different contexts. For a scalar function f R $f\in \mathbb {R}$ , | f | $\vert f\vert$ denotes the absolute value of f $f$ . For a vector f R d $\mathbf {f}\in \mathbb {R}^d$ , | f | $\vert \mathbf {f}\vert$ denotes the Euclidean norm of f $\mathbf {f}$ . For a square matrix F R d × d $\mathbb {F}\in \mathbb {R}^{d\times d}$ , | F | $\vert \mathbb {F} \vert$ shall denote the Frobenius norm trace ( F T F ) $\sqrt {\mathrm{trace}(\mathbb {F}^T\mathbb {F})}$ . Finally, if S R d $S\subseteq \mathbb {R}^d$ is a (sub)set, then | S | $\vert S \vert$ is the d $d$ -dimensional Lebesgue measure of S $S$ .

The spatial domain Ω $\Omega$ is assumed to be an open bounded subset of R 3 $\mathbb {R}^3$ , with a smooth boundary and an outer unit normal n ${\mathbf {n}}$ . We assume that Ω $\partial \Omega$ can be parameterized by an injective mapping φ C k ( ω ; R 3 ) ${\bm {\varphi }}\in C^k(\omega;\mathbb {R}^3)$ for some sufficiently large k N $k\in \mathbb {N}$ . We suppose for all points y = ( y 1 , y 2 ) ω $\mathbf {y}=(y_1,y_2)\in \omega$ that the pair of vectors i φ ( y ) $\partial _i {\bm {\varphi }}(\mathbf {y})$ , i = 1 , 2 $i=1,2$ , are linearly independent. For a point x $\mathbf {x}$ in the neighborhood of Ω $\partial \Omega$ we can define the functions y $\mathbf {y}$ and s $s$ by
y ( x ) = arg min y ω | x φ ( y ) | , s ( x ) = ( x y ( x ) ) · n ( y ( x ) ) . $$\begin{align*} \mathbf {y}(\mathbf {x})=\arg \min _{\mathbf {y}\in \omega }|\mathbf {x}-\bm {\varphi }(\mathbf {y})|,\quad s(\mathbf {x})=(\mathbf {x}-\mathbf {y}(\mathbf {x}))\cdot \mathbf {n}(\mathbf {y}(\mathbf {x})). \end{align*}$$
Moreover, we define the projection p ( x ) = φ ( y ( x ) ) $\mathbf {p}(\mathbf {x})=\bm {\varphi }(\mathbf {y}(\mathbf {x}))$ . We define L > 0 $L>0$ to be the largest number such that s , y $s,\mathbf {y}$ and p $\mathbf {p}$ are well-defined on S L $S_L$ , where
S L = { x R 3 : dist ( x , Ω ) < L } . $$\begin{align} S_L=\lbrace \mathbf {x}\in \mathbb {R}^3:\,\mathrm{dist}(\mathbf {x},\partial \Omega)<L\rbrace . \end{align}$$ ()
Due to the smoothness of Ω $\partial \Omega$ for L $L$ small enough we have | s ( x ) | = min y ω | x φ ( y ) | $|s(\mathbf {x})|=\min _{\mathbf {y}\in \omega }|\mathbf {x}-\bm {\varphi }(\mathbf {y})|$ for all x S L $\mathbf {x}\in S_L$ . This implies that S L = { s n ( y ) + y : ( s , y ) ( L , L ) × ω } $S_L=\lbrace s\mathbf {n}(\mathbf {y})+\mathbf {y}:(s,\mathbf {y})\in (-L,L)\times \omega \rbrace$ . For a given function η : I × ω R $\eta: I \times \omega \rightarrow \mathbb {R}$ we parameterize the deformed boundary by
φ η ( t , y ) = φ ( y ) + η ( t , y ) n ( y ) , y ω , t I . $$\begin{align} {\bm {\varphi }}_\eta (t,\mathbf {y})={\bm {\varphi }}(\mathbf {y}) + \eta (t,\mathbf {y}){\mathbf {n}}(\mathbf {y}), \quad \,\mathbf {y}\in \omega,\,t\in I. \end{align}$$ ()
With some abuse of notation, we define the deformed spacetime cylinder as
I × Ω η = t I { t } × Ω η ( t ) R 4 . $$\begin{equation*} I\times \Omega _\eta =\bigcup _{t\in I}\lbrace t\rbrace \times \Omega _{\eta (t)}\subset \mathbb {R}^{4}. \end{equation*}$$
The corresponding function spaces for variable domains are defined as follows.

Definition 2.1. (Function spaces)Let M C ( B ) $M\in C(B)$ be the Maxwellian (1.8). For 1 q $1\le q\le \infty$ , we denote by

L M q ( B ) = { f L loc q ( B ) : f L M q ( B ) q < } , W M 1 , q ( B ) = { f W loc 1 , q ( B ) : f W M 1 , q ( B ) q < } , $$\begin{align*} &L^q_M(B)=\lbrace f\in L^q_{\mathrm{loc}}(B)\,:\, \Vert f\Vert _{L^q_M(B)}^q<\infty \rbrace, \\ & W^{1,q}_M(B)=\lbrace f\in W^{1,q}_{\mathrm{loc}}(B)\,:\, \Vert f \Vert _{W^{1,q}_M(B)}^q<\infty \rbrace, \end{align*}$$
the Maxwellian-weighted L q $L^q$ and W 1 , q $W^{1,q}$ spaces over B $B$ with respective norms
f L M q ( B ) q : = B M ( q ) | f ( q ) | q d q , f W M 1 , q ( B ) q : = B M ( q ) | f ( q ) | q + | q f ( q ) | q d q . $$\begin{align*} \Vert f\Vert _{L^q_M(B)}^q:=\int _BM(\mathbf {q})\vert f(\mathbf {q})\vert ^q\, {d} \mathbf {q}, \qquad \Vert f\Vert _{W^{1,q}_M(B)}^q:=\int _BM(\mathbf {q}){\left(\vert f(\mathbf {q})\vert ^q+ \vert \nabla _{\mathbf {q}}f(\mathbf {q})\vert ^q\right)}\, {d} \mathbf {q}. \end{align*}$$
For I = ( 0 , T ) $I=(0,T)$ , T > 0 $T>0$ , and η C ( I ¯ × ω ) $\eta \in C(\overline{I}\times \omega)$ with η L ( I × ω ) < L $\Vert \eta \Vert _{L^\infty (I\times \omega)}< L$ , we define for 1 p , r $1\le p,r\le \infty$ ,
L p ( I ; L r ( Ω η ) ) : = { v L 1 ( I × Ω η ) : v ( t , · ) L r ( Ω η ( t ) ) for a.e. t , v ( t , · ) L r ( Ω η ( t ) ) L p ( I ) } , L p ( I ; W 1 , r ( Ω η ) ) : = { v L p ( I ; L r ( Ω η ) ) : x v L p ( I ; L r ( Ω η ) ) } . $$\begin{align*} L^p(I;L^r(\Omega _\eta))&:=\Big \lbrace v\in L^1(I\times \Omega _\eta):\substack{v(t,\cdot)\in L^r(\Omega _{\eta (t)})\,\,\text{for a.e. }t,\\ \Vert v(t,\cdot)\Vert _{L^r(\Omega _{\eta (t)})}\in L^p(I)}\Big \rbrace,\\ L^p(I;W^{1,r}(\Omega _\eta))&:=\big \lbrace v\in L^p(I;L^r(\Omega _\eta)):\,\,\nabla _{\mathbf {x}}v\in L^p(I;L^r(\Omega _\eta))\big \rbrace . \end{align*}$$

Higher-order Sobolev spaces can be defined accordingly. For k > 0 $k>0$ with k N $k\notin \mathbb {N}$ , we define the fractional Sobolev space L p ( I ; W k , r ( Ω η ( t ) ) ) $L^p(I;W^{k,r}(\Omega _{\eta (t)}))$ as the class of L p ( I ; L r ( Ω η ) ) $L^p(I;L^r(\Omega _\eta))$ -functions v $v$ for which the norm
v L p ( I ; W k , r ( Ω η ( t ) ) ) p = I Ω η ( t ) | v | r d x + Ω η ( t ) Ω η ( t ) | v ( x ) v ( x ) | r | x x | 3 + k r d x d x p r d t $$\begin{align*} \Vert v\Vert _{L^p(I;W^{k,r}(\Omega _{\eta (t)}))}^p &=\int _I{\left(\int _{\Omega _{\eta (t)}} \vert v\vert ^r\, {d} \mathbf {x}+\int _{\Omega _{\eta (t)}}\int _{\Omega _{\eta (t)}}\frac{|v(\mathbf {x})-v(\mathbf {x}^{\prime })|^r}{|\mathbf {x}-\mathbf {x}^{\prime }|^{3+k r}}\, {d} \mathbf {x}\, {d} \mathbf {x}^{\prime }\right)}^{\frac{p}{r}}\, {d}t \end{align*}$$
is finite. Accordingly, we can also introduce fractional differentiability in time for the spaces on moving domains. When we combine the function spaces defined on B $B$ and on spacetime, we obtain spaces of the form
L p ( I ; W k , r ( Ω η ; W l , q ( B ) ) ) k 0 , 1 p , r , q , l { 0 , 1 } $$\begin{align*} L^p(I;W^{k,r}(\Omega _\eta;W^{l,q}(B)))\quad k\ge 0,\quad 1\le p,r,q\le \infty, \quad l\in \lbrace 0,1\rbrace \end{align*}$$
and more generally
W s , p ( I ; W k , r ( Ω η ; W l , q ( B ) ) ) s , k 0 , 1 p , r , q , l { 0 , 1 } . $$\begin{align*} W^{s,p}(I;W^{k,r}(\Omega _\eta;W^{l,q}(B)))\quad s,k\ge 0,\quad 1\le p,r,q\le \infty, \quad l\in \lbrace 0,1\rbrace . \end{align*}$$
For various purposes, it is useful to relate the time-dependent domain and the fixed domain. This can be done by means of the Hanzawa transform. Its construction can be found in [38, pp. 210, 211]. Note that variable domains in [38] are defined via functions ζ : Ω R $\zeta:\partial \Omega \rightarrow \mathbb {R}$ rather than functions η : ω R $\eta:\omega \rightarrow \mathbb {R}$ (clearly, one can link them by setting ζ = η φ 1 $\zeta =\eta \circ \bm {\varphi }^{-1}$ ). For any η ( t ) : ω ( L , L ) $\eta (t):\omega \rightarrow (-L,L)$ at time point t I $t\in I$ , we let Ψ η ( t ) : Ω Ω η ( t ) $\bm {\Psi }_{\eta (t)}: \Omega \rightarrow \Omega _{\eta (t)}$ be the Hanzawa transform defined by
Ψ η ( t ) ( x ) = p ( x ) + s ( x ) + η ( t , y ( x ) ) ϕ ( y ( x ) ) n ( y ( x ) ) if dist ( x , Ω ) < L , x elsewhere . $$\begin{equation} \bm {\Psi }_{\eta (t)}(\mathbf {x}) = {\left\lbrace \def\eqcellsep{&}\begin{array}{lr}\mathbf {p}(\mathbf {x})+{\left(s(\mathbf {x})+\eta (t,\mathbf {y}(\mathbf {x}))\phi (\mathbf {y}(\mathbf {x}))\right)}\mathbf {n}(\mathbf {y}(\mathbf {x})) &\text{if dist}(\mathbf {x},\partial \Omega)<L,\\[3pt] \mathbf {x}&\text{elsewhere}. \end{array} \right.} \end{equation}$$ ()
and with inverse Ψ η ( t ) 1 : Ω η ( t ) Ω $\bm {\Psi }^{-1}_{\eta (t)}: \Omega _{\eta (t)} \rightarrow \Omega$ . Here, ϕ C ( R ) $\phi \in C^\infty (\mathbb {R})$ is such that ϕ 0 $\phi \equiv 0$ in a neighborhood of L $-L$ and ϕ 1 $\phi \equiv 1$ in a neighborhood of 1. It is shown in [11] that if for some α , R > 0 $\alpha,R>0$ , we assume that
η ( t ) L y + ζ ( t ) L y < α < L and y η ( t ) L y + y ζ ( t ) L y < R $$\begin{align*} \Vert \eta (t)\Vert _{L^\infty _\mathbf {y}} + \Vert \zeta (t)\Vert _{L^\infty _\mathbf {y}} < \alpha <L \qquad \text{and}\qquad \Vert \nabla _{\mathbf {y}}\eta (t)\Vert _{L^\infty _\mathbf {y}} + \Vert \nabla _{\mathbf {y}}\zeta (t)\Vert _{L^\infty _\mathbf {y}} <R \end{align*}$$
holds, then for any s > 0 $s>0$ , p [ 1 , ] $p\in [1,\infty]$ , k { 0 , 1 , 2 } $k\in \lbrace 0,1,2\rbrace$ and for any η , ζ W k , 1 ( I ; W s , p ( ω ) ) $\eta,\zeta \in W^{k,1}(I;W^{s,p}(\omega))$ , we have that
t k Ψ η W x s , p + t k Ψ η 1 W x s , p 1 + t k η W y s , p , $$\begin{align} &\Vert \partial _t^k\bm {\Psi }_\eta \Vert _{W^{s,p}_\mathbf {x}} + \Vert \partial _t^k\bm {\Psi }_\eta ^{-1} \Vert _{W^{s,p}_\mathbf {x}} \lesssim 1+ \Vert \partial _t^k\eta \Vert _{W^{s,p}_\mathbf {y}}, \end{align}$$ ()
t k ( Ψ η Ψ ζ ) W x s , p + t k ( Ψ η 1 Ψ ζ 1 ) W x s , p t k ( η ζ ) W y s , p $$\begin{align} &\Vert \partial _t^k(\bm {\Psi }_\eta - \bm {\Psi }_\zeta) \Vert _{W^{s,p}_\mathbf {x}} + \Vert \partial _t^k(\bm {\Psi }_\eta ^{-1} - \bm {\Psi }_\zeta ^{-1})\Vert _{W^{s,p}_\mathbf {x}} \lesssim \Vert \partial _t^k(\eta - \zeta) \Vert _{W^{s,p}_\mathbf {y}} \end{align}$$ ()
holds uniformly in time with the hidden constants depending only on the reference geometry, on L α $L-\alpha$ and R $R$ . The estimate (2.4) holds without the 1 on the right-hand side when in addition, k 0 $k\ne 0$ .

Our interest is to construct a strong and regular solution to the system (1.1)–(1.4) (i.e., a solution that satisfies (1.1)–(1.4) pointwise almost everywhere in spacetime with additional regularity properties which will soon be made precise) emanating from the initial conditions (1.9)–(1.11). To make the notion of a strong solution precise, we first present the following notion of a a weak solution.

Definition 2.2. (Weak solution)Let ( f , g , η 0 , η , u 0 , f ̂ 0 ) $(\mathbf {f}, g, \eta _0, \eta _\star, \mathbf {u}_0, \widehat{f}_0)$ be a dataset such that

f L 2 I ; L loc 2 ( R 3 ) , g L 2 I ; L 2 ( ω ) , η 0 W 2 , 2 ( ω ) with η 0 L ( ω ) < L , η L 2 ( ω ) , f ̂ 0 L 2 Ω η 0 ; L M 2 ( B ) , u 0 L div x 2 ( Ω η 0 ) is such that u 0 φ η 0 = η n on ω . $$\begin{equation} \begin{aligned} &\mathbf {f}\in L^2{\left(I; L^2_{\mathrm{loc}}(\mathbb {R}^3)\right)},\quad g \in L^2{\left(I; L^{2}(\omega)\right)}, \quad \eta _0 \in W^{2,2}(\omega) \text{ with } \Vert \eta _0 \Vert _{L^\infty (\omega)} < L, \\ &\eta _\star \in L^{2}(\omega), \quad \widehat{f}_0\in L^2{\left(\Omega _{\eta _0};L^2_M(B)\right)}, \quad \mathbf {u}_0\in L^{2}_{\mathrm{\mathrm{div}_{\mathbf {x}}}}(\Omega _{\eta _0}) \text{ is such that }\mathbf {u}_0 \circ \bm {\varphi }_{\eta _0} =\eta _\star \mathbf {n}\text{ on } \omega . \end{aligned} \end{equation}$$ ()
We call ( η , u , f ̂ ) $(\eta, \mathbf {u}, \widehat{f})$ a weak solution to the system (1.1)–(1.4) with data ( f , g , η 0 , η , u 0 , f ̂ 0 ) $(\mathbf {f}, g, \eta _0, \eta _\star, \mathbf {u}_0, \widehat{f}_0)$ provided that the following holds:
  • (a) the shell displacement η $\eta$ satisfies η L ( I × ω ) < L $\Vert \eta \Vert _{L^\infty (I \times \omega)} <L$ and
    η W 1 , I ; L 2 ( ω ) L I ; W 2 , 2 ( ω ) W 1 , 2 I ; W 1 , 2 ( ω ) ; $$\begin{align*} \eta \in W^{1,\infty } {\left(I; L^{2}(\omega) \right)}\cap L^\infty {\left(I; W^{2,2}(\omega) \right)} \cap W^{1,2}{\left(I;W^{1,2}(\omega) \right)}; \end{align*}$$
  • (b) the velocity u $\mathbf {u}$ is such that u φ η = ( t η ) n $\mathbf {u}\circ \bm {\varphi }_{\eta } =(\partial _t\eta)\mathbf {n}$ on I × ω $I\times \omega$ and
    u L I ; L div x 2 ( Ω η ( t ) ) L 2 I ; W 1 , 2 ( Ω η ( t ) ; $$\begin{align*} \mathbf {u}\in L^{\infty } {\left(I; L^2_{\mathrm{div}_{\mathbf {x}}}(\Omega _{\eta (t)}) \right)}\cap L^2 {\left(I; W^{1,2}(\Omega _{\eta (t)} \right)}; \end{align*}$$
  • (c) the probability density function f ̂ $ \widehat{f}$ satisfies
    f ̂ L I ; L 2 ( Ω η ( t ) ; L M 2 ( B ) ) L 2 I ; W 1 , 2 ( Ω η ( t ) ; L M 2 ( B ) ) L 2 I ; L 2 ( Ω η ( t ) ; H M 1 ( B ) ) ; $$\begin{align*} \widehat{f} \in L^\infty {\left(I; L^2(\Omega _{\eta (t)}; L^2_M(B))\right)} \cap L^2 {\left(I; W^{1,2}(\Omega _{\eta (t)}; L^2_M(B))\right)} \cap L^2 {\left(I; L^2(\Omega _{\eta (t)}; H^1_M(B))\right)}; \end{align*}$$
  • (d) for all ( ϕ , ϕ , φ ) C ( I ¯ × ω ) × C ( I ¯ ; C div x ( R 3 ) ) × C ( I ¯ × R 3 × B ¯ ) $(\phi, \bm {\phi }, \varphi) \in C^\infty (\overline{I}\times \omega) \times C^\infty (\overline{I}; C^\infty _{\mathrm{div}_{\mathbf {x}}}(\mathbb {R}^3)) \times C^\infty (\overline{I}\times \mathbb {R}^3 \times \overline{B})$ with ϕ ( T , · ) = 0 $\phi (T,\cdot)=0$ , ϕ ( T , · ) = 0 $\bm {\phi }(T,\cdot)=0$ and ϕ φ η = ϕ n $\bm {\phi }\circ \bm {\varphi }_{\eta }= \phi \mathbf {n}$ , we have
    I d d t ω t η ϕ d y + Ω η ( t ) u · ϕ d x + Ω η ( t ) × B M f ̂ φ d q d x d t = I ω t η t ϕ t y η · y ϕ + g ϕ Δ y η Δ y ϕ d y d t + I Ω η ( t ) u · t ϕ + u u : x ϕ d x d t I Ω η ( t ) x u : x ϕ + S q ( f ̂ ) : x ϕ f · ϕ d x d t + I Ω η ( t ) × B M f ̂ t φ + M u f ̂ · x φ d q d x d t + I Ω η ( t ) × B M ( x u ) q f ̂ M q f ̂ · q φ d q d x d t , $$\begin{align*} & \int _I \frac{d}{\, {d}t}{\left(\int _\omega \partial _t \eta \, \phi \, {d}\mathbf {y}+ \int _{\Omega _{\eta (t)}} \mathbf {u}\cdot \bm {\phi }\, {d} \mathbf {x}+ \int _{\Omega _{\eta (t)} \times B}M \widehat{f} \, \varphi \, {d} \mathbf {q}\, {d} \mathbf {x}\right)}\, {d}t\\ &\quad = \int _I \int _\omega {\left(\partial _t \eta \, \partial _t\phi - \partial _t \nabla _{\mathbf {y}}\eta \cdot \nabla _{\mathbf {y}}\phi + g\, \phi - \Delta _{\mathbf {y}}\eta \, \Delta _{\mathbf {y}}\phi \right)}\, {d}\mathbf {y}\, {d}t\\ &\qquad + \int _I \int _{\Omega _{\eta (t)}}{\left(\mathbf {u}\cdot \partial _t \bm {\phi } + \mathbf {u}\otimes \mathbf {u}: \nabla _{\mathbf {x}}\bm {\phi } \right)} \, {d} \mathbf {x}\, {d}t\\ &\qquad -\int _I \int _{\Omega _{\eta (t)}}{\left(\nabla _{\mathbf {x}}\mathbf {u}:\nabla _{\mathbf {x}}\bm {\phi } + \mathbb {S}_\mathbf {q}(\widehat{f}) :\nabla _{\mathbf {x}}\bm {\phi }-\mathbf {f}\cdot \bm {\phi } \right)} \, {d} \mathbf {x}\, {d}t\\ &\qquad +\int _I\int _{\Omega _{\eta (t)} \times B}{\left(M \widehat{f} \,\partial _t \varphi + M\mathbf {u}\widehat{f} \cdot \nabla _{\mathbf {x}}\varphi \right)} \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\\ &\qquad + \int _I\int _{ \Omega _{\eta (t)} \times B} {\left(M(\nabla _{\mathbf {x}}\mathbf {u}) \mathbf {q}\widehat{f}- M \nabla _{\mathbf {q}}\widehat{f} \right)} \cdot \nabla _{\mathbf {q}}\varphi \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t, \end{align*}$$
    with η ( 0 ) = η 0 $\eta (0)=\eta _0$ and t η = η $\partial _t\eta =\eta _\star$ a.e. in ω $\omega$ , u ( 0 ) = u 0 $\mathbf {u}(0)=\mathbf {u}_0$ a.e. in Ω η 0 $\Omega _{\eta _0}$ as well as f ̂ ( 0 ) = f ̂ 0 $\widehat{f}(0)=\widehat{f}_0$ a.e. in Ω η 0 × B $\Omega _{\eta _0}\times B$ .

The existence of a weak solution (1.1)–(1.4) in the sense of Definition 2.2 is shown in [12]. For this solution to be regular, we impose below, additional regularity assumptions on the initial conditions and the forcing terms in (1.1)–(1.4). More precisely, we suppose that the dataset ( f , g , η 0 , η , u 0 , f ̂ 0 ) $(\mathbf {f}, g, \eta _0, \eta _\star, \mathbf {u}_0, \widehat{f}_0)$ satisfies
f W 1 , 2 ( I ; L 2 ( Ω η ( t ) ) ) , f ( 0 ) W 1 , 2 ( Ω η 0 ) , g W 1 , 2 ( I ; W 1 , 2 ( ω ) ) , η 0 W 5 , 2 ( ω ) with η 0 L ( ω ) < L , η W 3 , 2 ( ω ) , u 0 W div x 3 , 2 ( Ω η 0 ) is such that u 0 φ η 0 = η n on ω , f ̂ 0 W 1 , 2 ( Ω η 0 ; L M 2 ( B ) ) $$\begin{equation} \begin{aligned} &\mathbf {f}\in W^{1,2}(I;L^{2}(\Omega _{\eta (t)})),\quad \mathbf {f}(0)\in W^{1,2}(\Omega _{\eta _0}), \\ &g\in W^{1,2}(I;W^{1,2}(\omega)), \\ &\eta _0 \in W^{5,2}(\omega) \text{ with } \Vert \eta _0 \Vert _{L^\infty (\omega)} < L, \quad \eta _\star \in W^{3,2}(\omega), \\ &\mathbf {u}_0 \in W^{3,2}_{\mathrm{div}_{\mathbf {x}}}(\Omega _{\eta _0})\text{ is such that }\mathbf {u}_0 \circ \bm {\varphi }_{\eta _0} =\eta _\star \mathbf {n}\text{ on } \omega, \\ & \widehat{f}_0\in W^{1,2}(\Omega _{\eta _0};L^2_M(B)) \end{aligned} \end{equation}$$ ()
with the compatibility condition
Δ y η Δ y 2 η 0 + g ( 0 ) n T ( 0 ) φ η 0 n η 0 det ( y φ η 0 ) n = Δ x u 0 x π 0 + f ( 0 ) + div x S q ( f ̂ 0 ) φ η 0 $$\begin{equation} \begin{aligned} & {\left[\Delta _{\mathbf {y}}\eta _\star - \Delta _{\mathbf {y}}^2 \eta _0 + g(0) -\mathbf {n}^\top \mathbb {T}(0)\circ \bm {\varphi }_{\eta _0}\mathbf {n}_{\eta _0} \det (\nabla _{\mathbf {y}}\bm {\varphi }_{\eta _0}) \right]}\mathbf {n}\\ &= {\left[ \Delta _{\mathbf {x}}\mathbf {u}_0 -\nabla _{\mathbf {x}}\pi _0+ \mathbf {f}(0)+ \mathrm{div}_{\mathbf {x}}\mathbb {S}_\mathbf {q}(\widehat{f}_0) \right]} \circ \bm {\varphi }_{\eta _0} \end{aligned} \end{equation}$$ ()
on ω $\omega$ , where π 0 $\pi _0$ is the solution to
Δ x π 0 = div x ( Δ x u 0 + f ( 0 ) + div x S q ( f ̂ 0 ) ( u 0 · x ) u 0 ) in Ω η 0 , π 0 · n φ η 1 + π 0 n φ η 0 1 · n η φ η 0 1 det ( y φ η 0 ) φ η 0 1 = [ Δ x u 0 + f ( 0 ) + div x S q ( f ̂ 0 ) ] · n φ η 0 1 [ Δ y η Δ y 2 η 0 + g ( 0 ) ] φ η 0 1 + n φ η 0 1 ( x u 0 + x u 0 + S q ( f ̂ 0 ) ) n η 0 φ η 0 1 det ( y φ η 0 ) φ η 0 1 on Ω η 0 . $$\begin{align*} \begin{cases} \Delta _{\mathbf {x}}\pi _0 = \mathrm{div}_{\mathbf {x}}(\Delta _{\mathbf {x}}\mathbf {u}_0 +\mathbf {f}(0)+\mathrm{div}_{\mathbf {x}}\mathbb {S}_\mathbf {q}(\widehat{f}_0) -(\mathbf {u}_0\cdot \nabla _{\mathbf {x}})\mathbf {u}_0)&\text{ in } \Omega _{\eta _0}, \\ \nabla \pi _0\cdot \mathbf {n}\circ \bm {\varphi }_\eta ^{-1} + \pi _0\mathbf {n}^\top \circ \bm {\varphi }_{\eta _0}^{-1}\cdot \mathbf {n}_\eta \circ \bm {\varphi }_{\eta _0}^{-1}\det (\nabla _{\mathbf {y}}\bm {\varphi }_{\eta _0})\circ \bm {\varphi }_{\eta _0}^{-1} & {}\\ \qquad = [\Delta _{\mathbf {x}}\mathbf {u}_0+\mathbf {f}(0)+\mathrm{div}_{\mathbf {x}}\mathbb {S}_\mathbf {q}(\widehat{f}_0)]\cdot \mathbf {n}\circ \bm {\varphi }_{\eta _0}^{-1} - [\Delta _{\mathbf {y}}\eta _\star -\Delta _{\mathbf {y}}^2\eta _0+g(0)]\circ \bm {\varphi }_{\eta _0}^{-1} &{} \\ \qquad +\mathbf {n}^\top \circ \bm {\varphi }_{\eta _0}^{-1}(\nabla _{\mathbf {x}}\mathbf {u}_0+\nabla _{\mathbf {x}}\mathbf {u}^\top _0+\mathbb {S}_\mathbf {q}(\widehat{f}_0)) \mathbf {n}_{\eta _0}\circ \bm {\varphi }_{\eta _0}^{-1}\det (\nabla _{\mathbf {y}}\bm {\varphi }_{\eta _0})\circ \bm {\varphi }_{\eta _0}^{-1} &\text{ on } \partial \Omega _{\eta _0}. \end{cases} \end{align*}$$
Note that (2.8) is in line with the compatibility condition for the fluid–structure interaction problems studied in [19].
As far as the Fokker–Planck equation is concerned, we require that the function f 0 $\widetilde{f}_0$ defined by
M f 0 = Δ x ( M f ̂ 0 ) + div q M q f ̂ 0 M ( u 0 · x ) f ̂ 0 div q ( x u 0 ) q M f ̂ 0 $$\begin{equation} \begin{aligned} M \widetilde{f}_0 &= \Delta _{\mathbf {x}}(M \widehat{f}_0) + \mathrm{div}_{\mathbf {q}}{\left(M \nabla _{\mathbf {q}}\widehat{f}_0 \right)} - M (\mathbf {u}_0\cdot \nabla _{\mathbf {x}}) \widehat{f}_0 - \mathrm{div}_{\mathbf {q}}{\left((\nabla _{\mathbf {x}}\mathbf {u}_0) \mathbf {q}M\widehat{f}_0 \right)} \end{aligned} \end{equation}$$ ()
in Ω η 0 × B $\Omega _{\eta _0}\times B$ is such that
f 0 L 2 ( Ω η 0 ; L M 2 ( B ) ) . $$\begin{align} \widetilde{f}_0\in L^{2}(\Omega _{\eta _0};L^2_M(B)). \end{align}$$ ()
With this regularized dataset, we can now make precise, what we mean by a strong solution of (1.1)–(1.4).

Definition 2.3. (Strong solution)Let ( f , g , η 0 , η , u 0 , f ̂ 0 ) $(\mathbf {f}, g, \eta _0, \eta _\star, \mathbf {u}_0, \widehat{f}_0)$ be a dataset satisfying (2.7)–(2.10). We call ( η , u , π , f ̂ ) $(\eta, \mathbf {u}, \pi, \widehat{f})$ a strong solution of (1.1)–(1.4) with data ( f , g , η 0 , η , u 0 , f ̂ 0 ) $(\mathbf {f}, g, \eta _0, \eta _\star, \mathbf {u}_0, \widehat{f}_0)$ provided that:

  • (a) ( η , u , f ̂ ) $(\eta, \mathbf {u}, \widehat{f})$ is a weak solution of (1.1)–(1.4) in the sense of Definition 2.2;
  • (b) ( η , u , π , f ̂ ) $(\eta, \mathbf {u}, \pi, \widehat{f})$ satisfies
    η W 1 , I ; W 3 , 2 ( ω ) W 2 , 2 I ; W 1 , 2 ( ω ) W 3 , 2 I ; L 2 ( ω ) W 1 , 2 I ; W 3 , 2 ( ω ) L I ; W 4 , 2 ( ω ) L 2 I ; W 5 , 2 ( ω ) , u W 1 , I ; W 1 , 2 ( Ω η ( t ) ) W 2 , 2 I ; L 2 ( Ω η ( t ) ) W 1 , 2 I ; W 2 , 2 ( Ω η ( t ) ) L 2 I ; W 3 , 2 ( Ω η ( t ) ) , π W 1 , 2 I ; W 1 , 2 ( Ω η ( t ) ) L 2 I ; W 2 , 2 ( Ω η ( t ) ) , f ̂ W 1 , I ; W 1 , 2 ( Ω η ( t ) ; L M 2 ( B ) ) W 1 , 2 I ; W 2 , 2 ( Ω η ( t ) ; L M 2 ( B ) ) W 1 , 2 I ; W 1 , 2 ( Ω η ( t ) ; H M 1 ( B ) ) . $$\begin{align*} \eta &\in W^{1,\infty }{\left(I_*;W^{3,2}(\omega) \right)} \cap W^{2,2}{\left(I_*;W^{1,2}(\omega) \right)} \cap W^{3,2}{\left(I_*;L^2(\omega) \right)} \\ &\qquad \qquad \cap W^{1,2}{\left(I_*;W^{3,2}(\omega) \right)}\cap L^{\infty }{\left(I_*;W^{4,2}(\omega) \right)}\cap L^{2}{\left(I_*;W^{5,2}(\omega) \right)},\\ \mathbf {u}&\in W^{1,\infty } {\left(I_*; W^{1,2}(\Omega _{\eta (t)}) \right)}\cap W^{2,2}{\left(I_*;L^2(\Omega _{\eta (t)}) \right)} \\ &\qquad \qquad \cap W^{1,2}{\left(I_*;W^{2,2}(\Omega _{\eta (t)}) \right)} \cap L^2{\left(I_*;W^{3,2}(\Omega _{\eta (t)}) \right)}, \\ \pi &\in W^{1,2}{\left(I_*;W^{1,2}(\Omega _{\eta (t)}) \right)} \cap L^2{\left(I_*;W^{2,2}(\Omega _{\eta (t)}) \right)}, \\ \widehat{f} & \in W^{1,\infty }{\left(I_*;W^{1,2}(\Omega _{\eta (t)};L^2_M(B)) \right)} \cap W^{1,2}{\left(I_*;W^{2,2}(\Omega _{\eta (t)};L^2_M(B)) \right)} \\ &\qquad \qquad \cap W^{1,2}{\left(I_*;W^{1,2}(\Omega _{\eta (t)};H^1_M(B)) \right)}. \end{align*}$$
  • (c) ( u , π ) $(\mathbf {u},\pi)$ satisfies
    t u + ( u · x ) u = Δ x u x π + f + div x S q ( f ̂ ) $$\begin{equation*} \partial _t \mathbf {u}+ (\mathbf {u}\cdot \nabla _{\mathbf {x}})\mathbf {u} = \Delta _{\mathbf {x}}\mathbf {u}-\nabla _{\mathbf {x}}\pi + \mathbf {f}+ \mathrm{div}_{\mathbf {x}}\mathbb {S}_\mathbf {q}(\widehat{f}) \end{equation*}$$
    a.e. in I × Ω η $I\times \Omega _\eta$ .

Our main result now reads as follows.

Theorem 2.4.Let ( f , g , η 0 , η , u 0 , f ̂ 0 ) $(\mathbf {f}, g, \eta _0, \eta _\star, \mathbf {u}_0, \widehat{f}_0)$ be a dataset satisfying (2.7)–(2.10). There is a time T > 0 $T_*>0$ such that a unique strong solution ( η , u , π , f ̂ ) $(\eta, \mathbf {u}, \pi, \widehat{f})$ of (1.1)–(1.4), in the sense of Definition 2.3, exists.

Remark 2.5.We note that the Fokker–Planck equation is conservative and its solution is an actual probability density function (meaning that f ̂ 0 $\widehat{f}\ge 0$ ) within the flexible geometry under consideration. More precisely, we note that if we integrate (1.4) over Ω η ( t ) × B $\Omega _{\eta (t)}\times B$ and use (1.12)–(1.14) together with Reynold's transport theorem, we obtain

d d t Ω η ( t ) × B M f ̂ d q d x = 0 $$\begin{align*} \frac{\,{d}}{\, {d}t}\int _{\Omega _{\eta (t)}\times B}M\widehat{f}\, {d} \mathbf {q}\, {d} \mathbf {x}=0 \end{align*}$$
and thus it is conservative at all times. Furthermore, the solution f ̂ $\widehat{f}$ of (1.4) advected by the velocity field u L 2 ( I ; W 1 , ( Ω η ( t ) ) ) $\mathbf {u}\in L^2(I;W^{1,\infty }(\Omega _{\eta (t)}))$ remains nonnegative if it were initially nonnegative. Indeed, if we test (1.4) with the nonpositive part f ̂ = min { 0 , f ̂ } $\widehat{f}_-=\min \lbrace 0,\widehat{f}\rbrace$ of f ̂ $\widehat{f}$ , integrate over Ω η ( t ) × B $\Omega _{\eta (t)}\times B$ and use (1.12)–(1.14) together with Reynold's transport theorem, we obtain
1 2 d d t Ω η ( t ) × B M | f ̂ | 2 d q d x + Ω η ( t ) × B M | x f ̂ | 2 d q d x + Ω η ( t ) × B M | q f ̂ | 2 d q d x 1 2 Ω η ( t ) × B M | q f ̂ | 2 d q d x + c ( q ) 1 2 Ω η ( t ) | x u | 2 B M | f ̂ | 2 d q d x . $$\begin{align*} \frac{1}{2}\frac{\,{d}}{\, {d}t}\int _{\Omega _{\eta (t)}\times B}M&\vert \widehat{f}_-\vert ^2\, {d} \mathbf {q}\, {d} \mathbf {x}+\int _{\Omega _{\eta (t)}\times B}M\vert \nabla _{\mathbf {x}}\widehat{f}_-\vert ^2\, {d} \mathbf {q}\, {d} \mathbf {x}+\int _{\Omega _{\eta (t)}\times B}M\vert \nabla _{\mathbf {q}}\widehat{f}_-\vert ^2\, {d} \mathbf {q}\, {d} \mathbf {x}\\ &\le \frac{1}{2}\int _{\Omega _{\eta (t)}\times B}M\vert \nabla _{\mathbf {q}}\widehat{f}_-\vert ^2\, {d} \mathbf {q}\, {d} \mathbf {x}+ c(\mathbf {q}) \frac{1}{2}\int _{\Omega _{\eta (t)}}\vert \nabla _{\mathbf {x}}\mathbf {u}\vert ^2\int _{B}M\vert \widehat{f}_-\vert ^2\, {d} \mathbf {q}\, {d} \mathbf {x}. \end{align*}$$
If we now apply Grönwall's lemma, then for a nonnegative initial data f ̂ 0 0 $\widehat{f}_0\ge 0$ , it follows that
1 2 d d t Ω η ( t ) × B M | f ̂ | 2 d q d x + Ω η ( t ) × B M | x f ̂ | 2 d q d x + 1 2 Ω η ( t ) × B M | q f ̂ | 2 d q d x = 0 . $$\begin{align*} \frac{1}{2}\frac{\,{d}}{\, {d}t}\int _{\Omega _{\eta (t)}\times B}M\vert \widehat{f}_-\vert ^2\, {d} \mathbf {q}\, {d} \mathbf {x}&+\int _{\Omega _{\eta (t)}\times B}M\vert \nabla _{\mathbf {x}}\widehat{f}_-\vert ^2\, {d} \mathbf {q}\, {d} \mathbf {x}+\frac{1}{2}\int _{\Omega _{\eta (t)}\times B}M\vert \nabla _{\mathbf {q}}\widehat{f}_-\vert ^2\, {d} \mathbf {q}\, {d} \mathbf {x}=0. \end{align*}$$
Therefore, f ̂ = 0 $ \widehat{f}_-=0$ a.e. in Ω η ( t ) × B $\Omega _{\eta (t)}\times B$ and thus, f ̂ = f ̂ + = max { 0 , f ̂ } $ \widehat{f}=\widehat{f}_+=\max \lbrace 0,\widehat{f}\rbrace$ . See [25] for the corresponding argument for the fixed geometry.

Remark 2.6.The reason for the choice of the topology in Definition 2.3 comes from the coupling of the Navier–Stokes equations and the Fokker–Planck equation with center-of-mass diffusion in a bounded domain: the velocity field must be Lipschitz in space, we cannot allow more than two spatial derivatives for the probability density function (this is related to (1.13) and (1.14)). Moreover, we need additional temporal regularity to close the fixed point argument for the fully coupled system in Section 5. As we have explained in Section 1.4 these difficulties are not related to the moving boundary and our result is even new for fixed boundaries (referring to η 0 = η = g = 0 $\eta _0=\eta _\star =g=0$ in (1.1) and (1.9)).

Remark 2.7.It remains open if a result similar to Theorem 2.4 holds if the Fokker–Planck equation without center-of-mass diffusion, that is ε = 0 $\varepsilon =0$ in (1.4), is considered. This is related to the nontrivial boundary conditions for the fluid as well as the moving domain. For the fixed point argument for the fully coupled system in Section 5, we need to prove a stability estimate for two different solutions of (1.4) being posed in two different moving domains. This requires to transform them to the reference domain, which eventually creates several boundary terms. They can only be controlled with the help of the additional regularity coming from the center-of-mass diffusion.

3 SOLVING THE SOLVENT–STRUCTURE PROBLEM

In this section, we assume that a solution $\hbar$ for the equation of the solute described by the Fokker–Planck equation is known and that $ \hbar$ and its associated elastic stress tensor S q ( ) $ \mathbb {S}_\mathbf {q}(\hbar)$ has sufficient regularity. For given body forces f $\mathbf {f}$ and g $g$ , our goal now is to construct a local-in-time strong solution of the solvent–structure coupled system given by
t 2 η t Δ y η + Δ y 2 η = g n T φ η n η det ( y φ η ) , $$\begin{align} \partial _t^2\eta - \partial _t\Delta _{\mathbf {y}}\eta + \Delta _{\mathbf {y}}^2\eta &=g-\mathbf {n}^\top \mathbb {T}\circ \bm {\varphi }_\eta \mathbf {n}_\eta \det (\nabla _{\mathbf {y}}\bm {\varphi }_\eta) , \end{align}$$ ()
t u + ( u · x ) u = Δ x u x π + f + div x S q ( ) , $$\begin{align} \partial _t \mathbf {u}+ (\mathbf {u}\cdot \nabla _{\mathbf {x}})\mathbf {u} &= \Delta _{\mathbf {x}}\mathbf {u}-\nabla _{\mathbf {x}}\pi + \mathbf {f}+ \mathrm{div}_{\mathbf {x}}\mathbb {S}_\mathbf {q}(\hbar), \end{align}$$ ()
div x u = 0 , $$\begin{align} \mathrm{div}_{\mathbf {x}}\mathbf {u}&=0, \end{align}$$ ()
where T $\mathbb {T}$ is given by
T : = T ( u , π , ) = ( x u + x u ) π I 3 × 3 + S q ( ) . $$\begin{align*} \mathbb {T}:=\mathbb {T}(\mathbf {u}, \pi,\hbar)=(\nabla _{\mathbf {x}}\mathbf {u}+\nabla _{\mathbf {x}}\mathbf {u}^\top)-\pi \mathbb {I}_{3\times 3}+\mathbb {S}_\mathbf {q}(\hbar). \end{align*}$$
In the weak formulation, one considers a pair of test-functions ( ϕ , ϕ ) C ( I ¯ × ω ) × C ( I ¯ ; C div x ( R 3 ) ) $(\phi, \bm {\phi }) \in C^\infty (\overline{I}\times \omega) \times C^\infty (\overline{I}; C^\infty _{\mathrm{div}_{\mathbf {x}}}(\mathbb {R}^3))$ with ϕ ( T , · ) = 0 $\phi (T,\cdot)=0$ , ϕ ( T , · ) = 0 $\bm {\phi }(T,\cdot)=0$ and ϕ φ η = ϕ n $\bm {\phi }\circ \bm {\varphi }_{\eta }= \phi \mathbf {n}$ , obtaining
I d d t ω t η ϕ d y + Ω η ( t ) u · ϕ d x d t = I ω t η t ϕ t y η · y ϕ + g ϕ Δ y η Δ y ϕ d y d t + I Ω η ( t ) u · t ϕ + u u : x ϕ d x d t I Ω η ( t ) x u : x ϕ + S q ( ) : x ϕ f · ϕ d x d t . $$\begin{align*} & \int _I \frac{\mathrm{d}}{\, {d}t}{\left(\int _\omega \partial _t \eta \, \phi \, {d}\mathbf {y}+ \int _{\Omega _{\eta (t)}} \mathbf {u}\cdot \bm {\phi }\, {d} \mathbf {x}\right)}\, {d}t\\ &\quad = \int _I \int _\omega {\left(\partial _t \eta \, \partial _t\phi - \partial _t \nabla _{\mathbf {y}}\eta \cdot \nabla _{\mathbf {y}}\phi + g\, \phi - \Delta _{\mathbf {y}}\eta \, \Delta _{\mathbf {y}}\phi \right)}\, {d}\mathbf {y}\, {d}t\\ &\qquad + \int _I \int _{\Omega _{\eta (t)}}{\left(\mathbf {u}\cdot \partial _t \bm {\phi } + \mathbf {u}\otimes \mathbf {u}: \nabla _{\mathbf {x}}\bm {\phi } \right)} \, {d} \mathbf {x}\, {d}t\\ &\qquad -\int _I \int _{\Omega _{\eta (t)}}{\left(\nabla _{\mathbf {x}}\mathbf {u}:\nabla _{\mathbf {x}}\bm {\phi } + \mathbb {S}_\mathbf {q}(\hbar) :\nabla _{\mathbf {x}}\bm {\phi }-\mathbf {f}\cdot \bm {\phi } \right)} \, {d} \mathbf {x}\, {d}t. \end{align*}$$
Note that this formulation is pressure-free. The pressure can be recovered by solving a.e. in time
Δ x π = div x ( Δ x u + f + div x S q ( ) ( u · x ) u ) in I × Ω η , π · n φ η 1 + π n φ η 1 · n η φ η 1 det ( y φ η ) φ η 1 = [ Δ x u + f + div x S q ( ) ] · n φ η 1 [ t Δ y η Δ y 2 η + g ] φ η 1 + n φ η 1 ( x u + x u + S q ( ) ) n η φ η 1 det ( y φ η ) φ η 1 on I × Ω η , $$\begin{align*} \begin{cases} \Delta _{\mathbf {x}}\tilde{\pi }_\star = \mathrm{div}_{\mathbf {x}}(\Delta _{\mathbf {x}}\mathbf {u}+\mathbf {f}+\mathrm{div}_{\mathbf {x}}\mathbb {S}_\mathbf {q}(\hbar) -(\mathbf {u}\cdot \nabla _{\mathbf {x}})\mathbf {u})&\text{ in }I\times \Omega _\eta, \\ \nabla \tilde{\pi }_\star \cdot \mathbf {n}\circ \bm {\varphi }_\eta ^{-1} + \pi _\star \mathbf {n}^\top \circ \bm {\varphi }_\eta ^{-1}\cdot \mathbf {n}_\eta \circ \bm {\varphi }_\eta ^{-1}\det (\nabla _{\mathbf {y}}\bm {\varphi }_\eta)\circ \bm {\varphi }_\eta ^{-1} & {}\\ \qquad = [\Delta _{\mathbf {x}}\mathbf {u}+\mathbf {f}+\mathrm{div}_{\mathbf {x}}\mathbb {S}_\mathbf {q}(\hbar)]\cdot \mathbf {n}\circ \bm {\varphi }_\eta ^{-1} - [\partial _t\Delta _{\mathbf {y}}\eta -\Delta _{\mathbf {y}}^2\eta +g]\circ \bm {\varphi }_\eta ^{-1} &{}\\ \qquad +\mathbf {n}^\top \circ \bm {\varphi }_\eta ^{-1}(\nabla _{\mathbf {x}}\mathbf {u}+\nabla _{\mathbf {x}}\mathbf {u}^\top +\mathbb {S}_\mathbf {q}(\hbar)) \mathbf {n}_\eta \circ \bm {\varphi }_\eta ^{-1}\det (\nabla _{\mathbf {y}}\bm {\varphi }_\eta)\circ \bm {\varphi }_\eta ^{-1} &\text{ on }I \times \partial \Omega _\eta, \end{cases} \end{align*}$$
and setting π : = π ( π ) Ω η $\pi _\star:=\tilde{\pi }_\star -(\tilde{\pi }_\star)_{\Omega _{\eta }}$ . If Ω η $\Omega _\eta$ is Lipschitz uniformly in time (which follows from Definition 3.1 (a)) the solution operator to the Robin problem above has the usual properties, that is, the solution belongs to W 1 , 2 $W^{1,2}$ if the right-hand side belongs to W 1 , 2 $W^{-1,2}$ and the boundary datum is in W 1 / 2 , 2 $W^{1/2,2}$ .
We must complement π $\pi _\star$ by a function c π ( t ) $c_\pi (t)$ depending on only time which is uniquely determined by the structure equation. Setting π ( t ) = π ( t ) + c π ( t ) $\pi (t)=\pi _\star (t)+c_\pi (t)$ and testing the structure equation with 1 we obtain
c π ( t ) ω n · n η det ( y φ η ) d y = ω n ( x u + x u π I 3 × 3 + S q ( ) ) φ η n η det ( y φ η ) d y + ω t 2 η d y ω g d y . $$\begin{align} \begin{aligned} c_\pi (t)\int _{\omega }\mathbf {n}\cdot \mathbf {n}_\eta \det (\nabla _{\mathbf {y}}\bm {\varphi }_\eta)\, {d}\mathbf {y}=\,&\int _{\omega }\mathbf {n}(\nabla _{\mathbf {x}}\mathbf {u}+\nabla _{\mathbf {x}}\mathbf {u}^\top -\pi _\star \mathbb {I}_{3\times 3}+\mathbb {S}_\mathbf {q}(\hbar))\circ \bm {\varphi }_\eta \mathbf {n}_\eta \det (\nabla _{\mathbf {y}}\bm {\varphi }_\eta)\, {d}\mathbf {y}\\ &+\int _\omega \partial _t^2\eta \, {d}\mathbf {y}-\int _\omega g\, {d}\mathbf {y}. \end{aligned} \end{align}$$ ()
This equation can be solved for c π ( t ) $c_\pi (t)$ provided the integral on the left-hand side is strictly positive (which certainly holds if the W y 1 , $W^{1,\infty }_\mathbf {y}$ -norm of η $\eta$ is not too large, cf. (2.2)).

Definition 3.1. (Strong solution)Let ( f , g , η 0 , η , u 0 , S q ( ) ) $(\mathbf {f}, g, \eta _0, \eta _\star, \mathbf {u}_0, \mathbb {S}_\mathbf {q}(\hbar))$ be a dataset such that

f L 2 I ; L loc 2 ( R 3 ) , g L 2 I ; L 2 ( ω ) , η 0 W 3 , 2 ( ω ) with η 0 L ( ω ) < L , η W 1 , 2 ( ω ) , S q ( ) L 2 ( I ; W loc 1 , 2 ( R 3 ) ) , u 0 W div x 1 , 2 ( Ω η 0 ) is such that u 0 φ η 0 = η n on ω . $$\begin{equation} \begin{aligned} &\mathbf {f}\in L^2{\left(I; L^2_{\mathrm{loc}}(\mathbb {R}^3)\right)},\quad g \in L^2{\left(I; L^{2}(\omega)\right)}, \quad \eta _0 \in W^{3,2}(\omega) \text{ with } \Vert \eta _0 \Vert _{L^\infty (\omega)} < L, \quad \eta _\star \in W^{1,2}(\omega), \\ & \mathbb {S}_\mathbf {q}(\hbar)\in L^2(I;W^{1,2}_{\mathrm{loc}}(\mathbb {R}^3)), \quad \mathbf {u}_0\in W^{1,2}_{\mathrm{\mathrm{div}_{\mathbf {x}}}}(\Omega _{\eta _0}) \text{ is such that }\mathbf {u}_0 \circ \bm {\varphi }_{\eta _0} =\eta _\star \mathbf {n}\text{ on } \omega . \end{aligned} \end{equation}$$ ()
We call ( η , u , π ) $(\eta, \mathbf {u}, \pi)$ a strong solution of (3.1)–(3.3) with data ( f , g , η 0 , η , u 0 , S q ( ) ) $(\mathbf {f}, g, \eta _0, \eta _\star, \mathbf {u}_0, \mathbb {S}_\mathbf {q}(\hbar))$ provided that the following holds:
  • (a) the structure-function η $\eta$ is such that η L ( I × ω ) < L $\Vert \eta \Vert _{L^\infty (I \times \omega)} <L$ and
    η W 1 , I ; W 1 , 2 ( ω ) L I ; W 3 , 2 ( ω ) W 2 , 2 I ; L 2 ( ω ) L 2 I ; W 4 , 2 ( ω ) ; $$\begin{align*} \eta \in W^{1,\infty }{\left(I;W^{1,2}(\omega) \right)}\cap L^{\infty }{\left(I;W^{3,2}(\omega) \right)} \cap W^{2,2}{\left(I;L^2(\omega) \right)}\cap L^{2}{\left(I;W^{4,2}(\omega) \right)}; \end{align*}$$
  • (b) the velocity u $\mathbf {u}$ is such that u φ η = ( t η ) n $\mathbf {u}\circ \bm {\varphi }_{\eta } =(\partial _t\eta)\mathbf {n}$ on I × ω $I\times \omega$ and
    u W 1 , 2 I ; L div x 2 ( Ω η ( t ) ) L 2 I ; W 2 , 2 ( Ω η ( t ) ) ; $$\begin{align*} \mathbf {u}\in W^{1,2} {\left(I; L^2_{\mathrm{div}_{\mathbf {x}}}(\Omega _{\eta (t)}) \right)}\cap L^2{\left(I;W^{2,2}(\Omega _{\eta (t)}) \right)}; \end{align*}$$
  • (c) the pressure π $\pi$ is such that
    π L 2 I ; W 1 , 2 ( Ω η ( t ) ) ; $$\begin{align*} \pi \in L^2{\left(I;W^{1,2}(\Omega _{\eta (t)}) \right)}; \end{align*}$$
  • (d) Equations (3.1)–(3.3) are satisfied a.e. in spacetime with η ( 0 ) = η 0 $\eta (0)=\eta _0$ and t η = η $\partial _t\eta =\eta _\star$ a.e. in ω $\omega$ as well as u ( 0 ) = u 0 $\mathbf {u}(0)=\mathbf {u}_0$ a.e. in Ω η 0 $\Omega _{\eta _0}$ .

The existence of a unique local-in-time strong solution to (3.1)–(3.3) in the sense of Definition 3.1 is shown in [14].

In particular, the following result holds true:

Theorem 3.2.Suppose that the dataset ( f , g , η 0 , η , u 0 , S q ( ) ) $(\mathbf {f}, g, \eta _0, \eta _\star, \mathbf {u}_0, \mathbb {S}_\mathbf {q}(\hbar))$ satisfies (3.5). There is a time T > 0 $T^*>0$ such that there exists a unique strong solution to (3.1)–(3.3) in the sense of Definition 3.1.

The regularity obtained is, however, not sufficient for the coupling with the Fokker–Planck equation. Hence, we are going to prove a corresponding result in higher-order Sobolev spaces. Our main theorem is the following:

Theorem 3.3.Suppose that the dataset ( f , g , η 0 , η , u 0 , S q ( ) ) $(\mathbf {f}, g, \eta _0, \eta _\star, \mathbf {u}_0, \mathbb {S}_\mathbf {q}(\hbar))$ satisfies (2.7) and (2.8) (which is stronger than (3.5)) and

S q ( ) L 2 ( I ; W 2 , 2 ( Ω η ( t ) ) ) W 1 , 2 ( I ; W 1 , 2 ( Ω η ( t ) ) ) , S q ( ¯ ( 0 ) ) W 2 , 2 ( Ω η 0 ) . $$\begin{align*} \mathbb {S}_\mathbf {q}(\hbar) \in L^2(I;W^{2,2}(\Omega _{\eta (t)})) \cap W^{1,2}(I;W^{1,2}(\Omega _{\eta (t)})), \quad \mathbb {S}_\mathbf {q}(\overline{\hbar } (0))\in W^{2,2}(\Omega _{\eta _0}). \end{align*}$$

There is a time T > 0 $T_*>0$ such that (3.1)–(3.3) admits a unique strong solution ( η , u , π ) $(\eta, \mathbf {u}, \pi)$ , in the sense of Definition 3.1, that further satisfies

η W 1 , I ; W 3 , 2 ( ω ) W 2 , 2 I ; W 1 , 2 ( ω ) W 3 , 2 I ; L 2 ( ω ) W 1 , 2 I ; W 3 , 2 ( ω ) L I ; W 4 , 2 ( ω ) L 2 I ; W 5 , 2 ( ω ) , u W 1 , I ; W 1 , 2 ( Ω η ( t ) ) W 2 , 2 I ; L 2 ( Ω η ( t ) ) W 1 , 2 I ; W 2 , 2 ( Ω η ( t ) ) L 2 I ; W 3 , 2 ( Ω η ( t ) ) , π W 1 , 2 I ; W 1 , 2 ( Ω η ( t ) ) L 2 I ; W 2 , 2 ( Ω η ( t ) ) . $$\begin{align*} \eta &\in W^{1,\infty }{\left(I_*;W^{3,2}(\omega) \right)} \cap W^{2,2}{\left(I_*;W^{1,2}(\omega) \right)} \cap W^{3,2}{\left(I_*;L^2(\omega) \right)} \\ &\qquad \qquad \qquad \cap W^{1,2}{\left(I_*;W^{3,2}(\omega) \right)}\cap L^{\infty }{\left(I_*;W^{4,2}(\omega) \right)}\cap L^{2}{\left(I_*;W^{5,2}(\omega) \right)},\\ \mathbf {u}&\in W^{1,\infty } {\left(I_*; W^{1,2}(\Omega _{\eta (t)}) \right)}\cap W^{2,2}{\left(I_*;L^2(\Omega _{\eta (t)}) \right)}\cap W^{1,2}{\left(I_*;W^{2,2}(\Omega _{\eta (t)}) \right)} \cap L^2{\left(I_*;W^{3,2}(\Omega _{\eta (t)}) \right)}, \\ \pi &\in W^{1,2}{\left(I_*;W^{1,2}(\Omega _{\eta (t)}) \right)} \cap L^2{\left(I_*;W^{2,2}(\Omega _{\eta (t)}) \right)}. \end{align*}$$

Remark 3.4.The choice of the rather unusual topology for the solution in Theorem 3.3 is due to the coupling with the Fokker–Planck equation which is our main aim (see Section 1.4 and Remark 2.6 for the explanation). For instance, one can also construct solutions provided it only holds

f W 1 / 2 , 2 ( I ; L 2 ( Ω η ( t ) ) ) L 2 ( I ; W 1 , 2 ( Ω η ( t ) ) ) , f ( 0 ) W 1 / 2 , 2 ( Ω η 0 ) , g L 2 ( I ; W 1 , 2 ( ω ) ) W 1 / 2 , 2 ( I ; W 1 / 2 , 2 ( ω ) ) , g ( 0 ) W 1 / 2 , 2 ( ω ) η 0 W 4 , 2 ( ω ) with η 0 L ( ω ) < L , η W 2 , 2 ( ω ) , u 0 W div x 2 , 2 ( Ω η 0 ) is such that u 0 φ η 0 = η n on ω , S q ( ) L 2 ( I ; W 2 , 2 ( Ω η ( t ) ) ) W 1 / 2 , 2 ( I ; W 1 , 2 ( Ω η ( t ) ) ) , S q ( ¯ ( 0 ) ) W 1 , 2 ( Ω η 0 ) $$\begin{equation} \begin{aligned} &\mathbf {f}\in W^{1/2,2}(I;L^{2}(\Omega _{\eta (t)}))\cap L^2(I;W^{1,2}(\Omega _{\eta (t)})),\quad \mathbf {f}(0)\in W^{1/2,2}(\Omega _{\eta _0}), \\ &g\in L^{2}(I;W^{1,2}(\omega))\cap W^{1/2,2}(I;W^{1/2,2}(\omega)), \quad g(0)\in W^{1/2,2}(\omega) \\ &\eta _0 \in W^{4,2}(\omega) \text{ with } \Vert \eta _0 \Vert _{L^\infty (\omega)} < L, \quad \eta _\star \in W^{2,2}(\omega), \\ &\mathbf {u}_0 \in W^{2,2}_{\mathrm{div}_{\mathbf {x}}}(\Omega _{\eta _0})\text{ is such that }\mathbf {u}_0 \circ \bm {\varphi }_{\eta _0} =\eta _\star \mathbf {n}\text{ on } \omega, \\ & \mathbb {S}_\mathbf {q}(\hbar) \in L^2(I;W^{2,2}(\Omega _{\eta (t)})) \cap W^{1/2,2}(I;W^{1,2}(\Omega _{\eta (t)})), \quad \mathbb {S}_\mathbf {q}(\overline{\hbar } (0))\in W^{1,2}(\Omega _{\eta _0}) \end{aligned} \end{equation}$$ ()
rather than (2.7). In this case, the solution belongs to the following regularity class:
η W 1 , I ; W 3 , 2 ( ω ) W 5 / 2 , 2 I ; L 2 ( ω ) W 3 / 2 , 2 I ; W 2 , 2 ( ω ) L I ; W 4 , 2 ( ω ) L 2 I ; W 5 , 2 ( ω ) , u W 3 / 2 , 2 I ; L 2 ( Ω η ( t ) ) W 1 / 2 , 2 I ; W 2 , 2 ( Ω η ( t ) ) L 2 I ; W 3 , 2 ( Ω η ( t ) ) , π W 1 / 2 , 2 I ; W 1 , 2 ( Ω η ( t ) ) L 2 I ; W 2 , 2 ( Ω η ( t ) ) . $$\begin{align*} \eta &\in W^{1,\infty }{\left(I_*;W^{3,2}(\omega) \right)} \cap W^{5/2,2}{\left(I_*;L^2(\omega) \right)} \\ &\qquad \qquad \qquad \cap W^{3/2,2}{\left(I_*;W^{2,2}(\omega) \right)}\cap L^{\infty }{\left(I_*;W^{4,2}(\omega) \right)}\cap L^{2}{\left(I_*;W^{5,2}(\omega) \right)},\\ \mathbf {u}&\in W^{3/2,2}{\left(I_*;L^2(\Omega _{\eta (t)}) \right)}\cap W^{1/2,2}{\left(I_*;W^{2,2}(\Omega _{\eta (t)}) \right)} \cap L^2{\left(I_*;W^{3,2}(\Omega _{\eta (t)}) \right)}, \\ \pi &\in W^{1/2,2}{\left(I_*;W^{1,2}(\Omega _{\eta (t)}) \right)} \cap L^2{\left(I_*;W^{2,2}(\Omega _{\eta (t)}) \right)}. \end{align*}$$
Similarly, if we have
f W 1 , 2 ( I ; L 2 ( Ω η ( t ) ) ) L 2 ( I ; W 2 , 2 ( Ω η ( t ) ) ) , f ( 0 ) W 1 , 2 ( Ω η 0 ) , g L 2 ( I ; W 2 , 2 ( ω ) ) W 1 , 2 ( I ; W 1 , 2 ( ω ) ) , η 0 W 5 , 2 ( ω ) with η 0 L ( ω ) < L , η W 3 , 2 ( ω ) , u 0 W div x 3 , 2 ( Ω η 0 ) is such that u 0 φ η 0 = η n on ω , S q ( ) L 2 ( I ; W 3 , 2 ( Ω η ( t ) ) ) W 1 , 2 ( I ; W 1 , 2 ( Ω η ( t ) ) ) , S q ( ¯ ( 0 ) ) W 2 , 2 ( Ω η 0 ) $$\begin{equation} \begin{aligned} &\mathbf {f}\in W^{1,2}(I;L^{2}(\Omega _{\eta (t)}))\cap L^2(I;W^{2,2}(\Omega _{\eta (t)})),\quad \mathbf {f}(0)\in W^{1,2}(\Omega _{\eta _0}), \\ &g\in L^{2}(I;W^{2,2}(\omega))\cap W^{1,2}(I;W^{1,2}(\omega)), \\ &\eta _0 \in W^{5,2}(\omega) \text{ with } \Vert \eta _0 \Vert _{L^\infty (\omega)} < L, \quad \eta _\star \in W^{3,2}(\omega), \\ &\mathbf {u}_0 \in W^{3,2}_{\mathrm{div}_{\mathbf {x}}}(\Omega _{\eta _0})\text{ is such that }\mathbf {u}_0 \circ \bm {\varphi }_{\eta _0} =\eta _\star \mathbf {n}\text{ on } \omega, \\ & \mathbb {S}_\mathbf {q}(\hbar) \in L^2(I;W^{3,2}(\Omega _{\eta (t)})) \cap W^{1,2}(I;W^{1,2}(\Omega _{\eta (t)})), \quad \mathbb {S}_\mathbf {q}(\overline{\hbar } (0))\in W^{2,2}(\Omega _{\eta _0}) \end{aligned} \end{equation}$$ ()
then the solution satisfies
η W 1 , I ; W 3 , 2 ( ω ) W 3 , 2 I ; L 2 ( ω ) W 2 , 2 I ; W 2 , 2 ( ω ) L I ; W 5 , 2 ( ω ) L 2 I ; W 6 , 2 ( ω ) , u W 2 , 2 I ; L 2 ( Ω η ( t ) ) W 1 , 2 I ; W 2 , 2 ( Ω η ( t ) ) L 2 I ; W 4 , 2 ( Ω η ( t ) ) , π W 1 , 2 I ; W 1 , 2 ( Ω η ( t ) ) L 2 I ; W 3 , 2 ( Ω η ( t ) ) . $$\begin{align*} \eta &\in W^{1,\infty }{\left(I_*;W^{3,2}(\omega) \right)} \cap W^{3,2}{\left(I_*;L^2(\omega) \right)} \\ &\qquad \qquad \qquad \cap W^{2,2}{\left(I_*;W^{2,2}(\omega) \right)}\cap L^{\infty }{\left(I_*;W^{5,2}(\omega) \right)}\cap L^{2}{\left(I_*;W^{6,2}(\omega) \right)},\\ \mathbf {u}&\in W^{2,2}{\left(I_*;L^2(\Omega _{\eta (t)}) \right)}\cap W^{1,2}{\left(I_*;W^{2,2}(\Omega _{\eta (t)}) \right)} \cap L^2{\left(I_*;W^{4,2}(\Omega _{\eta (t)}) \right)}, \\ \pi &\in W^{1,2}{\left(I_*;W^{1,2}(\Omega _{\eta (t)}) \right)} \cap L^2{\left(I_*;W^{3,2}(\Omega _{\eta (t)}) \right)}. \end{align*}$$

In order to prove Theorem 3.3, we follow the following strategy which has been successfully implemented before, for instance in [11, 14, 29, 30, 39].
  • We transform the solvent–structure system to its reference domain.
  • We then linearize the resulting system on the reference domain and obtain estimates for the linearized system.
  • We construct a contraction map for the linearized problem (by choosing the end time small enough) which gives the local solution to the system on its original/actual domain.

3.1 Transformation to the reference domain

For a solution ( η , u , π ) $(\eta, \mathbf {u}, \pi)$ of (3.1)–(3.3), we define π ¯ = π Ψ η $\overline{\pi }=\pi \circ \bm {\Psi }_\eta$ and u ¯ = u Ψ η $\overline{\mathbf {u}}=\mathbf {u}\circ \bm {\Psi }_\eta$ as well as define
A η = J η x Ψ η 1 Ψ η T x Ψ η 1 Ψ η , B η = J η x Ψ η 1 Ψ η , h η ( u ¯ ) = B η 0 B η : x u ¯ , H η ( u ¯ , π ¯ ) = A η 0 A η x u ¯ B η 0 B η [ π ¯ I 3 × 3 S q ( ¯ ) ] , h η ( u ¯ ) = ( J η 0 J η ) t u ¯ J η x u ¯ t Ψ η 1 Ψ η J η x Ψ η 1 Ψ η ( u ¯ · x ) u ¯ + J η f Ψ η $$\begin{align*} \mathbf {A}_\eta =\,&J_\eta {\left(\nabla _{\mathbf {x}}\bm {\Psi }_\eta ^{-1}\circ \bm {\Psi }_\eta \right)}^\mathtt {T}\nabla _{\mathbf {x}}\bm {\Psi }_\eta ^{-1}\circ \bm {\Psi }_\eta,\\ \mathbf {B}_\eta =\,&J_\eta \nabla _{\mathbf {x}}\bm {\Psi }_\eta ^{-1}\circ \bm {\Psi }_\eta,\\ h_\eta (\overline{\mathbf {u}})=\,&{\left(\mathbf {B}_{\eta _0}-\mathbf {B}_\eta \right)}:\nabla _{\mathbf {x}}\overline{\mathbf {u}}, \\ \mathbf {H}_\eta (\overline{\mathbf {u}}, \overline{\pi }) =\,& {\left(\mathbf {A}_{\eta _0}-\mathbf {A}_\eta \right)}\nabla _{\mathbf {x}}\overline{\mathbf {u}} - {\left(\mathbf {B}_{\eta _0}-\mathbf {B}_\eta \right)} [\overline{\pi }\,\mathbb {I}_{3\times 3}-\mathbb {S}_\mathbf {q}(\overline{\hbar })], \\ \mathbf {h}_\eta (\overline{\mathbf {u}}) =\,& (J_{\eta _0}-J_\eta)\partial _t \overline{\mathbf {u}} - J_\eta \nabla _{\mathbf {x}}\overline{\mathbf {u}} {\left(\partial _t \bm {\Psi }_\eta ^{-1}\circ \bm {\Psi }_\eta \right)} - J_\eta {\left(\nabla _{\mathbf {x}}\bm {\Psi }_\eta ^{-1}\circ \bm {\Psi }_\eta \right)}(\overline{\mathbf {u}}\cdot \nabla _{\mathbf {x}}) \overline{\mathbf {u}} + J_\eta \mathbf {f}\circ \bm {\Psi }_\eta \end{align*}$$
where ¯ = Ψ η $\overline{\hbar }=\hbar \circ \bm {\Psi }_\eta$ . The following result holds true and can be found in [11, Lemma 4.2].

Theorem 3.5.Suppose that the dataset ( f , g , η 0 , η , u 0 , S q ( ) ) $(\mathbf {f}, g, \eta _0, \eta _\star, \mathbf {u}_0, \mathbb {S}_\mathbf {q}(\hbar))$ satisfies (3.5).

Then, ( η , u , π ) $(\eta, \mathbf {u}, \pi)$ is strong solution to (3.1)–(3.3), in the sense of Definition 3.1, if and only if ( η , u ¯ , π ¯ ) $(\eta, \overline{\mathbf {u}}, \overline{\pi })$ is a strong solution of

t 2 η t Δ y η + Δ y 2 η = g + n H η ( u ¯ , π ¯ ) A η 0 x u ¯ + B η 0 ( π ¯ I 3 × 3 S q ( ¯ ) ) φ n , $$\begin{align} \partial _t^2\eta - \partial _t\Delta _{\mathbf {y}}\eta + \Delta _{\mathbf {y}}^2\eta &= g+\mathbf {n}^\top {\left[\mathbf {H}_\eta (\overline{\mathbf {u}}, \overline{\pi })-\mathbf {A}_{\eta _0} \nabla _{\mathbf {x}}\overline{\mathbf {u}} +\mathbf {B}_{\eta _0}(\overline{\pi }\,\mathbb {I}_{3\times 3}- \mathbb {S}_\mathbf {q}(\overline{\hbar }))\right]}\circ \bm {\varphi } \mathbf {n}, \end{align}$$ ()
J η 0 t u ¯ div x ( A η 0 x u ¯ B η 0 π ¯ ) = div x ( B η 0 S q ( ¯ ) ) + h η ( u ¯ ) div x H η ( u ¯ , π ¯ ) , $$\begin{align} J_{\eta _0}\partial _t \overline{\mathbf {u}} -\mathrm{div}_{\mathbf {x}}(\mathbf {A}_{\eta _0} \nabla _{\mathbf {x}}\overline{\mathbf {u}}-\mathbf {B}_{\eta _0}\overline{\pi }) & = \mathrm{div}_{\mathbf {x}}(\mathbf {B}_{\eta _0}\mathbb {S}_\mathbf {q}(\overline{\hbar })) + \mathbf {h}_\eta (\overline{\mathbf {u}})- \mathrm{div}_{\mathbf {x}}\mathbf {H}_\eta (\overline{\mathbf {u}}, \overline{\pi }), \end{align}$$ ()
B η 0 : x u ¯ = h η ( u ¯ ) $$\begin{align} \mathbf {B}_{\eta _0}:\nabla _{\mathbf {x}}\overline{\mathbf {u}}&= h_\eta (\overline{\mathbf {u}}) \end{align}$$ ()
in I × Ω $I\times \Omega$ with u ¯ φ = ( t η ) n $\overline{\mathbf {u}} \circ \bm {\varphi } =(\partial _t\eta)\mathbf {n}$ on I × ω $I\times \omega$ .

3.2 The linearized problem

In this section, we let ( g , η 0 , η ) $(g, \eta _0, \eta _\star)$ be as before in Theorem 3.5. In addition, we take ( h , h , H , u ¯ 0 , S q ( ¯ ) ) $(h,\mathbf {h}, \mathbf {H}, \overline{\mathbf {u}}_0, \mathbb {S}_\mathbf {q}(\overline{\hbar }))$ that satisfies
h L 2 ( I ; W 1 , 2 ( Ω ) ) W 1 , 2 ( I ; W 1 , 2 ( Ω ) ) , h L 2 ( I ; L 2 ( Ω ) ) , H , S q ( ¯ ) L 2 ( I ; W 1 , 2 ( Ω ) ) , u ¯ 0 W 1 , 2 ( Ω ) , u ¯ 0 φ = η n , B η 0 : x u ¯ 0 = h , $$\begin{align*} &h\in L^2(I;W^{1,2}(\Omega))\cap W^{1,2}(I;W^{-1,2}(\Omega)), \\ &\mathbf {h}\in L^2(I;L^2(\Omega)), \quad \mathbf {H},\,\mathbb {S}_\mathbf {q}(\overline{\hbar })\in L^2(I;W^{1,2}(\Omega)), \\ &\overline{\mathbf {u}}_0\in W^{1,2}(\Omega), \quad \overline{\mathbf {u}}_0\circ \bm {\varphi } =\eta _\star \mathbf {n}, \quad \mathbf {B}_{\eta _0}:\nabla _{\mathbf {x}}\overline{\mathbf {u}}_0=h, \end{align*}$$
and consider the following linear system:
t 2 η t Δ y η + Δ y 2 η = g + n H A η 0 x u ¯ + B η 0 ( π ¯ I 3 × 3 S q ( ¯ ) ) φ n , $$\begin{align} \partial _t^2\eta - \partial _t\Delta _{\mathbf {y}}\eta + \Delta _{\mathbf {y}}^2\eta &= g+\mathbf {n}^\top {\left[\mathbf {H} -\mathbf {A}_{\eta _0} \nabla _{\mathbf {x}}\overline{\mathbf {u}} +\mathbf {B}_{\eta _0}(\overline{\pi }\,\mathbb {I}_{3\times 3} - \mathbb {S}_\mathbf {q}(\overline{\hbar }))\right]}\circ \bm {\varphi } \mathbf {n}, \end{align}$$ ()
J η 0 t u ¯ div x ( A η 0 x u ¯ B η 0 π ¯ ) = div x ( B η 0 S q ( ¯ ) ) + h div x H , $$\begin{align} J_{\eta _0}\partial _t \overline{\mathbf {u}} -\mathrm{div}_{\mathbf {x}}(\mathbf {A}_{\eta _0} \nabla _{\mathbf {x}}\overline{\mathbf {u}} - \mathbf {B}_{\eta _0}\overline{\pi }) &= \mathrm{div}_{\mathbf {x}}(\mathbf {B}_{\eta _0}\mathbb {S}_\mathbf {q}(\overline{\hbar })) + \mathbf {h}- \mathrm{div}_{\mathbf {x}}\mathbf {H}, \end{align}$$ ()
B η 0 : x u ¯ = h $$\begin{align} \mathbf {B}_{\eta _0}:\nabla _{\mathbf {x}}\overline{\mathbf {u}}&= h \end{align}$$ ()
in I × Ω $I\times \Omega$ with u ¯ φ = ( t η ) n $\overline{\mathbf {u}} \circ \bm {\varphi } =(\partial _t\eta)\mathbf {n}$ on I × ω $I\times \omega$ and with η ( 0 ) = η 0 $\eta (0)=\eta _0$ and t η = η $\partial _t\eta =\eta _\star$ a.e. in ω $\omega$ as well as u ¯ ( 0 ) = u ¯ 0 $\overline{\mathbf {u}}(0)=\overline{\mathbf {u}}_0$ a.e. in Ω $\Omega$ . As shown in [14, Proposition 3.3], we obtain
sup I ω | t y η | 2 + | y Δ y η | 2 d y + sup I Ω | x u ¯ | 2 d x + I ω | t Δ y η | 2 + | t 2 η | 2 + | Δ y 2 η | 2 d y d t + I Ω | x 2 u ¯ | 2 + | t u ¯ | 2 + | π ¯ | 2 + | x π ¯ | 2 d x d t ω | y η | 2 + | y Δ y η 0 | 2 d y + Ω | u ¯ 0 | 2 + | x u ¯ 0 | 2 d x + I t h W 1 , 2 ( Ω ) 2 d t + I ω | g | 2 d y d t + I Ω | h | 2 + | x h | 2 + | h | 2 + | H | 2 + | x H | 2 + | S q ( ¯ ) ) | 2 + | x S q ( ¯ ) ) | 2 d x d t . $$\begin{equation} \begin{aligned} &\sup _I\int _\omega {\left(\vert \partial _t\nabla _{\mathbf {y}}\eta \vert ^2 + \vert \nabla _{\mathbf {y}}\Delta _{\mathbf {y}}\eta \vert ^2 \right)} \, {d}\mathbf {y}+ \sup _I\int _\Omega \vert \nabla _{\mathbf {x}}\overline{\mathbf {u}}\vert ^2\, {d} \mathbf {x}\\ &\qquad + \int _I\int _\omega {\left(\vert \partial _t\Delta _{\mathbf {y}}\eta \vert ^2 + \vert \partial _t^2 \eta \vert ^2 + \vert \Delta _{\mathbf {y}}^2 \eta \vert ^2 \right)}\, {d}\mathbf {y}\, {d}t+ \int _I\int _\Omega {\left(\vert \nabla _{\mathbf {x}}^2\overline{\mathbf {u}}\vert ^2 +\vert \partial _t\overline{\mathbf {u}} \vert ^2 +\vert \overline{\pi }\vert ^2 + \vert \nabla _{\mathbf {x}}\overline{\pi }\vert ^2 \right)}\, {d} \mathbf {x}\, {d}t\\ &\quad\lesssim \int _\omega {\left(\vert \nabla _{\mathbf {y}}\eta _\star \vert ^2 + \vert \nabla _{\mathbf {y}}\Delta _{\mathbf {y}}\eta _0\vert ^2 \right)}\, {d}\mathbf {y}+ \int _\Omega {\left(\vert \overline{\mathbf {u}}_0\vert ^2 + \vert \nabla _{\mathbf {x}}\overline{\mathbf {u}}_0\vert ^2 \right)}\, {d} \mathbf {x}\\ &\qquad + \int _I\Vert \partial _t h \Vert _{W^{-1,2}(\Omega)}^2\, {d}t+ \int _I\int _\omega \vert g\vert ^2 \, {d}\mathbf {y}\, {d}t\\ &\qquad + \int _I\int _\Omega {\left(\vert h\vert ^2 + \vert \nabla _{\mathbf {x}}h\vert ^2 + \vert \mathbf {h}\vert ^2 + \vert \mathbf {H}\vert ^2 + \vert \nabla _{\mathbf {x}}\mathbf {H}\vert ^2 + \vert \mathbb {S}_\mathbf {q}(\overline{\hbar })) \vert ^2 + \vert \nabla _{\mathbf {x}}\mathbb {S}_\mathbf {q}(\overline{\hbar })) \vert ^2 \right)} \, {d} \mathbf {x}\, {d}t. \end{aligned} \end{equation}$$ ()
For a dataset that is more regular in time and space, our goal now is to obtain higher-in-time (and then in space) regularity for the strong solution above. This requires assuming the compatibility condition
Δ y η Δ y 2 η 0 + g ( 0 ) + n H ( 0 ) A η 0 x u ¯ 0 + B η 0 ( π ¯ 0 I 3 × 3 S q ( ¯ ( 0 ) ) ) φ n n = J η 0 1 div x ( A η 0 x u ¯ 0 B η 0 π ¯ 0 + B η 0 S q ( ¯ ( 0 ) ) ) + h ( 0 ) div x H ( 0 ) φ $$\begin{equation} \begin{aligned} & {\left[\Delta _{\mathbf {y}}\eta _\star - \Delta _{\mathbf {y}}^2 \eta _0 + g(0) + \mathbf {n}^\top {\left[ \mathbf {H}(0) -\mathbf {A}_{\eta _0} \nabla _{\mathbf {x}}\overline{\mathbf {u}}_0 +\mathbf {B}_{\eta _0}(\overline{\pi }_0\,\mathbb {I}_{3\times 3} - \mathbb {S}_\mathbf {q}(\overline{\hbar }(0)))\right]}\circ \bm {\varphi } \mathbf {n}\right]}\mathbf {n}\\ &= J_{\eta _0}^{-1}{\left[ \mathrm{div}_{\mathbf {x}}(\mathbf {A}_{\eta _0} \nabla _{\mathbf {x}}\overline{\mathbf {u}}_0 -\mathbf {B}_{\eta _0}\overline{\pi }_0+ \mathbf {B}_{\eta _0}\mathbb {S}_\mathbf {q}(\overline{\hbar }(0))) + \mathbf {h}(0)- \mathrm{div}_{\mathbf {x}}\mathbf {H}(0) \right]} \circ \bm {\varphi } \end{aligned} \end{equation}$$ ()
on ω $\omega$ for the data. Here, the initial pressure π 0 $\pi _0$ is the unique solution to the elliptic problem
div x ( A η 0 x π ¯ 0 ) = t h ( 0 ) + div x B η 0 J η 0 1 { div x ( A η 0 x u ¯ 0 + B η 0 S q ( ¯ ( 0 ) ) ) } + div x B η 0 J η 0 1 { h ( 0 ) div x H ( 0 ) } $$\begin{equation} \begin{aligned} \mathrm{div}_{\mathbf {x}}(\mathbf {A}_{\eta _0}\nabla _{\mathbf {x}}\overline{\pi }_0) & = - \partial _th(0) + \mathrm{div}_{\mathbf {x}}{\left(\mathbf {B}_{\eta _0}^\top J_{\eta _0}^{-1}\big \lbrace \mathrm{div}_{\mathbf {x}}(\mathbf {A}_{\eta _0} \nabla _{\mathbf {x}}\overline{\mathbf {u}}_0 + \mathbf {B}_{\eta _0}\mathbb {S}_\mathbf {q}(\overline{\hbar } (0)))\rbrace \right)} \\ &\quad\, + \mathrm{div}_{\mathbf {x}}{\left(\mathbf {B}_{\eta _0}^\top J_{\eta _0}^{-1}\big \lbrace \mathbf {h}(0) - \mathrm{div}_{\mathbf {x}}\mathbf {H}(0) \rbrace \right)} \end{aligned} \end{equation}$$ ()
in Ω $\Omega$ with the Neumann boundary condition
A η 0 x π ¯ 0 · n φ 1 + J η 0 n φ 1 A η 0 π ¯ 0 · n φ 1 = B η 0 J η 0 1 { div x ( A η 0 x u ¯ 0 + B η 0 S q ( ¯ ( 0 ) ) ) + h ( 0 ) div x H ( 0 ) } · n φ 1 B η 0 { Δ y η Δ y 2 η 0 + g ( 0 ) } n φ 1 n φ 1 B η 0 n φ 1 H ( 0 ) A η 0 x u ¯ 0 n φ 1 + J η 0 n φ 1 A η 0 S q ( ¯ ( 0 ) ) n φ 1 $$\begin{equation} \begin{aligned} \mathbf {A}_{\eta _0}\nabla _{\mathbf {x}}\overline{\pi }_0&\cdot \mathbf {n}\circ \bm {\varphi }^{-1} + J_{\eta _0} \mathbf {n}^\top \circ \bm {\varphi }^{-1} \mathbf {A}_{\eta _0}\overline{\pi } _0\cdot \mathbf {n}\circ \bm {\varphi }^{-1} \\ &= \mathbf {B}_{\eta _0}^\top J_{\eta _0}^{-1}\big \lbrace \mathrm{div}_{\mathbf {x}}(\mathbf {A}_{\eta _0} \nabla _{\mathbf {x}}\overline{\mathbf {u}}_0 + \mathbf {B}_{\eta _0}\mathbb {S}_\mathbf {q}(\overline{\hbar } (0))) + \mathbf {h}(0) - \mathrm{div}_{\mathbf {x}}\mathbf {H}(0) \rbrace \cdot \mathbf {n}\circ \bm {\varphi }^{-1} \\ &\quad\, - \mathbf {B}_{\eta _0}^\top {\left[\big \lbrace \Delta _{\mathbf {y}}\eta _\star - \Delta _{\mathbf {y}}^2\eta _0+g(0)\big \rbrace \mathbf {n}\right]}\circ \bm {\varphi }^{-1}\mathbf {n}\circ \bm {\varphi }^{-1} \\ &\quad\, - \mathbf {B}_{\eta _0}^\top \mathbf {n}^\top \circ \bm {\varphi }^{-1} {\left[\mathbf {H}(0) -\mathbf {A}_{\eta _0} \nabla _{\mathbf {x}}\overline{\mathbf {u}}_0 \right]} \mathbf {n}\circ \bm {\varphi }^{-1} + J_{\eta _0} \mathbf {n}^\top \circ \bm {\varphi }^{-1} \mathbf {A}_{\eta _0} \mathbb {S}_\mathbf {q}(\overline{\hbar } (0)) \mathbf {n}\circ \bm {\varphi }^{-1} \end{aligned} \end{equation}$$ ()
on Ω $\partial \Omega$ . Our main result in this subsection is the following.

Proposition 3.6.Suppose that the dataset ( g , η 0 , η , u ¯ 0 , ¯ , h , h , H ) $(g, \eta _0, \eta _\star, \overline{\mathbf {u}}_0,\overline{\hbar }, h, \mathbf {h},\mathbf {H})$ satisfies (3.5) and in addition

g L 2 ( I ; W 2 , 2 ( ω ) ) W 1 , 2 ( I ; W 1 , 2 ( ω ) ) η 0 W 5 , 2 ( ω ) with η 0 L ( ω ) < L , η W 3 , 2 ( ω ) , u ¯ 0 W 3 , 2 ( Ω ) , u ¯ 0 φ = η n , B η 0 : x u ¯ 0 = h , h L 2 ( I ; W 3 , 2 ( Ω ) ) W 1 , 2 ( I ; W 1 , 2 ( Ω ) ) W 2 , 2 ( I ; W 1 , 2 ( Ω ) ) , h L 2 ( I ; W 2 , 2 ( Ω ) ) W 1 , 2 ( I ; L 2 ( Ω ) ) , h ( 0 ) W 1 , 2 ( Ω ) , H L 2 ( I ; W 3 , 2 ( Ω ) ) W 1 , 2 ( I ; W 1 , 2 ( Ω ) ) , H ( 0 ) W 2 , 2 ( Ω ) , S q ( ¯ ) L 2 ( I ; W 3 , 2 ( Ω ) ) W 1 , 2 ( I ; W 1 , 2 ( Ω ) ) , S q ( ¯ ( 0 ) ) W 2 , 2 ( Ω ) , $$\begin{equation} \begin{aligned} &g\in L^2(I;W^{2,2}(\omega)) \cap W^{1,2}(I;W^{1,2}(\omega)) \\ &\eta _0 \in W^{5,2}(\omega) \text{ with } \Vert \eta _0 \Vert _{L^\infty (\omega)} < L, \quad \eta _\star \in W^{3,2}(\omega), \\ &\overline{\mathbf {u}}_0 \in W^{3,2}(\Omega), \quad \overline{\mathbf {u}}_0\circ \bm {\varphi } =\eta _\star \mathbf {n}, \quad \mathbf {B}_{\eta _0}:\nabla _{\mathbf {x}}\overline{\mathbf {u}}_0=h, \\ & h\in L^2(I;W^{3,2}(\Omega)) \cap W^{1,2}(I;W^{1,2}(\Omega)) \cap W^{2,2}(I;W^{-1,2}(\Omega)), \\ & \mathbf {h} \in L^2(I;W^{2,2}(\Omega)) \cap W^{1,2}(I;L^2(\Omega)),\quad \mathbf {h}(0)\in W^{1,2}(\Omega), \\ & \mathbf {H}\in L^2(I;W^{3,2}(\Omega)) \cap W^{1,2}(I;W^{1,2}(\Omega)), \quad \mathbf {H}(0)\in W^{2,2}(\Omega), \\ & \mathbb {S}_\mathbf {q}(\overline{\hbar })\in L^2(I;W^{3,2}(\Omega)) \cap W^{1,2}(I;W^{1,2}(\Omega)), \quad \mathbb {S}_\mathbf {q}(\overline{\hbar } (0))\in W^{2,2}(\Omega), \end{aligned} \end{equation}$$ ()
with the compatibility condition (3.15). Then, a strong solution ( η , u ¯ , π ¯ ) $(\eta, \overline{\mathbf {u}}, \overline{\pi })$ of (3.11)–(3.13) satisfies
sup I ω | t 2 y η | 2 + | t y 3 η | 2 + | y 5 η | 2 d y + sup I Ω | t x u ¯ | 2 d x + I u ¯ W 4 , 2 ( Ω ) 2 + π ¯ W 3 , 2 ( Ω ) 2 d t + I ω | t 2 y 2 η | 2 + | t y 4 η | 2 + | t 3 η | 2 + | y 6 η | 2 d y d t + I Ω | t x 2 u ¯ | 2 + | t 2 u ¯ | 2 + | t π ¯ | 2 + | t x π ¯ | 2 d x d t D ( g , η 0 , η , u 0 , h , h , H ) , $$\begin{equation} \begin{aligned} &\sup _I\int _\omega {\left(\vert \partial _t^2\nabla _{\mathbf {y}}\eta \vert ^2 + \vert \partial _t\nabla _{\mathbf {y}}^3 \eta \vert ^2+ \vert \nabla _{\mathbf {y}}^5 \eta \vert ^2 \right)} \, {d}\mathbf {y}+ \sup _I\int _\Omega \vert \partial _t\nabla _{\mathbf {x}}\overline{\mathbf {u}}\vert ^2\, {d} \mathbf {x}\\ &\quad + \int _I{\left(\Vert \overline{\mathbf {u}} \Vert _{W^{4,2}(\Omega)}^2 + \Vert \overline{\pi } \Vert _{W^{3,2}(\Omega)}^2\right)} \, {d}t+ \int _I\int _\omega {\left(\vert \partial _t^2\nabla _{\mathbf {y}}^2 \eta \vert ^2+\vert \partial _t\nabla _{\mathbf {y}}^4 \eta \vert ^2 + \vert \partial _t^3 \eta \vert ^2 +\vert \nabla _{\mathbf {y}}^6\eta \vert ^2\right)}\, {d}\mathbf {y}\, {d}t\\ &\quad + \int _I\int _\Omega {\left(\vert \partial _t \nabla _{\mathbf {x}}^2\overline{\mathbf {u}}\vert ^2 +\vert \partial _t^2\overline{\mathbf {u}} \vert ^2 +\vert \partial _t\overline{\pi }\vert ^2 + \vert \partial _t\nabla _{\mathbf {x}}\overline{\pi }\vert ^2 \right)}\, {d} \mathbf {x}\, {d}t\lesssim \mathcal {D}(g, \eta _0, \eta _\star, \mathbf {u}_0, h, \mathbf {h},\mathbf {H}), \end{aligned} \end{equation}$$ ()
where
D ( g , η 0 , η , u 0 , h , h , H ) : = η W 3 , 2 ( ω ) 2 + η 0 W 5 , 2 ( ω ) 2 + u ¯ 0 W 3 , 2 ( Ω ) 2 + S q ( ¯ ( 0 ) ) W 2 , 2 ( Ω ) 2 + h ( 0 ) W 1 , 2 ( Ω ) 2 + H ( 0 ) W 2 , 2 ( Ω ) 2 + I t 2 h W 1 , 2 ( Ω ) 2 d t + g ( 0 ) W 1 , 2 ( ω ) 2 + I t g W 1 , 2 ( ω ) 2 + g W 2 , 2 ( ω ) 2 + t h W 1 , 2 ( Ω ) 2 + h W 3 , 2 ( Ω ) 2 + t h L 2 ( Ω ) 2 d t + I h W 2 , 2 ( Ω ) 2 + S q ( t ¯ ) W 1 , 2 ( Ω ) 2 + S q ( ¯ ) W 3 , 2 ( Ω ) 2 + t H W 1 , 2 ( Ω ) 2 + H W 3 , 2 ( Ω ) 2 d t . $$\begin{equation} \begin{aligned} \mathcal {D}&(g, \eta _0, \eta _\star, \mathbf {u}_0, h, \mathbf {h},\mathbf {H}):= \Vert \eta _\star \Vert _{W^{3,2}(\omega)}^2 + \Vert \eta _0\Vert _{W^{5,2}(\omega)}^2 + \Vert \overline{\mathbf {u}}_0\Vert _{W^{3,2}(\Omega)}^2 + \Vert \mathbb {S}_\mathbf {q}(\overline{\hbar }(0)) \Vert _{W^{2,2}(\Omega)}^2 \\ &\quad + \Vert \mathbf {h}(0)\Vert _{W^{1,2}(\Omega)}^2 + \Vert \mathbf {H}(0)\Vert _{W^{2,2}(\Omega)}^2 + \int _I\Vert \partial _t^2 h \Vert _{W^{-1,2}(\Omega)}^2\, {d}t+ \Vert g(0)\Vert _{W^{1,2}(\omega)}^2 \\ &\quad + \int _I {\left(\Vert \partial _t g \Vert _{W^{1,2}(\omega)}^2 + \Vert g\Vert _{W^{2,2}(\omega)}^2 + \Vert \partial _t h \Vert _{W^{1,2}(\Omega)}^2 + \Vert h \Vert _{W^{3,2}(\Omega)}^2 + \Vert \partial _t\mathbf {h}\Vert _{L^2(\Omega)}^2\right)}\, {d}t\\ &\quad + \int _I{\left(\Vert \mathbf {h}\Vert _{W^{2,2}(\Omega)}^2 + \Vert \mathbb {S}_\mathbf {q}(\partial _t\overline{\hbar }) \Vert _{W^{1,2}(\Omega)}^2 + \Vert \mathbb {S}_\mathbf {q}(\overline{\hbar }) \Vert _{W^{3,2}(\Omega)}^2 + \Vert \partial _t\mathbf {H}\Vert _{W^{1,2}(\Omega)}^2 + \Vert \mathbf {H}\Vert _{W^{3,2}(\Omega)}^2 \right)} \, {d}t. \end{aligned} \end{equation}$$ ()

Proof.The proof of Proposition 3.6 will be obtained in three steps. First, we differentiate in time, each of the equations in (3.11)–(3.13) as well as the interface condition u ¯ φ = ( t η ) n $\overline{\mathbf {u}} \circ \bm {\varphi } =(\partial _t\eta)\mathbf {n}$ . Since the system (3.11)–(3.13) is linear, the resulting system after differentiating in time will be of the same form except for the extra time derivative applied to the individual terms in the system. Also, the initial conditions are no longer given but now solve PDEs as well. Consequently, in the first instant, our new system will also satisfy the inequality (3.14) (for the time derivatives of each term). However, since the initial conditions solve PDEs, we will have to estimate them as well. The estimate for these initial conditions is our second step. Finally, our third step will consist of obtaining estimates for the remaining terms on the left-hand side of (3.19) (which happens to be the highest spatial regularity for the velocity field and the pressure) in terms of D ( · ) $\mathcal {D}(\cdot)$ as defined in (3.20).

Let us now give further details. We argue formerly, a rigorous proof can be obtained by working with a Galerkin approximation (see also [14, Section 3] and [54, Section 4]). This is also where the compatibility condition (3.15) comes into play to obtain sufficient temporal regularity. First, in order to simplify notation, let us set

u = t u ¯ , π = t π ¯ , = t ¯ , η = t η , g = t g , h = t h , h = t h , H = t H . $$\begin{align} \tilde{\mathbf {u}}=\partial _t\overline{\mathbf {u}}, \quad \tilde{\pi }=\partial _t\overline{\pi }, \quad \tilde{\hbar }=\partial _t\overline{\hbar }, \quad \tilde{\eta }=\partial _t\eta, \quad \tilde{g}=\partial _t g, \quad \tilde{h}=\partial _t h, \quad \tilde{\mathbf {h}}=\partial _t \mathbf {h}, \quad \tilde{\mathbf {H}}=\partial _t \mathbf {H}. \end{align}$$ ()
We now obtain the system
t 2 η t Δ y η + Δ y 2 η = g + n H A η 0 x u + B η 0 ( π I 3 × 3 S q ( ) ) φ n , $$\begin{align} \partial _t^2\tilde{\eta } - \partial _t\Delta _{\mathbf {y}}\tilde{ \eta } + \Delta _{\mathbf {y}}^2\tilde{\eta } &= \tilde{g} + \mathbf {n}^\top {\left[\tilde{\mathbf {H}} -\mathbf {A}_{\eta _0} \nabla _{\mathbf {x}}\tilde{\mathbf {u}} +\mathbf {B}_{\eta _0}(\tilde{\pi }\,\mathbb {I}_{3\times 3} - \mathbb {S}_\mathbf {q}(\tilde{\hbar }))\right]}\circ \bm {\varphi } \mathbf {n}, \end{align}$$ ()
J η 0 t u div x ( A η 0 x u B η 0 π ) = div x ( B η 0 S q ( ) ) + h div x H , $$\begin{align} J_{\eta _0}\partial _t \tilde{\mathbf {u}} -\mathrm{div}_{\mathbf {x}}(\mathbf {A}_{\eta _0} \nabla _{\mathbf {x}}\tilde{\mathbf {u}} -\mathbf {B}_{\eta _0}\tilde{\pi }) &=\mathrm{div}_{\mathbf {x}}(\mathbf {B}_{\eta _0}\mathbb {S}_\mathbf {q}(\tilde{\hbar })) + \tilde{\mathbf {h}}- \mathrm{div}_{\mathbf {x}}\tilde{\mathbf {H}}, \end{align}$$ ()
B η 0 : x u = h $$\begin{align} \mathbf {B}_{\eta _0}:\nabla _{\mathbf {x}}\tilde{\mathbf {u}}&= \tilde{h} \end{align}$$ ()
with u φ = ( t η ) n $\tilde{\mathbf {u}} \circ \bm {\varphi } =(\partial _t\tilde{\eta })\mathbf {n}$ on I × ω $I\times \omega$ and with the initial conditions
η ( 0 , · ) = η 0 , t η ( 0 , · ) = η on ω , $$\begin{equation} \tilde{\eta}(0,\cdot )={\tilde{\eta}}_{0},\quad {\partial}_{t}\tilde{\eta}(0,\cdot )={\tilde{\eta}}_{\star}\qquad \text{on}\ \omega , \end{equation}$$ ()
u ( 0 , · ) = u 0 in Ω . $$\begin{align} &\tilde{\mathbf {u}}(0, \cdot) = \tilde{\mathbf {u}}_0 \quad \text{in } \Omega . \end{align}$$ ()
Here, the initial data ( η 0 , η 1 , u 0 ) $(\tilde{\eta }_0, \tilde{\eta }_1, \tilde{\mathbf {u}}_0)$ satisfy
η 0 = η , $$\begin{align} &\tilde{\eta }_0=\eta _\star, \end{align}$$ ()
η = Δ y η Δ y 2 η 0 + g ( 0 ) + n H ( 0 ) A η 0 x u ¯ 0 + B η 0 ( π ¯ 0 I 3 × 3 S q ( ¯ ( 0 ) ) ) φ n , $$\begin{align} &\tilde{\eta }_\star = \Delta _{\mathbf {y}}\eta _\star - \Delta _{\mathbf {y}}^2 \eta _0 + g(0) + \mathbf {n}^\top {\left[ \mathbf {H}(0) -\mathbf {A}_{\eta _0} \nabla _{\mathbf {x}}\overline{\mathbf {u}}_0 +\mathbf {B}_{\eta _0}(\overline{\pi }_0\,\mathbb {I}_{3\times 3} - \mathbb {S}_\mathbf {q}(\overline{\hbar }(0)))\right]}\circ \bm {\varphi } \mathbf {n}, \end{align}$$ ()
u 0 = J η 0 1 div x ( A η 0 x u ¯ 0 B η 0 π ¯ 0 + B η 0 S q ( ¯ ( 0 ) ) ) + h ( 0 ) div x H ( 0 ) . $$\begin{align} &\tilde{\mathbf {u}}_0 = J_{\eta _0}^{-1}{\left[\mathrm{div}_{\mathbf {x}}(\mathbf {A}_{\eta _0} \nabla _{\mathbf {x}}\overline{\mathbf {u}}_0 -\mathbf {B}_{\eta _0}\overline{\pi }_0 + \mathbf {B}_{\eta _0}\mathbb {S}_\mathbf {q}(\overline{\hbar }(0))) + \mathbf {h}(0)- \mathrm{div}_{\mathbf {x}}\mathbf {H}(0) \right]}. \end{align}$$ ()
The initial pressure π ¯ 0 $\overline{\pi }_0$ is prescribed by the data via (3.16)–(3.17). Because the system (3.22)–(3.24) is of the same form as (3.11)–(3.13), we can directly infer from (3.14) that
sup I ω | t y η | 2 + | y Δ y η | 2 d y + sup I Ω | x u | 2 d x + I ω | t Δ y η | 2 + | t 2 η | 2 + | Δ y 2 η | 2 d y d t + I Ω | x 2 u | 2 + | t u | 2 + | π | 2 + | x π | 2 d x d t ω | η | 2 + | y η | 2 + | Δ y η 0 | 2 + | y Δ y η 0 | 2 d y + Ω | u 0 | 2 + | x u 0 | 2 d x + I t h W 1 , 2 ( Ω ) 2 d t + I ω | g | 2 d y d t + I Ω | h | 2 + | x h | 2 + | h | 2 + | H | 2 + | x H | 2 + | S q ( ) ) | 2 + | x S q ( ) ) | 2 d x d t . $$\begin{equation} \begin{aligned} &\sup _I\int _\omega {\left(\vert \partial _t\nabla _{\mathbf {y}}\tilde{\eta }\vert ^2 + \vert \nabla _{\mathbf {y}}\Delta _{\mathbf {y}}\tilde{\eta }\vert ^2 \right)} \, {d}\mathbf {y}+ \sup _I\int _\Omega \vert \nabla _{\mathbf {x}}\tilde{\mathbf {u}}\vert ^2\, {d} \mathbf {x}\\ &\qquad + \int _I\int _\omega {\left(\vert \partial _t\Delta _{\mathbf {y}}\tilde{\eta } \vert ^2 + \vert \partial _t^2 \tilde{\eta }\vert ^2+ \vert \Delta _{\mathbf {y}}^2 \tilde{\eta }\vert ^2 \right)}\, {d}\mathbf {y}\, {d}t+ \int _I\int _\Omega {\left(\vert \nabla _{\mathbf {x}}^2\tilde{\mathbf {u}}\vert ^2 +\vert \partial _t\tilde{\mathbf {u}} \vert ^2 +\vert \tilde{\pi }\vert ^2 + \vert \nabla _{\mathbf {x}}\tilde{\pi }\vert ^2 \right)}\, {d} \mathbf {x}\, {d}t\\ &\qquad\lesssim \int _\omega {\left(\vert \tilde{\eta }_\star \vert ^2 + \vert \nabla _{\mathbf {y}}\tilde{\eta }_\star \vert ^2 + \vert \Delta _{\mathbf {y}}\tilde{\eta }_0\vert ^2 + \vert \nabla _{\mathbf {y}}\Delta _{\mathbf {y}}\tilde{\eta }_0\vert ^2 \right)}\, {d}\mathbf {y}+ \int _\Omega {\left(\vert \tilde{\mathbf {u}}_0\vert ^2 + \vert \nabla _{\mathbf {x}}\tilde{\mathbf {u}}_0\vert ^2 \right)}\, {d} \mathbf {x}\\ &\quad\,\qquad + \int _I\Vert \partial _t \tilde{h} \Vert _{W^{-1,2}(\Omega)}^2\, {d}t+ \int _I\int _\omega \vert \tilde{g}\vert ^2 \, {d}\mathbf {y}\, {d}t\\ &\quad\,\qquad + \int _I\int _\Omega {\left(\vert \tilde{h}\vert ^2 + \vert \nabla _{\mathbf {x}}\tilde{h}\vert ^2 + \vert \tilde{\mathbf {h}}\vert ^2 + \vert \tilde{\mathbf {H}}\vert ^2 + \vert \nabla _{\mathbf {x}}\tilde{\mathbf {H}}\vert ^2 + \vert \mathbb {S}_\mathbf {q}(\tilde{\hbar })) \vert ^2 + \vert \nabla _{\mathbf {x}}\mathbb {S}_\mathbf {q}(\tilde{\hbar })) \vert ^2 \right)} \, {d} \mathbf {x}\, {d}t. \end{aligned} \end{equation}$$ ()
Now, since the initial data solve Equations (3.27)–(3.29), we have to further estimate the right-hand side of (3.30) above to get the right-hand side of (3.19).

Since η 0 = η $\tilde{\eta }_0=\eta _\star$ and (3.21) holds, clearly,

ω | Δ y η 0 | 2 + | y Δ y η 0 | 2 d y + I t h W 1 , 2 ( Ω ) 2 d t + I ω | g | 2 d y d t + I Ω | h | 2 + | x h | 2 + | h | 2 + | H | 2 + | x H | 2 + | S q ( ) ) | 2 + | x S q ( ) ) | 2 d x d t η W 3 , 2 ( ω ) 2 + I t 2 h W 1 , 2 ( Ω ) 2 d t + I t g W 1 , 2 ( ω ) 2 d t + I t h W 1 , 2 ( Ω ) 2 + t h L 2 ( Ω ) 2 + t H W 1 , 2 ( Ω ) 2 + S q ( t ¯ ) ) W 1 , 2 ( Ω ) 2 d t . $$\begin{equation} \begin{aligned} &\int _\omega {\left(\vert \Delta _{\mathbf {y}}\tilde{\eta }_0\vert ^2 + \vert \nabla _{\mathbf {y}}\Delta _{\mathbf {y}}\tilde{\eta }_0\vert ^2 \right)}\, {d}\mathbf {y}+ \int _I\Vert \partial _t \tilde{h} \Vert _{W^{-1,2}(\Omega)}^2\, {d}t+ \int _I\int _\omega \vert \tilde{g}\vert ^2 \, {d}\mathbf {y}\, {d}t\\ &\qquad + \int _I\int _\Omega {\left(\vert \tilde{h}\vert ^2 + \vert \nabla _{\mathbf {x}}\tilde{h}\vert ^2 + \vert \tilde{\mathbf {h}}\vert ^2 + \vert \tilde{\mathbf {H}}\vert ^2 + \vert \nabla _{\mathbf {x}}\tilde{\mathbf {H}}\vert ^2 + \vert \mathbb {S}_\mathbf {q}(\tilde{\hbar })) \vert ^2 + \vert \nabla _{\mathbf {x}}\mathbb {S}_\mathbf {q}(\tilde{\hbar })) \vert ^2 \right)} \, {d} \mathbf {x}\, {d}t\\ &\quad\lesssim \Vert \eta _\star \Vert _{W^{3,2}(\omega)}^2 + \int _I\Vert \partial _t^2 h\Vert _{W^{-1,2}(\Omega)}^2\, {d}t+ \int _I \Vert \partial _t g \Vert _{W^{1,2}(\omega)}^2\, {d}t\\ &\qquad + \int _I{\left(\Vert \partial _t h \Vert _{W^{1,2}(\Omega)}^2 + \Vert \partial _t\mathbf {h}\Vert _{L^2(\Omega)}^2 + \Vert \partial _t\mathbf {H}\Vert _{W^{1,2}(\Omega)}^2 + \Vert \mathbb {S}_\mathbf {q}(\partial _t\overline{\hbar })) \Vert _{W^{1,2}(\Omega)}^2 \right)} \, {d}t. \end{aligned} \end{equation}$$ ()
It remains to estimate
η W 1 , 2 ( ω ) 2 + u 0 W 1 , 2 ( Ω ) 2 . $$\begin{equation} \begin{aligned} &\Vert \tilde{\eta }_\star \Vert _{W^{1,2}(\omega)}^2 + \Vert \tilde{\mathbf {u}}_0\Vert _{W^{1,2}(\Omega)}^2. \end{aligned} \end{equation}$$ ()
From (3.28) and (3.29),
η W 1 , 2 ( ω ) 2 + u 0 W 1 , 2 ( Ω ) 2 η W 3 , 2 ( ω ) 2 + η 0 W 5 , 2 ( ω ) 2 + g ( 0 ) W 1 , 2 ( ω ) 2 + u ¯ 0 W 3 , 2 ( Ω ) 2 + π ¯ 0 W 2 , 2 ( Ω ) 2 + h ( 0 ) W 1 , 2 ( Ω ) 2 + H ( 0 ) W 2 , 2 ( Ω ) 2 + S q ( ¯ ( 0 ) ) W 2 , 2 ( Ω ) 2 + H ( 0 ) W 1 , 2 ( Ω ) 2 + u ¯ 0 W 2 , 2 ( Ω ) 2 + π ¯ 0 W 1 , 2 ( Ω ) 2 + S q ( ¯ ( 0 ) ) W 1 , 2 ( Ω ) 2 . $$\begin{equation} \begin{aligned} &\Vert \tilde{\eta }_\star \Vert _{W^{1,2}(\omega)}^2 + \Vert \tilde{\mathbf {u}}_0\Vert _{W^{1,2}(\Omega)}^2 \\ &\quad \lesssim \Vert \eta _\star \Vert _{W^{3,2}(\omega)}^2 + \Vert \eta _0\Vert _{W^{5,2}(\omega)}^2 + \Vert g(0)\Vert _{W^{1,2}(\omega)}^2 + \Vert \overline{\mathbf {u}}_0\Vert _{W^{3,2}(\Omega)}^2 \\ &\qquad + \Vert \overline{\pi }_0\Vert _{W^{2,2}(\Omega)}^2 + \Vert \mathbf {h}(0)\Vert _{W^{1,2}(\Omega)}^2 + \Vert \mathbf {H}(0)\Vert _{W^{2,2}(\Omega)}^2 + \Vert \mathbb {S}_\mathbf {q}(\overline{\hbar }(0)) \Vert _{W^{2,2}(\Omega)}^2 \\ &\qquad + \Vert \mathbf {H}(0)\Vert _{W^{1,2}(\partial \Omega)}^2 + \Vert \overline{\mathbf {u}}_0\Vert _{W^{2,2}(\partial \Omega)}^2 + \Vert \overline{\pi }_0\Vert _{W^{1,2}(\partial \Omega)}^2 + \Vert \mathbb {S}_\mathbf {q}(\overline{\hbar }(0)) \Vert _{W^{1,2}(\partial \Omega)}^2 . \end{aligned} \end{equation}$$ ()
The last boundary terms can be estimated using the trace theorem to obtain
H ( 0 ) W 1 , 2 ( Ω ) 2 + u ¯ 0 W 2 , 2 ( Ω ) 2 + π ¯ ( 0 ) W 1 , 2 ( Ω ) 2 + S q ( ¯ ( 0 ) ) W 1 , 2 ( Ω ) 2 H ( 0 ) W 2 , 2 ( Ω ) 2 + u ¯ 0 W 3 , 2 ( Ω ) 2 + π ¯ ( 0 ) W 2 , 2 ( Ω ) 2 + S q ( ¯ ( 0 ) ) W 2 , 2 ( Ω ) 2 $$\begin{equation} \begin{aligned} \Vert \mathbf {H}(0)\Vert _{W^{1,2}(\partial \Omega)}^2 &+ \Vert \overline{\mathbf {u}}_0\Vert _{W^{2,2}(\partial \Omega)}^2 + \Vert \overline{\pi }(0)\Vert _{W^{1,2}(\partial \Omega)}^2 + \Vert \mathbb {S}_\mathbf {q}(\overline{\hbar }(0)) \Vert _{W^{1,2}(\partial \Omega)}^2 \\ &\lesssim \Vert \mathbf {H}(0)\Vert _{W^{2,2}(\Omega)}^2 + \Vert \overline{\mathbf {u}}_0\Vert _{W^{3,2}(\Omega)}^2 + \Vert \overline{\pi }(0)\Vert _{W^{2,2}(\Omega)}^2 + \Vert \mathbb {S}_\mathbf {q}(\overline{\hbar }(0)) \Vert _{W^{2,2}(\Omega)}^2 \end{aligned} \end{equation}$$ ()

If we now combine (3.33) and (3.34), we obtain

η W 1 , 2 ( ω ) 2 + u 0 W 1 , 2 ( Ω ) 2 η W 3 , 2 ( ω ) 2 + η 0 W 5 , 2 ( ω ) 2 + g ( 0 ) W 1 , 2 ( ω ) 2 + u ¯ 0 W 3 , 2 ( Ω ) 2 + π ¯ 0 W 2 , 2 ( Ω ) 2 + h ( 0 ) W 1 , 2 ( Ω ) 2 + H ( 0 ) W 2 , 2 ( Ω ) 2 + S q ( ¯ ( 0 ) ) W 2 , 2 ( Ω ) 2 . $$\begin{equation} \begin{aligned} &\Vert \tilde{\eta }_\star \Vert _{W^{1,2}(\omega)}^2 + \Vert \tilde{\mathbf {u}}_0\Vert _{W^{1,2}(\Omega)}^2 \\ &\lesssim \Vert \eta _\star \Vert _{W^{3,2}(\omega)}^2 + \Vert \eta _0\Vert _{W^{5,2}(\omega)}^2 + \Vert g(0)\Vert _{W^{1,2}(\omega)}^2 + \Vert \overline{\mathbf {u}}_0\Vert _{W^{3,2}(\Omega)}^2 \\ &+ \Vert \overline{\pi }_0\Vert _{W^{2,2}(\Omega)}^2 + \Vert \mathbf {h}(0)\Vert _{W^{1,2}(\Omega)}^2 + \Vert \mathbf {H}(0)\Vert _{W^{2,2}(\Omega)}^2 + \Vert \mathbb {S}_\mathbf {q}(\overline{\hbar }(0)) \Vert _{W^{2,2}(\Omega)}^2. \end{aligned} \end{equation}$$ ()

To get suitable bounds for the pressure π ¯ 0 $\overline{\pi }_0$ , we study (3.16). In particular, to get L 2 $L^2$ -bound for x π $\nabla _{\mathbf {x}}\pi$ , we consider

Ω A η 0 x π ¯ 0 · x π ¯ 0 d x = Ω div x ( A η 0 x π ¯ 0 π ¯ 0 ) d x Ω div x ( A η 0 x π ¯ 0 ) π ¯ 0 d x , $$\begin{equation} \begin{aligned} \int _\Omega \mathbf {A}_{\eta _0}\nabla _{\mathbf {x}}\overline{\pi }_0\cdot \nabla _{\mathbf {x}}\overline{\pi } _0\, {d} \mathbf {x}& = \int _\Omega \mathrm{div}_{\mathbf {x}}(\mathbf {A}_{\eta _0}\nabla _{\mathbf {x}}\overline{\pi }_0\,\overline{\pi }_0) \, {d} \mathbf {x}- \int _\Omega \mathrm{div}_{\mathbf {x}}(\mathbf {A}_{\eta _0}\nabla _{\mathbf {x}}\overline{\pi }_0) \overline{\pi }_0 \, {d} \mathbf {x}, \end{aligned} \end{equation}$$ ()
where, by ellipticity of A η 0 $\mathbf {A}_{\eta _0}$ ,
Ω | x π ¯ 0 | 2 d x Ω A η 0 x π ¯ 0 · x π ¯ 0 d x $$\begin{equation} \begin{aligned} \int _\Omega \vert \nabla _{\mathbf {x}}\overline{\pi }_0\vert ^2 \, {d} \mathbf {x}\lesssim \int _\Omega \mathbf {A}_{\eta _0}\nabla _{\mathbf {x}}\overline{\pi }_0\cdot \nabla _{\mathbf {x}}\overline{\pi }_0 \, {d} \mathbf {x} \end{aligned} \end{equation}$$ ()
and
Ω div x ( A η 0 x π ¯ 0 π ¯ 0 ) d x = Ω A η 0 x π ¯ 0 π ¯ 0 · n φ 1 d H 2 = Ω J η 0 n φ 1 A η 0 π ¯ 0 2 · n φ 1 d H 2 + Ω π ¯ 0 J η 0 n φ 1 A η 0 S q ( ¯ ( 0 ) ) · n φ 1 d H 2 + Ω π ¯ 0 B η 0 J η 0 1 [ div x ( A η 0 x u ¯ 0 + B η 0 S q ( ¯ ( 0 ) ) ) + h ( 0 ) div x H ( 0 ) ] · n φ 1 d H 2 Ω π ¯ 0 B η 0 { Δ y η Δ y 2 η 0 + g ( 0 ) } n φ 1 + n φ 1 ( H ( 0 ) A η 0 x u ¯ 0 ) · n φ 1 d H 2 $$\begin{equation} \begin{aligned} \int _\Omega &\mathrm{div}_{\mathbf {x}}(\mathbf {A}_{\eta _0}\nabla _{\mathbf {x}}\overline{\pi }_0\,\overline{\pi }_0) \, {d} \mathbf {x}= \int _{\partial \Omega } \mathbf {A}_{\eta _0}\nabla _{\mathbf {x}}\overline{\pi }_0\,\overline{\pi }_0\cdot \mathbf {n}\circ \bm {\varphi }^{-1} \,d\mathcal {H}^2 \\ &= - \int _{\partial \Omega } J_{\eta _0} \mathbf {n}^\top \circ \bm {\varphi }^{-1} \mathbf {A}_{\eta _0}\overline{\pi }_0^2\cdot \mathbf {n}\circ \bm {\varphi }^{-1} \,d\mathcal {H}^2 + \int _{\partial \Omega }\overline{\pi }_0 J_{\eta _0} \mathbf {n}^\top \circ \bm {\varphi }^{-1} \mathbf {A}_{\eta _0}\mathbb {S}_\mathbf {q}(\overline{\hbar } (0))\cdot \mathbf {n}\circ \bm {\varphi }^{-1} \,d\mathcal {H}^2 \\ &\quad\, + \int _{\partial \Omega } \overline{\pi }_0 \mathbf {B}_{\eta _0}^\top J_{\eta _0}^{-1}[ \mathrm{div}_{\mathbf {x}}(\mathbf {A}_{\eta _0} \nabla _{\mathbf {x}}\overline{\mathbf {u}}_0 +\mathbf {B}_{\eta _0} \mathbb {S}_\mathbf {q}(\overline{\hbar } (0))) + \mathbf {h}(0) - \mathrm{div}_{\mathbf {x}}\mathbf {H}(0)]\cdot \mathbf {n}\circ \bm {\varphi }^{-1} \,d\mathcal {H}^2 \\ &\quad\, - \int _{\partial \Omega } \overline{\pi }_0 \mathbf {B}_{\eta _0}^\top {\left[ {\left(\lbrace \Delta _{\mathbf {y}}\eta _\star - \Delta _{\mathbf {y}}^2\eta _0+g(0)\rbrace \mathbf {n}\right)}\circ \bm {\varphi }^{-1} + \mathbf {n}^\top \circ \bm {\varphi }^{-1} (\mathbf {H}(0) -\mathbf {A}_{\eta _0} \nabla _{\mathbf {x}}\overline{\mathbf {u}}_0) \right]}\cdot \mathbf {n}\circ \bm {\varphi }^{-1} \,d\mathcal {H}^2 \end{aligned} \end{equation}$$ ()
with
Ω J η 0 n φ 1 A η 0 π ¯ 0 2 n φ 1 d H 2 0 $$\begin{equation*} -\int_{\partial \mathrm{\Omega}}{J}_{{\eta}_{0}}{\mathbf{n}}^{\top}\circ {\bm{\varphi}}^{-1}{\mathbf{A}}_{{\eta}_{0}}{\bar{\pi}}_{0}^{2}\mathbf{n}\circ {\bm{\varphi}}^{-1}\, d{\mathcal{H}}^{2}\le 0 \end{equation*}$$
and
Ω di v x ( A η 0 x π ¯ 0 ) π ¯ 0 d x = Ω t h ( 0 ) π ¯ 0 d x Ω π ¯ 0 B η 0 J η 0 1 di v x ( A η 0 x u ¯ 0 + B η 0 S q ( ¯ ( 0 ) ) ) + h ( 0 ) di v x H ( 0 ) · n φ 1 d H 2 + Ω B η 0 J η 0 1 [ di v x ( A η 0 x u ¯ 0 + B η 0 S q ( ¯ ( 0 ) ) ) + h ( 0 ) di v x H ( 0 ) ] · x π ¯ 0 d x . $$\begin{equation} \def\eqcellsep{&}\begin{array}{cc}& -\displaystyle\int_{\mathrm{\Omega}}\textit{di}{v}_{\mathbf{x}}\operatorname{(}{\mathbf{A}}_{{\eta}_{0}}{\nabla}_{\mathbf{x}}{\bar{\pi}}_{0}){\bar{\pi}}_{0}\, d\mathbf{x}=\displaystyle\int_{\mathrm{\Omega}}{\partial}_{t}h\operatorname{(}0){\bar{\pi}}_{0}\, d\mathbf{x}\\ [16pt] & -\displaystyle\int_{\partial \mathrm{\Omega}}{\bar{\pi}}_{0}{\mathbf{B}}_{{\eta}_{0}}^{\top}{J}_{{\eta}_{0}}^{-1}\left[\textit{di}{v}_{\mathbf{x}}\operatorname{(}{\mathbf{A}}_{{\eta}_{0}}{\nabla}_{\mathbf{x}}{\bar{\mathbf{u}}}_{0}+{\mathbf{B}}_{{\eta}_{0}}{\mathbb{S}}_{\mathbf{q}}\operatorname{(}\bar{\hslash}\operatorname{(}0)))+\mathbf{h}\operatorname{(}0)-\textit{di}{v}_{\mathbf{x}}\mathbf{H}\operatorname{(}0)\right]\cdot \mathbf{n}\circ {\bm{\varphi}}^{-1}\, d{\mathcal{H}}^{2}\\ [16pt] & +\displaystyle\int_{\mathrm{\Omega}}\left({\mathbf{B}}_{{\eta}_{0}}^{\top}{J}_{{\eta}_{0}}^{-1}\operatorname{[}\textit{di}{v}_{\mathbf{x}}\operatorname{(}{\mathbf{A}}_{{\eta}_{0}}{\nabla}_{\mathbf{x}}{\bar{\mathbf{u}}}_{0}+{\mathbf{B}}_{{\eta}_{0}}{\mathbb{S}}_{\mathbf{q}}\operatorname{(}\bar{\hslash}\operatorname{(}0)))+\mathbf{h}\operatorname{(}0)-\textit{di}{v}_{\mathbf{x}}\mathbf{H}\operatorname{(}0)]\right)\cdot {\nabla}_{\mathbf{x}}{\bar{\pi}}_{0}\, d\mathbf{x}.\end{array} \end{equation}$$ ()
Therefore,
Ω | x π ¯ 0 | 2 d x Ω π ¯ 0 t h ( 0 ) d x + Ω π ¯ 0 J η 0 n φ 1 A η 0 S q ( ¯ ( 0 ) ) ) · n φ 1 d H 2 + Ω B η 0 J η 0 1 [ div x ( A η 0 x u ¯ 0 + B η 0 S q ( ¯ ( 0 ) ) + h ( 0 ) div x H ( 0 ) ] x π ¯ 0 d x Ω π ¯ 0 B η 0 { ( Δ y η Δ y 2 η 0 + g ( 0 ) ) n } φ 1 · n φ 1 d H 2 + Ω π ¯ 0 B η 0 n φ 1 ( H ( 0 ) A η 0 x u ¯ 0 ) · n φ 1 d H 2 δ Ω | x π ¯ 0 | 2 d x + c ( δ ) t h ( 0 ) W 1 , 2 ( Ω ) 2 + u ¯ 0 W 2 , 2 ( Ω ) 2 + h ( 0 ) L 2 ( Ω ) 2 + c ( δ ) H ( 0 ) W 1 , 2 ( Ω ) 2 + S q ( ¯ ( 0 ) ) W 1 , 2 ( Ω ) 2 + Δ y η L 2 ( ω ) 2 + c ( δ ) Δ y η L 2 ( ω ) 2 + Δ y 2 η 0 L 2 ( ω ) 2 + g ( 0 ) L 2 ( ω ) 2 , $$\begin{eqnarray} \int _\Omega \vert \nabla _{\mathbf {x}}\overline{\pi }_0\vert ^2 \, {d} \mathbf {x}&\le &\int _\Omega \overline{\pi }_0\,\partial _t h(0) \, {d} \mathbf {x}+ \int _{\partial \Omega }\overline{\pi }_0 J_{\eta _0} \mathbf {n}^\top \circ \bm {\varphi }^{-1} \mathbf {A}_{\eta _0}\mathbb {S}_\mathbf {q}(\overline{\hbar }(0)))\cdot \mathbf {n}\circ \bm {\varphi }^{-1} \,d\mathcal {H}^2 \nonumber\\ && + \int _\Omega {\left(\mathbf {B}_{\eta _0}^\top J_{\eta _0}^{-1}[ \mathrm{div}_{\mathbf {x}}(\mathbf {A}_{\eta _0} \nabla _{\mathbf {x}}\overline{\mathbf {u}}_0 + \mathbf {B}_{\eta _0}\mathbb {S}_\mathbf {q}(\overline{\hbar } (0)) + \mathbf {h}(0) - \mathrm{div}_{\mathbf {x}}\mathbf {H}(0)]\right)} \nabla _{\mathbf {x}}\overline{\pi }_0 \, {d} \mathbf {x}\nonumber\\ && - \int _{\partial \Omega } \overline{\pi }_0 \mathbf {B}_{\eta _0}^\top {\left[\lbrace (\Delta _{\mathbf {y}}\eta _\star - \Delta _{\mathbf {y}}^2\eta _0+g(0))\mathbf {n}\rbrace \circ \bm {\varphi }^{-1} \right]} \cdot \mathbf {n}\circ \bm {\varphi }^{-1} \,d\mathcal {H}^2\nonumber\\ &&+\int _{\partial \Omega } \overline{\pi }_0 \mathbf {B}_{\eta _0}^\top {\left[ \mathbf {n}^\top \circ \bm {\varphi }^{-1} (\mathbf {H}(0) -\mathbf {A}_{\eta _0} \nabla _{\mathbf {x}}\overline{\mathbf {u}}_0) \right]} \cdot \mathbf {n}\circ \bm {\varphi }^{-1} \,d\mathcal {H}^2 \nonumber\\ & \le &\delta \int _\Omega \vert \nabla _{\mathbf {x}}\overline{\pi }_0\vert ^2 \, {d} \mathbf {x}+ c(\delta) {\left(\Vert \partial _t h(0) \Vert _{W^{-1,2}(\Omega)}^2 + \Vert \overline{\mathbf {u}}_0\Vert ^2_{W^{2,2}(\Omega)} + \Vert \mathbf {h}(0)\Vert ^2_{L^2(\Omega)} \right)}\nonumber\\ &&+\, c(\delta) {\left(\Vert \mathbf {H}(0)\Vert ^2_{W^{1,2}(\Omega)} + \Vert \mathbb {S}_\mathbf {q}(\overline{\hbar }(0))\Vert ^2_{W^{1,2}(\Omega)} + \Vert \Delta _{\mathbf {y}}\eta _\star \Vert ^2_{L^2(\omega)} \right)} \nonumber\\ &&+\, c(\delta) {\left(\Vert \Delta _{\mathbf {y}}\eta _\star \Vert ^2_{L^2(\omega)} +\Vert \Delta _{\mathbf {y}}^2\eta _0\Vert ^2_{L^2(\omega)} + \Vert g(0)\Vert ^2_{L^2(\omega)} \right)}, \end{eqnarray}$$ ()
with a constant depending on the W y 2 , $W^{2,\infty }_\mathbf {y}$ -norm of η 0 $\eta _0$ . Note that we used again the trace theorem to estimate the boundary terms. Choosing δ $\delta$ small enough and using Sobolev embedding yields
Ω | x π ¯ 0 | 2 d x t h ( 0 ) W 1 , 2 ( Ω ) 2 + u ¯ 0 W 2 , 2 ( Ω ) 2 + h ( 0 ) L 2 ( Ω ) 2 + H ( 0 ) W 1 , 2 ( Ω ) 2 + S q ( ¯ ( 0 ) ) W 1 , 2 ( Ω ) 2 + Δ y η L 2 ( ω ) 2 + Δ y 2 η 0 L 2 ( ω ) 2 + g ( 0 ) L 2 ( ω ) 2 D ( g , η 0 , η , u 0 , h , h , H ) , $$\begin{equation} \begin{aligned} \int _\Omega \vert \nabla _{\mathbf {x}}\overline{\pi }_0\vert ^2 \, {d} \mathbf {x}& \lesssim \Vert \partial _t h(0) \Vert _{W^{-1,2}(\Omega)}^2 + \Vert \overline{\mathbf {u}}_0\Vert ^2_{W^{2,2}(\Omega)} + \Vert \mathbf {h}(0)\Vert ^2_{L^2(\Omega)}\\ & +\Vert \mathbf {H}(0)\Vert ^2_{W^{1,2}(\Omega)} + \Vert \mathbb {S}_\mathbf {q}(\overline{\hbar }(0))\Vert ^2_{W^{1,2}(\Omega)} + \Vert \Delta _{\mathbf {y}}\eta _\star \Vert ^2_{L^2(\omega)} \\ &+ \Vert \Delta _{\mathbf {y}}^2\eta _0\Vert ^2_{L^2(\omega)} + \Vert g(0)\Vert ^2_{L^2(\omega)}\\ &\lesssim \mathcal {D}_*(g, \eta _0, \eta _\star, \mathbf {u}_0, h, \mathbf {h},\mathbf {H}), \end{aligned} \end{equation}$$ ()
where
D ( g , η 0 , η , u 0 , h , h , H ) : = η W 3 , 2 ( ω ) 2 + η 0 W 5 , 2 ( ω ) 2 + u ¯ 0 W 3 , 2 ( Ω ) 2 + S q ( ¯ ( 0 ) ) W 2 , 2 ( Ω ) 2 + h ( 0 ) W 1 , 2 ( Ω ) 2 + H ( 0 ) W 2 , 2 ( Ω ) 2 + I t 2 h W 1 , 2 ( Ω ) 2 d t + t h ( 0 ) L 2 ( Ω ) 2 + g ( 0 ) W 1 , 2 ( ω ) 2 + I t g W 1 , 2 ( ω ) 2 + t h W 1 , 2 ( Ω ) 2 + t h L 2 ( Ω ) 2 + S q ( t ¯ ) W 1 , 2 ( Ω ) 2 + t H W 1 , 2 ( Ω ) 2 d t . $$\begin{equation} \begin{aligned} \mathcal {D}_*&(g, \eta _0, \eta _\star, \mathbf {u}_0, h, \mathbf {h},\mathbf {H}):= \Vert \eta _\star \Vert _{W^{3,2}(\omega)}^2 + \Vert \eta _0\Vert _{W^{5,2}(\omega)}^2 + \Vert \overline{\mathbf {u}}_0\Vert _{W^{3,2}(\Omega)}^2 + \Vert \mathbb {S}_\mathbf {q}(\overline{\hbar }(0)) \Vert _{W^{2,2}(\Omega)}^2 \\ & + \Vert \mathbf {h}(0)\Vert _{W^{1,2}(\Omega)}^2 + \Vert \mathbf {H}(0)\Vert _{W^{2,2}(\Omega)}^2 + \int _I\Vert \partial _t^2 h \Vert _{W^{-1,2}(\Omega)}^2\, {d}t+ \Vert \partial _t h(0) \Vert _{L^2(\Omega)}^2 + \Vert g(0)\Vert _{W^{1,2}(\omega)}^2 \\ &+ \int _I {\left(\Vert \partial _t g \Vert _{W^{1,2}(\omega)}^2 + \Vert \partial _t h \Vert _{W^{1,2}(\Omega)}^2 + \Vert \partial _t\mathbf {h}\Vert _{L^2(\Omega)}^2 + \Vert \mathbb {S}_\mathbf {q}(\partial _t\overline{\hbar }) \Vert _{W^{1,2}(\Omega)}^2 + \Vert \partial _t\mathbf {H}\Vert _{W^{1,2}(\Omega)}^2 \right)} \, {d}t. \end{aligned} \end{equation}$$ ()
In order to control the W x 1 , 2 $W^{1,2}_\mathbf {x}$ -norm of π ¯ 0 $\overline{\pi }_0$ , we must also control its L x 2 $L^2_\mathbf {x}$ -norm. Let us write π ¯ 0 = π ¯ 0 + c 0 $\overline{\pi }_0=\overline{\pi }_{0}^\perp +c_0$ , where ( π ¯ 0 ) Ω = 0 $(\overline{\pi }_{0}^\perp)_{\Omega }=0$ . We obtain from (3.15) (multiplying it by n $\mathbf {n}$ )
| c 0 | Ω n B η 0 B η 0 n | c 0 | d H 2 Δ y η L 2 ( ω ) + Δ y 2 η 0 L 2 ( ω ) + g ( 0 ) L 2 ( ω ) + u ¯ 0 W 2 , 2 ( Ω ) + π ¯ 0 W 1 , 2 ( Ω ) + S q ( ¯ ( 0 ) ) W 1 , 2 ( Ω ) + h ( 0 ) L 2 ( Ω ) + H ( 0 ) W 1 , 2 ( Ω ) $$\begin{align*} |c_0|&\lesssim \int _{\partial \Omega }\mathbf {n}^\top \mathbf {B}_{\eta _0}\mathbf {B}_{\eta _0}^\top \mathbf {n}|c_0|\,{d}\mathcal {H}^2 \\ &\lesssim \Vert \Delta _{\mathbf {y}}\eta _\star \Vert _{L^2(\omega)} + \Vert \Delta _{\mathbf {y}}^2 \eta _0\Vert _{L^2(\omega)} + \Vert g(0) \Vert _{L^2(\omega)}+ \Vert \overline{\mathbf {u}}_0\Vert _{W^{2,2}(\partial \Omega)}\\ & +\Vert \overline{\pi }^\perp _0\Vert _{W^{1,2}(\partial \Omega)}+ \Vert \mathbb {S}_\mathbf {q}(\overline{\hbar }(0))\Vert _{W^{1,2}(\partial \Omega)} + \Vert \mathbf {h}(0)\Vert _{L^2(\partial \Omega)}+\Vert \mathbf {H}(0) \Vert _{W^{1,2}(\partial \Omega)} \end{align*}$$
using ellipticity of B η 0 B η 0 $\mathbf {B}_{\eta _0}\mathbf {B}_{\eta _0}^\top$ as well as div x B η 0 = 0 $\mathrm{div}_{\mathbf {x}}\mathbf {B}_{\eta _0}^\top =0$ . By the trace theorem and interpolation, we finally get
| c 0 | Δ y η L 2 ( ω ) + Δ y 2 η 0 L 2 ( ω ) + g ( 0 ) L 2 ( ω ) + u ¯ 0 W 2 , 2 ( Ω ) + S q ( ¯ ( 0 ) ) W 2 , 2 ( Ω ) + h ( 0 ) W 1 , 2 ( Ω ) + H ( 0 ) W 2 , 2 ( Ω ) + c ( δ ) x π ¯ 0 L 2 ( Ω ) + δ x 2 π ¯ 0 L 2 ( Ω ) c ( δ ) D ( g , η 0 , η , u 0 , h , h , H ) + δ x 2 π ¯ 0 L 2 ( Ω ) . $$\begin{align} \begin{aligned} |c_0|\ &\lesssim \Vert \Delta _{\mathbf {y}}\eta _\star \Vert _{L^2(\omega)} + \Vert \Delta _{\mathbf {y}}^2 \eta _0\Vert _{L^2(\omega)} + \Vert g(0) \Vert _{L^2(\omega)}+ \Vert \overline{\mathbf {u}}_0\Vert _{W^{2,2}(\partial \Omega)}\\ &+ \Vert \mathbb {S}_\mathbf {q}(\overline{\hbar }(0))\Vert _{W^{2,2}(\Omega)} + \Vert \mathbf {h}(0)\Vert _{W^{1,2}(\Omega)}+\Vert \mathbf {H}(0) \Vert _{W^{2,2}(\Omega)}\\ &+c(\delta)\Vert \nabla _{\mathbf {x}}\overline{\pi }_0\Vert _{L^{2}(\Omega)}+\delta \Vert \nabla _{\mathbf {x}}^2\overline{\pi }_0\Vert _{L^{2}(\Omega)}\\ &\lesssim c(\delta)\mathcal {D}_*(g, \eta _0, \eta _\star, \mathbf {u}_0, h, \mathbf {h},\mathbf {H})+\delta \Vert \nabla _{\mathbf {x}}^2\overline{\pi }_0\Vert _{L^{2}(\Omega)}. \end{aligned} \end{align}$$ ()
On the other hand, setting π ̲ 0 = π ¯ 0 Ψ η 0 1 $\underline{\pi }_0=\overline{\pi }_0\circ \bm {\Psi }_{\eta _0}^{-1}$ we obtain from (3.16) the elliptic problem
Δ x π ̲ 0 = J η 0 f 0 Ψ η 0 1 in Ω η 0 $$\begin{equation} \begin{aligned} \Delta _{\mathbf {x}}\underline{\pi }_0 & = J_{\eta _0}f_0\circ \bm {\Psi }_{\eta _0}^{-1}\quad \text{in}\quad \Omega _{\eta _0} \end{aligned} \end{equation}$$ ()
subject to the boundary condition
n η 0 π ̲ 0 = J η 0 f 1 Ψ η 0 1 on Ω η 0 , $$\begin{equation} \begin{aligned} \partial _{\mathbf {n}_{\eta _0}}\underline{\pi }_0=J_{\eta _0}f_1\circ \bm {\Psi }_{\eta _0}^{-1}\quad \text{on}\quad \partial \Omega _{\eta _0}, \end{aligned} \end{equation}$$ ()
where
f 0 : = t h ( 0 ) + div x B η 0 J η 0 1 { div x ( A η 0 x u ¯ 0 + B η 0 S q ( ¯ ( 0 ) ) ) + h ( 0 ) div x H ( 0 ) } , f 1 : = J η 0 n φ 1 A η 0 ( π ¯ 0 + S q ( ¯ ( 0 ) ) ) · n φ 1 + B η 0 J η 0 1 { div x ( A η 0 x u ¯ 0 + B η 0 S q ( ¯ ( 0 ) ) ) + h ( 0 ) div x H ( 0 ) } · n φ 1 B η 0 { Δ y η Δ y 2 η 0 + g ( 0 ) } n φ 1 · n φ 1 B η 0 n φ 1 H ( 0 ) A η 0 x u ¯ 0 · n φ 1 . $$\begin{equation} \begin{aligned} f_0:=& - \partial _th(0) + \mathrm{div}_{\mathbf {x}}{\left(\mathbf {B}_{\eta _0}^\top J_{\eta _0}^{-1}\big \lbrace \mathrm{div}_{\mathbf {x}}(\mathbf {A}_{\eta _0} \nabla _{\mathbf {x}}\overline{\mathbf {u}}_0 + \mathbf {B}_{\eta _0}\mathbb {S}_\mathbf {q}(\overline{\hbar }(0))) + \mathbf {h}(0) - \mathrm{div}_{\mathbf {x}}\mathbf {H}(0) \rbrace \right)}, \\ f_1:=&- J_{\eta _0} \mathbf {n}^\top \circ \bm {\varphi }^{-1} \mathbf {A}_{\eta _0}(\overline{\pi }_0 + \mathbb {S}_\mathbf {q}(\overline{\hbar }(0))) \cdot \mathbf {n}\circ \bm {\varphi }^{-1} \\ &+ \mathbf {B}_{\eta _0}^\top J_{\eta _0}^{-1}\big \lbrace \mathrm{div}_{\mathbf {x}}(\mathbf {A}_{\eta _0} \nabla _{\mathbf {x}}\overline{\mathbf {u}}_0 + \mathbf {B}_{\eta _0}\mathbb {S}_\mathbf {q}(\overline{\hbar }(0))) + \mathbf {h}(0) - \mathrm{div}_{\mathbf {x}}\mathbf {H}(0) \rbrace \cdot \mathbf {n}\circ \bm {\varphi }^{-1} \\ & - \mathbf {B}_{\eta _0}^\top {\left[ \big \lbrace \Delta _{\mathbf {y}}\eta _\star - \Delta _{\mathbf {y}}^2\eta _0+g(0)\big \rbrace \mathbf {n}\right]}\circ \bm {\varphi }^{-1} \cdot \mathbf {n}\circ \bm {\varphi }^{-1} \\ &- \mathbf {B}_{\eta _0}^\top \mathbf {n}^\top \circ \bm {\varphi }^{-1} {\left[\mathbf {H}(0) -\mathbf {A}_{\eta _0} \nabla _{\mathbf {x}}\overline{\mathbf {u}}_0 \right]} \cdot \mathbf {n}\circ \bm {\varphi }^{-1} . \end{aligned} \end{equation}$$ ()

By classical elliptic estimates, it follows that

x 2 π ̲ L 2 ( Ω η 0 ) J η 0 f 0 Ψ η 0 1 L 2 ( Ω η 0 ) + J η 0 f 1 Ψ η 0 1 W 1 / 2 , 2 ( Ω η 0 ) $$\begin{equation} \begin{aligned} \Vert \nabla _{\mathbf {x}}^2\underline{\pi }\Vert _{L^2(\Omega _{\eta _0})} & \lesssim \Vert J_{\eta _0}f_0\circ \bm {\Psi }_{\eta _0}^{-1} \Vert _{L^2(\Omega _{\eta _0})} + \Vert J_{\eta _0}f_1\circ \bm {\Psi }_{\eta _0}^{-1} \Vert _{W^{1/2,2}(\partial \Omega _{\eta _0})} \end{aligned} \end{equation}$$ ()
which implies that
x 2 π ¯ L 2 ( Ω ) 2 f 0 L 2 ( Ω ) 2 + f 1 W 1 / 2 , 2 ( ω ) 2 π ¯ 0 W 1 , 2 ( Ω ) 2 + t h ( 0 ) L 2 ( Ω ) 2 + u ¯ 0 W 3 , 2 ( Ω ) 2 + h ( 0 ) W 1 , 2 ( Ω ) 2 + H ( 0 ) W 2 , 2 ( Ω ) 2 + S q ( ¯ ( 0 ) ) W 2 , 2 ( Ω ) 2 + Δ y η W 1 , 2 ( ω ) 2 + Δ y 2 η 0 W 1 , 2 ( ω ) 2 + g ( 0 ) W 1 , 2 ( ω ) 2 , $$\begin{equation} \begin{aligned} \Vert \nabla _{\mathbf {x}}^2\overline{\pi }\Vert _{L^2(\Omega)}^2 & \lesssim \Vert f_0 \Vert _{L^2(\Omega)}^2 + \Vert f_1 \Vert _{W^{1/2,2}(\omega)}^2 \\ & \lesssim \Vert \overline{\pi }_0\Vert _{W^{1,2}(\Omega)}^2 + \Vert \partial _t h(0) \Vert _{L^2(\Omega)}^2 + \Vert \overline{\mathbf {u}}_0 \Vert _{W^{3,2}(\Omega)}^2 \\ & + \Vert \mathbf {h}(0) \Vert _{W^{1,2}(\Omega)}^2 + \Vert \mathbf {H}(0)\Vert _{W^{2,2}(\Omega)}^2 + \Vert \mathbb {S}_\mathbf {q}(\overline{\hbar }(0)) \Vert _{W^{2,2}(\Omega)}^2 \\ & + \Vert \Delta _{\mathbf {y}}\eta _\star \Vert ^2_{W^{1,2}(\omega)} + \Vert \Delta _{\mathbf {y}}^2\eta _0\Vert ^2_{W^{1,2}(\omega)} + \Vert g(0)\Vert ^2_{W^{1,2}(\omega)}, \end{aligned} \end{equation}$$ ()
where we have used the trace theorem. If we now combine (3.41), (3.43) (with δ $\delta$ sufficiently small), and (3.48), and transform back to the reference domain (using the regularity of η 0 $\eta _0$ ), we get that
π ¯ 0 W 2 , 2 ( Ω ) 2 D ( g , η 0 , η , u 0 , h , h , H ) . $$\begin{align} \Vert \overline{\pi }_0\Vert _{W^{2,2}(\Omega)}^2\lesssim \mathcal {D}_*(g, \eta _0, \eta _\star, \mathbf {u}_0, h, \mathbf {h},\mathbf {H}). \end{align}$$ ()
Combining (3.35), (3.31), and (3.49), gives
ω | η | 2 + | y η | 2 + | Δ y η 0 | 2 + | y Δ y η 0 | 2 d y + Ω | u 0 | 2 + | x u 0 | 2 d x + I t h W 1 , 2 ( Ω ) 2 d t + I ω | g | 2 d y d t + I Ω | h | 2 + | x h | 2 + | h | 2 + | H | 2 + | x H | 2 + | S q ( ) ) | 2 + | x S q ( ) ) | 2 d x d t D ( g , η 0 , η , u 0 , h , h , H ) $$\begin{equation} \begin{aligned} &\int _\omega {\left(\vert \tilde{\eta }_\star \vert ^2 + \vert \nabla _{\mathbf {y}}\tilde{\eta }_\star \vert ^2 + \vert \Delta _{\mathbf {y}}\tilde{\eta }_0\vert ^2 + \vert \nabla _{\mathbf {y}}\Delta _{\mathbf {y}}\tilde{\eta }_0\vert ^2 \right)}\, {d}\mathbf {y}+ \int _\Omega {\left(\vert \tilde{\mathbf {u}}_0\vert ^2 + \vert \nabla _{\mathbf {x}}\tilde{\mathbf {u}}_0\vert ^2 \right)}\, {d} \mathbf {x}\\ &\qquad + \int _I\Vert \partial _t \tilde{h} \Vert _{W^{-1,2}(\Omega)}^2\, {d}t+ \int _I\int _\omega \vert \tilde{g}\vert ^2 \, {d}\mathbf {y}\, {d}t\\ &\qquad + \int _I\int _\Omega {\left(\vert \tilde{h}\vert ^2 + \vert \nabla _{\mathbf {x}}\tilde{h}\vert ^2 + \vert \tilde{\mathbf {h}}\vert ^2 + \vert \tilde{\mathbf {H}}\vert ^2 + \vert \nabla _{\mathbf {x}}\tilde{\mathbf {H}}\vert ^2 + \vert \mathbb {S}_\mathbf {q}(\tilde{\hbar })) \vert ^2 + \vert \nabla _{\mathbf {x}}\mathbb {S}_\mathbf {q}(\tilde{\hbar })) \vert ^2 \right)} \, {d} \mathbf {x}\, {d}t\\ &\quad \lesssim \mathcal {D}_*(g, \eta _0, \eta _\star, \mathbf {u}_0, h, \mathbf {h},\mathbf {H}) \end{aligned} \end{equation}$$ ()
where D ( · ) $\mathcal {D}_*(\cdot)$ is as defined in (3.42). We obtain
sup I ω | t 2 y η | 2 + | t y Δ y η | 2 d y + sup I Ω | t x u | 2 d x + I ω | t 2 Δ y η | 2 + | t 3 η | 2 + | t Δ y 2 η | 2 d y d t + I Ω | t x 2 u | 2 + | t 2 u | 2 + | t π | 2 + | t x π | 2 d x d t D ( g , η 0 , η , u 0 , h , h , H ) . $$\begin{equation} \begin{aligned} &\sup _I\int _\omega {\left(\vert \partial _t^2\nabla _{\mathbf {y}}\eta \vert ^2 + \vert \partial _t\nabla _{\mathbf {y}}\Delta _{\mathbf {y}}\eta \vert ^2 \right)} \, {d}\mathbf {y}+ \sup _I\int _\Omega \vert \partial _t\nabla _{\mathbf {x}}\mathbf {u}\vert ^2\, {d} \mathbf {x}\\ &\qquad + \int _I\int _\omega {\left(\vert \partial _t^2\Delta _{\mathbf {y}}\eta \vert ^2 + \vert \partial _t^3 \eta \vert ^2+ \vert \partial _t\Delta _{\mathbf {y}}^2 \eta \vert ^2 \right)}\, {d}\mathbf {y}\, {d}t\\ &\qquad + \int _I\int _\Omega {\left(\vert \partial _t\nabla _{\mathbf {x}}^2\mathbf {u}\vert ^2 +\vert \partial _t^2\mathbf {u}\vert ^2 +\vert \partial _t\pi \vert ^2 + \vert \partial _t\nabla _{\mathbf {x}}\pi \vert ^2 \right)}\, {d} \mathbf {x}\, {d}t\\ &\quad\lesssim \mathcal {D}_*(g, \eta _0, \eta _\star, \mathbf {u}_0, h, \mathbf {h},\mathbf {H}). \end{aligned} \end{equation}$$ ()
We now proceed to obtain the maximal-in-space regularity estimate for the velocity and pressure pair, that is, the L 2 $L^2$ -in-time estimate for the terms u ¯ W 4 , 2 ( Ω ) 2 $\Vert \overline{\mathbf {u}}\Vert _{W^{4,2}(\Omega)}^2$ and π ¯ W 3 , 2 ( Ω ) 2 $\Vert \overline{\pi } \Vert _{W^{3,2}(\Omega)}^2$ . To obtain this higher spatial regularity, we apply the maximal regularity theorem to the momentum equation rather than differentiate the equations in our fluid system with respect to the spatial variable like it was done for the time regularity. First of all, we transform (3.13) and (3.12) by applying Ψ η 0 1 $\bm {\Psi }_{\eta _0}^{-1}$ to them. By setting u ̲ : = u ¯ Ψ η 0 1 $\underline{\mathbf {u}}:=\overline{\mathbf {u}} \circ \bm {\Psi }_{\eta _0}^{-1}$ , π ̲ : = π ¯ Ψ η 0 1 $\underline{\pi }:=\overline{\pi } \circ \bm {\Psi }_{\eta _0}^{-1}$ and ̲ : = ¯ Ψ η 0 1 $\underline{\hbar }:=\overline{\hbar } \circ \bm {\Psi }_{\eta _0}^{-1}$ , we obtain
div x u ̲ = J η 0 1 h Ψ η 0 1 , Δ x u ̲ x π ̲ = t u ̲ + div x ( S q ( ̲ ) ) J η 0 1 h div x H Ψ η 0 1 $$\begin{align*} &\mathrm{div}_{\mathbf {x}}\underline{\mathbf {u}}=J_{\eta _0}^{-1}h\circ \bm {\Psi }_{\eta _0}^{-1}, \\ & \Delta _{\mathbf {x}}\underline{\mathbf {u}} - \nabla _{\mathbf {x}}\underline{\pi } = \partial _t\underline{\mathbf {u}} +\mathrm{div}_{\mathbf {x}}(\mathbb {S}_\mathbf {q}(\underline{\hbar }) ) - J_{\eta _0}^{-1}{\left(\mathbf {h}- \mathrm{div}_{\mathbf {x}}\mathbf {H} \right)}\circ \bm {\Psi }_{\eta _0}^{-1} \end{align*}$$
in I × Ω η 0 $I \times \Omega _{\eta _0}$ with u ̲ φ η 0 = ( t η ) n $\underline{\mathbf {u}} \circ \bm {\varphi }_{\eta _0} =(\partial _t\eta)\mathbf {n}$ on I × ω $I\times \omega$ . By the maximal regularity theory, it follows that
I u ̲ W 4 , 2 ( Ω η 0 ) 2 + π ̲ W 3 , 2 ( Ω η 0 ) 2 d t I t η W y 7 / 2 , 2 2 d t + I t u ̲ W 2 , 2 ( Ω η 0 ) 2 + div x S q ( ̲ ) W 2 , 2 ( Ω η 0 ) 2 d t + I J η 0 1 h Ψ η 0 1 W 3 , 2 ( Ω η 0 ) 2 + J η 0 1 h Ψ η 0 1 W 2 , 2 ( Ω η 0 ) 2 d t + I J η 0 1 ( div x H ) Ψ η 0 1 W 2 , 2 ( Ω η 0 ) 2 d t . $$\begin{align*} \int _I{\left(\Vert \underline{\mathbf {u}} \Vert _{W^{4,2}(\Omega _{\eta _0})}^2 + \Vert \underline{\pi } \Vert _{W^{3,2}(\Omega _{\eta _0})}^2\right)} \, {d}t& \lesssim \int _I\Vert \partial _t\eta \Vert _{W^{7/2,2}_\mathbf {y}}^2\, {d}t+ \int _I {\left(\Vert \partial _t\underline{\mathbf {u}} \Vert _{W^{2,2}(\Omega _{\eta _0})}^2 + \Vert \mathrm{div}_{\mathbf {x}}\mathbb {S}_\mathbf {q}(\underline{\hbar }) \Vert _{W^{2,2}(\Omega _{\eta _0})}^2\right)} \, {d}t\\ &+ \int _I {\left(\Vert J_{\eta _0}^{-1} h\circ \bm {\Psi }_{\eta _0}^{-1} \Vert _{W^{3,2}(\Omega _{\eta _0})}^2 + \Vert J_{\eta _0}^{-1}\mathbf {h}\circ \bm {\Psi }_{\eta _0}^{-1} \Vert _{W^{2,2}(\Omega _{\eta _0})}^2\right)}\, {d}t\\ &+\int _I \Vert J_{\eta _0}^{-1}(\mathrm{div}_{\mathbf {x}}\mathbf {H})\circ \bm {\Psi }_{\eta _0}^{-1}\Vert _{W^{2,2}(\Omega _{\eta _0})}^2\, {d}t. \end{align*}$$
If we now transform back to Ω $\Omega$ and use that η 0 W 5 , 2 ( ω ) $\eta _0\in W^{5,2}(\omega)$ we obtain
I u ¯ W 4 , 2 ( Ω ) 2 + π ¯ W 3 , 2 ( Ω ) 2 d t I t η W y 4 , 2 2 d t + I t u ¯ W 2 , 2 ( Ω ) 2 + x S q ( ¯ ) W 2 , 2 ( Ω ) 2 d t + I h W 3 , 2 ( Ω ) 2 + h W 2 , 2 ( Ω ) 2 + x H W 2 , 2 ( Ω ) 2 d t . $$\begin{equation} \begin{aligned} \int _I{\left(\Vert \overline{\mathbf {u}} \Vert _{W^{4,2}(\Omega)}^2 + \Vert \overline{\pi } \Vert _{W^{3,2}(\Omega)}^2\right)} \, {d}t&\lesssim \int _I\Vert \partial _t\eta \Vert _{W^{4,2}_\mathbf {y}}^2\, {d}t+ \int _I{\left(\Vert \partial _t\overline{\mathbf {u}} \Vert _{W^{2,2}(\Omega)}^2 + \Vert \nabla _{\mathbf {x}}\mathbb {S}_\mathbf {q}(\overline{\hbar }) \Vert _{W^{2,2}(\Omega)}^2\right)} \, {d}t\\ &+ \int _I {\left(\Vert h \Vert _{W^{3,2}(\Omega)}^2 +\Vert \mathbf {h} \Vert _{W^{2,2}(\Omega)}^2 + \Vert \nabla _{\mathbf {x}}\mathbf {H} \Vert _{W^{2,2}(\Omega)}^2\right)}\, {d}t. \end{aligned} \end{equation}$$ ()
Now take
t Δ y 2 η = t 3 η + t 2 Δ y η + t g + n t H A η 0 t x u ¯ + B η 0 ( t π ¯ S q ( t ¯ ) ) φ n $$\begin{equation} \begin{aligned} \partial _t\Delta _{\mathbf {y}}^2\eta = -\partial _t^3\eta + \partial _t^2\Delta _{\mathbf {y}}\eta + \partial _t g+\mathbf {n}{\left[\partial _t\mathbf {H} -\mathbf {A}_{\eta _0} \partial _t \nabla _{\mathbf {x}}\overline{\mathbf {u}} +\mathbf {B}_{\eta _0}(\partial _t\overline{\pi } - \mathbb {S}_\mathbf {q}(\partial _t\overline{\hbar }))\right]}\circ \bm {\varphi } \mathbf {n}\end{aligned} \end{equation}$$ ()
which is just (3.22). By using (3.30) (and (3.50)) as well as
I Ω | t H | 2 + | t x u ¯ | 2 + | t π ¯ | 2 + | S q ( t ¯ ) | 2 d H 2 dt I t H W 1 , 2 ( Ω ) 2 + t x u ¯ W 1 , 2 ( Ω ) 2 + t π ¯ W 1 , 2 ( Ω ) 2 + S q ( t ¯ ) W 1 , 2 ( Ω ) 2 dt $$\begin{equation} \def\eqcellsep{&}\begin{array}{cc}& \displaystyle\int_{I}\int_{\partial \mathrm{\Omega}}\left(|{\partial}_{t}\mathbf{H}{|}^{2}+|{\partial}_{t}{\nabla}_{\mathbf{x}}\bar{\mathbf{u}}{|}^{2}+|{\partial}_{t}\bar{\pi}{|}^{2}+|{\mathbb{S}}_{\mathbf{q}}\operatorname{(}{\partial}_{t}\bar{\hslash}){|}^{2}\right)\, d{\mathcal{H}}^{2}\, \textit{dt}\\ [12pt] & \lesssim \displaystyle\int_{I}\left(\Vert {\partial}_{t}\mathbf{H}{\Vert}_{{W}^{1,2}\operatorname{(}\mathrm{\Omega})}^{2}+\Vert {\partial}_{t}{\nabla}_{\mathbf{x}}\bar{\mathbf{u}}{\Vert}_{{W}^{1,2}\operatorname{(}\mathrm{\Omega})}^{2}+\Vert {\partial}_{t}\bar{\pi}{\Vert}_{{W}^{1,2}\operatorname{(}\mathrm{\Omega})}^{2}+\Vert {\mathbb{S}}_{\mathbf{q}}\operatorname{(}{\partial}_{t}\bar{\hslash}){\Vert}_{{W}^{1,2}\operatorname{(}\mathrm{\Omega})}^{2}\right)\, \, \textit{dt}\end{array} \end{equation}$$ ()
which follows from the trace theorem, we obtain from (3.51) and (3.53)
I ω | t Δ y 2 η | 2 d y d t I ω | t 3 η | 2 + | t 2 Δ y η | 2 + | t g | 2 d y d t + I Ω | t H | 2 + | t x u ¯ | 2 + | t π ¯ | 2 + | S q ( t ¯ ) | 2 d y d t D ( g , η 0 , η , u 0 , h , h , H ) $$\begin{equation} \begin{aligned} \int _I\int _\omega \vert \partial _t\Delta _{\mathbf {y}}^2\eta \vert ^2\, {d}\mathbf {y}\, {d}t&\lesssim \int _I\int _\omega {\left(\vert \partial _t^3\eta \vert ^2 + \vert \partial _t^2\Delta _{\mathbf {y}}\eta \vert ^2 + \vert \partial _t g \vert ^2\right)} \, {d}\mathbf {y}\, {d}t\\ & + \int _I\int _{\partial \Omega }{\left(\vert \partial _t\mathbf {H} \vert ^2 + \vert \partial _t \nabla _{\mathbf {x}}\overline{\mathbf {u}}\vert ^2 + \vert \partial _t\overline{\pi }\vert ^2 + \vert \mathbb {S}_\mathbf {q}(\partial _t\overline{\hbar })\vert ^2\right)} \, {d}\mathbf {y}\, {d}t\\ &\lesssim \mathcal {D}_{**}(g, \eta _0, \eta _\star, \mathbf {u}_0, h, \mathbf {h},\mathbf {H}) \end{aligned} \end{equation}$$ ()
where D ( · ) $\mathcal {D}_{**}(\cdot)$ is given by
D ( g , η 0 , η , u 0 , h , h , H ) : = D ( g , η 0 , η , u 0 , h , h , H ) + I h W 3 , 2 ( Ω ) 2 + h W 2 , 2 ( Ω ) 2 + S q ( ¯ ) W 3 , 2 ( Ω ) 2 + H W 3 , 2 ( Ω ) 2 d t $$\begin{equation} \begin{aligned} \mathcal {D}_{**}&(g, \eta _0, \eta _\star, \mathbf {u}_0, h, \mathbf {h},\mathbf {H}):= \mathcal {D}_*(g, \eta _0, \eta _\star, \mathbf {u}_0, h, \mathbf {h},\mathbf {H}) \\ &+ \int _I {\left(\Vert h \Vert _{W^{3,2}(\Omega)}^2 + \Vert \mathbf {h}\Vert _{W^{2,2}(\Omega)}^2 + \Vert \mathbb {S}_\mathbf {q}(\overline{\hbar }) \Vert _{W^{3,2}(\Omega)}^2 + \Vert \mathbf {H}\Vert _{W^{3,2}(\Omega)}^2 \right)} \, {d}t\end{aligned} \end{equation}$$ ()
with D ( · ) $\mathcal {D}_*(\cdot)$ given by (3.42). Substituting this into (3.52) and using (3.51) again to estimate the term involving t u ¯ W 2 , 2 ( Ω ) 2 $\Vert \partial _t\overline{\mathbf {u}} \Vert _{W^{2,2}(\Omega)}^2$ yield
I u ¯ W 4 , 2 ( Ω ) 2 + π ¯ W 3 , 2 ( Ω ) 2 d t D ( g , η 0 , η , u 0 , h , h , H ) . $$\begin{equation} \begin{aligned} \int _I&{\left(\Vert \overline{\mathbf {u}} \Vert _{W^{4,2}(\Omega)}^2 + \Vert \overline{\pi } \Vert _{W^{3,2}(\Omega)}^2\right)} \, {d}t\lesssim \mathcal {D}_{**}(g, \eta _0, \eta _\star, \mathbf {u}_0, h, \mathbf {h},\mathbf {H}). \end{aligned} \end{equation}$$ ()
Using regularity theory for Equation (3.11) (recall that we consider periodic boundary conditions) and setting
T ¯ : = H A η 0 x u ¯ + B η 0 ( π ¯ I 3 × 3 S q ( ¯ ) ) $$\begin{equation*} \overline{\mathbb {T}}:=\mathbf {H} -\mathbf {A}_{\eta _0} \nabla _{\mathbf {x}}\overline{\mathbf {u}} +\mathbf {B}_{\eta _0}(\overline{\pi }\,\mathbb {I}_{3\times 3} - \mathbb {S}_\mathbf {q}(\overline{\hbar })) \end{equation*}$$
we have
sup I t η W 3 , 2 ( ω ) 2 + sup I η W 5 , 2 ( ω ) 2 + I t η W 4 , 2 2 + η W 6 , 2 ( ω ) 2 d t I g W 2 , 2 ( ω ) 2 d t + I T ¯ W 2 , 2 ( Ω ) 2 d t I g W 2 , 2 ( ω ) 2 d t + I T ¯ W 3 , 2 ( Ω ) 2 d t I g W 2 , 2 ( ω ) 2 d t + I u ¯ W 4 , 2 ( Ω ) 2 + π ¯ W 3 , 2 ( Ω ) 2 + S q ( ¯ ) W 3 , 2 ( Ω ) 2 d t D ( g , η 0 , η , u 0 , h , h , H ) $$\begin{align*} \sup _I\Vert \partial _t\eta \Vert _{W^{3,2}(\omega)}^2&+\sup _I\Vert \eta \Vert _{W^{5,2}(\omega)}^2+\int _I{\left(\Vert \partial _t\eta \Vert ^2_{W^{4,2}}+\Vert \eta \Vert _{W^{6,2}(\omega)}^2\right)}\, {d}t\\ &\lesssim \int _I\Vert g\Vert ^2_{W^{2,2}(\omega)}\, {d}t+\int _I\Vert \overline{\mathbb {T}}\Vert ^2_{W^{2,2}(\partial \Omega)}\, {d}t\\ &\lesssim \int _I\Vert g\Vert ^2_{W^{2,2}(\omega)}\, {d}t+\int _I\Vert \overline{\mathbb {T}}\Vert ^2_{W^{3,2}(\Omega)}\, {d}t\\ &\lesssim \int _I\Vert g\Vert ^2_{W^{2,2}(\omega)}\, {d}t+\int _I{\left(\Vert \overline{\mathbf {u}}\Vert ^2_{W^{4,2}(\Omega)}+\Vert \overline{\pi }\Vert ^2_{W^{3,2}(\Omega)}+\Vert \mathbb {S}_{\mathbf {q}}(\overline{\hbar })\Vert ^2_{W^{3,2}(\Omega)}\right)}\, {d}t\\ & \lesssim \mathcal {D}(g, \eta _0, \eta _\star, \mathbf {u}_0, h, \mathbf {h},\mathbf {H}) \end{align*}$$
with D ( · ) $\mathcal {D}(\cdot)$ defined in (3.20). The proof is now complete. $\Box$

Interpolating between (3.14) and Proposition 3.6 with interpolation parameter 1 / 2 $1/2$ , we obtain the following corollary.

Corollary 3.7.Suppose that the dataset ( g , η 0 , η , u ¯ 0 , ¯ , h , h , H ) $(g, \eta _0, \eta _\star, \overline{\mathbf {u}}_0,\overline{\hbar }, h, \mathbf {h},\mathbf {H})$ satisfies (3.5) and in addition

g L 2 ( I ; W 1 , 2 ( ω ) ) W 1 / 2 , 2 ( I ; W 1 / 2 , 2 ( ω ) ) , g ( 0 ) W 1 / 2 , 2 ( ω ) , η 0 W 4 , 2 ( ω ) with η 0 L ( ω ) < L , η W 2 , 2 ( ω ) , u ¯ 0 W 2 , 2 ( Ω ) , u ¯ 0 φ = η n , B η 0 : x u ¯ 0 = h , h L 2 ( I ; W 2 , 2 ( Ω ) ) W 1 , 2 ( I ; L 2 ( Ω ) ) W 3 / 2 , 2 ( I ; W 1 , 2 ( Ω ) ) , h L 2 ( I ; W 1 , 2 ( Ω ) ) W 1 / 2 , 2 ( I ; L 2 ( Ω ) ) , h ( 0 ) W 1 / 2 , 2 ( Ω ) , H L 2 ( I ; W 2 , 2 ( Ω ) ) W 1 / 2 , 2 ( I ; W 1 , 2 ( Ω ) ) , H ( 0 ) W 1 , 2 ( Ω ) , S q ( ¯ ) L 2 ( I ; W 2 , 2 ( Ω ) ) W 1 / 2 , 2 ( I ; W 1 , 2 ( Ω ) ) , S q ( ¯ ( 0 ) ) W 1 , 2 ( Ω ) , $$\begin{equation} \begin{aligned} &g\in L^2(I;W^{1,2}(\omega)) \cap W^{1/2,2}(I;W^{1/2,2}(\omega)),\quad g(0)\in W^{1/2,2}(\omega), \\ &\eta _0 \in W^{4,2}(\omega) \text{ with } \Vert \eta _0 \Vert _{L^\infty (\omega)} < L, \quad \eta _\star \in W^{2,2}(\omega), \\ &\overline{\mathbf {u}}_0 \in W^{2,2}(\Omega), \quad \overline{\mathbf {u}}_0\circ \bm {\varphi } =\eta _\star \mathbf {n}, \quad \mathbf {B}_{\eta _0}:\nabla _{\mathbf {x}}\overline{\mathbf {u}}_0=h, \\ & h\in L^2(I;W^{2,2}(\Omega)) \cap W^{1,2}(I;L^{2}(\Omega)) \cap W^{3/2,2}(I;W^{-1,2}(\Omega)), \\ & \mathbf {h} \in L^2(I;W^{1,2}(\Omega)) \cap W^{1/2,2}(I;L^2(\Omega)),\quad \mathbf {h}(0)\in W^{1/2,2}(\Omega), \\ & \mathbf {H}\in L^2(I;W^{2,2}(\Omega)) \cap W^{1/2,2}(I;W^{1,2}(\Omega)), \quad \mathbf {H}(0)\in W^{1,2}(\Omega), \\ & \mathbb {S}_\mathbf {q}(\overline{\hbar })\in L^2(I;W^{2,2}(\Omega)) \cap W^{1/2,2}(I;W^{1,2}(\Omega)), \quad \mathbb {S}_\mathbf {q}(\overline{\hbar } (0))\in W^{1,2}(\Omega), \end{aligned} \end{equation}$$ ()
with the compatibility condition (3.15). Then, a strong solution ( η , u ¯ , π ¯ ) $(\eta, \overline{\mathbf {u}}, \overline{\pi })$ of (3.11)–(3.13) satisfies
sup I ω | t y 3 η | 2 + | y 4 η | 2 d y + I u ¯ W 3 , 2 ( Ω ) 2 + π ¯ W 2 , 2 ( Ω ) 2 d t + η W 5 / 2 , 2 ( I ; L 2 ( ω ) ) 2 + η W 3 / 2 , 2 ( I ; W 2 , 2 ( ω ) ) 2 + I ω | t y 3 η | 2 + | y 5 η | 2 d y d t + u W 1 / 2 , 2 ( I ; W 2 , 2 ( Ω ) ) 2 + t u ¯ W 1 / 2 , 2 ( I ; L 2 ( Ω ) ) 2 + π ¯ W 1 / 2 , 2 ( I ; W 1 , 2 ( Ω ) ) 2 D ( g , η 0 , η , u 0 , h , h , H ) , $$\begin{equation} \begin{aligned} &\sup _I\int _\omega {\left(\vert \partial _t\nabla _{\mathbf {y}}^3 \eta \vert ^2+ \vert \nabla _{\mathbf {y}}^4 \eta \vert ^2 \right)} \, {d}\mathbf {y}\\ &+ \int _I{\left(\Vert \overline{\mathbf {u}} \Vert _{W^{3,2}(\Omega)}^2 + \Vert \overline{\pi } \Vert _{W^{2,2}(\Omega)}^2\right)} \, {d}t+\Vert \eta \Vert ^2_{W^{5/2,2}(I;L^2(\omega))}+\Vert \eta \Vert ^2_{W^{3/2,2}(I;W^{2,2}(\omega))} \\ &+\int _I\int _\omega {\left(\vert \partial _t\nabla _{\mathbf {y}}^3 \eta \vert ^2 +\vert \nabla _{\mathbf {y}}^5\eta \vert ^2\right)}\, {d}\mathbf {y}\, {d}t+ \Vert \mathbf {u}\Vert _{W^{1/2,2}(I;W^{2,2}(\Omega))}^2\\ &+\Vert \partial _t\overline{\mathbf {u}}\Vert _{W^{1/2,2}(I;L^2(\Omega))}^2+\Vert \overline{\pi }\Vert _{W^{1/2,2}(I;W^{1,2}(\Omega))}^2 \lesssim \mathcal {D}(g, \eta _0, \eta _\star, \mathbf {u}_0, h, \mathbf {h},\mathbf {H}), \end{aligned} \end{equation}$$ ()
where
D ( g , η 0 , η , u ¯ 0 , h , h , H ) : = η W 2 , 2 ( ω ) 2 + η 0 W 4 , 2 ( ω ) 2 + u ¯ 0 W 2 , 2 ( Ω ) 2 + S q ( ¯ ( 0 ) ) W 1 , 2 ( Ω ) 2 + h ( 0 ) W 1 / 2 , 2 ( Ω ) 2 + H ( 0 ) W 1 , 2 ( Ω ) 2 + g ( 0 ) W 1 / 2 , 2 ( ω ) 2 + I g W 1 , 2 ( ω ) 2 + t h L 2 ( Ω ) 2 + h W 2 , 2 ( Ω ) 2 d t + g W 1 / 2 , 2 ( I ; W 1 / 2 , 2 ( ω ) ) 2 + h W 3 / 2 ( I ; W 1 , 2 ( Ω ) ) 2 + h W 1 / 2 , 2 ( I ; L 2 ( Ω ) ) 2 + H W 1 / 2 , 2 ( I ; W 1 , 2 ( Ω ) ) 2 + S q ( ¯ ) W 1 / 2 , 2 ( I ; W 1 , 2 ( Ω ) ) 2 + I h W 1 , 2 ( Ω ) 2 + S q ( ¯ ) W 2 , 2 ( Ω ) 2 + H W 2 , 2 ( Ω ) 2 d t $$\begin{equation} \begin{aligned} \mathcal {D}&(g, \eta _0, \eta _\star, \overline{\mathbf {u}}_0, h, \mathbf {h},\mathbf {H}):= \Vert \eta _\star \Vert _{W^{2,2}(\omega)}^2 + \Vert \eta _0\Vert _{W^{4,2}(\omega)}^2 + \Vert \overline{\mathbf {u}}_0\Vert _{W^{2,2}(\Omega)}^2 + \Vert \mathbb {S}_\mathbf {q}(\overline{\hbar }(0)) \Vert _{W^{1,2}(\Omega)}^2 \\ & + \Vert \mathbf {h}(0)\Vert _{W^{1/2,2}(\Omega)}^2 + \Vert \mathbf {H}(0)\Vert _{W^{1,2}(\Omega)}^2 + \Vert g(0)\Vert _{W^{1/2,2}(\omega)}^2 \\ &+ \int _I {\left(\Vert g\Vert _{W^{1,2}(\omega)}^2 + \Vert \partial _t h \Vert _{L^{2}(\Omega)}^2 + \Vert h \Vert _{W^{2,2}(\Omega)}^2 \right)}\, {d}t+\Vert g \Vert _{W^{1/2,2}(I;W^{1/2,2}(\omega))}^2\\ & + \Vert h \Vert _{W^{3/2}(I;W^{-1,2}(\Omega))}^2 + \Vert \mathbf {h}\Vert _{W^{1/2,2}(I;L^2(\Omega))}^2+ \Vert \mathbf {H}\Vert _{W^{1/2,2}(I;W^{1,2}(\Omega))}^2 + \Vert \mathbb {S}_\mathbf {q}(\overline{\hbar }) \Vert _{W^{1/2,2}(I;W^{1,2}(\Omega))}^2 \\ &+ \int _I{\left(\Vert \mathbf {h}\Vert _{W^{1,2}(\Omega)}^2 + \Vert \mathbb {S}_\mathbf {q}(\overline{\hbar }) \Vert _{W^{2,2}(\Omega)}^2 + \Vert \mathbf {H}\Vert _{W^{2,2}(\Omega)}^2 \right)} \, {d}t\end{aligned} \end{equation}$$ ()

Taking into account estimate (3.51), we also obtain the following.

Corollary 3.8.Suppose that the dataset ( g , η 0 , η , u ¯ 0 , ¯ , h , h , H ) $(g, \eta _0, \eta _\star, \overline{\mathbf {u}}_0,\overline{\hbar }, h, \mathbf {h},\mathbf {H})$ satisfies (3.5) and in addition

g W 1 , 2 ( I ; W 1 , 2 ( ω ) ) , η 0 W 5 , 2 ( ω ) with η 0 L ( ω ) < L , η W 3 , 2 ( ω ) , u ¯ 0 W 3 , 2 ( Ω ) , u ¯ 0 φ = η n , B η 0 : x u ¯ 0 = h , h W 1 , 2 ( I ; W 1 , 2 ( Ω ) ) W 2 , 2 ( I ; W 1 , 2 ( Ω ) ) , t h ( 0 ) W 1 , 2 ( Ω ) , , h W 1 , 2 ( I ; L 2 ( Ω ) ) , h ( 0 ) W 1 , 2 ( Ω ) , H W 1 , 2 ( I ; W 1 , 2 ( Ω ) ) , H ( 0 ) W 2 , 2 ( Ω ) , S q ( ¯ ) W 1 , 2 ( I ; W 1 , 2 ( Ω ) ) , S q ( ¯ ( 0 ) ) W 2 , 2 ( Ω ) , $$\begin{equation} \begin{aligned} &g\in W^{1,2}(I;W^{1,2}(\omega)),\quad \\ &\eta _0 \in W^{5,2}(\omega) \text{ with } \Vert \eta _0 \Vert _{L^\infty (\omega)} < L, \quad \eta _\star \in W^{3,2}(\omega), \\ &\overline{\mathbf {u}}_0 \in W^{3,2}(\Omega), \quad \overline{\mathbf {u}}_0\circ \bm {\varphi } =\eta _\star \mathbf {n}, \quad \mathbf {B}_{\eta _0}:\nabla _{\mathbf {x}}\overline{\mathbf {u}}_0=h, \\ & h\in W^{1,2}(I;W^{1,2}(\Omega)) \cap W^{2,2}(I;W^{-1,2}(\Omega)),\quad \partial _t h(0)\in W^{1,2}(\Omega),, \\ & \mathbf {h} \in W^{1,2}(I;L^2(\Omega)),\quad \mathbf {h}(0)\in W^{1,2}(\Omega), \\ & \mathbf {H}\in W^{1,2}(I;W^{1,2}(\Omega)), \quad \mathbf {H}(0)\in W^{2,2}(\Omega), \\ & \mathbb {S}_\mathbf {q}(\overline{\hbar })\in W^{1,2}(I;W^{1,2}(\Omega)), \quad \mathbb {S}_\mathbf {q}(\overline{\hbar } (0))\in W^{2,2}(\Omega), \end{aligned} \end{equation}$$ ()
with the compatibility condition (3.15). Then, a strong solution ( η , u ¯ , π ¯ ) $(\eta, \overline{\mathbf {u}}, \overline{\pi })$ of (3.11)–(3.13) satisfies
sup I ω | t 2 y η | 2 + | t y 3 η | 2 d y + sup I Ω | t x u ¯ | 2 d x + I ω | t 2 y 2 η | 2 + | t 3 η | 2 + | t y 4 η | 2 d y d t + I Ω | t x 2 u ¯ | 2 + | t 2 u ¯ | 2 + | t π ¯ | 2 + | t x π ¯ | 2 d x d t D ( g , η 0 , η , u ¯ 0 , h , h , H ) , $$\begin{align} \begin{aligned} & \sup _I\int _\omega {\left(\vert \partial _t^2\nabla _{\mathbf {y}}\eta \vert ^2 + \vert \partial _t \nabla _{\mathbf {y}}^3 \eta \vert ^2 \right)} \, {d}\mathbf {y}+ \sup _I\int _\Omega \vert \partial _t\nabla _{\mathbf {x}}\overline{\mathbf {u}}\vert ^2\, {d} \mathbf {x}\\ &+ \int _I\int _\omega {\left(\vert \partial _t^2\nabla _{\mathbf {y}}^2 \eta \vert ^2 + \vert \partial _t^3 \eta \vert ^2+ \vert \partial _t\nabla _{\mathbf {y}}^4 \eta \vert ^2 \right)}\, {d}\mathbf {y}\, {d}t\\ &+ \int _I\int _\Omega {\left(\vert \partial _t\nabla _{\mathbf {x}}^2 \overline{\mathbf {u}}\vert ^2 +\vert \partial _t^2\overline{\mathbf {u}}\vert ^2 +\vert \partial _t\overline{\pi }\vert ^2 + \vert \partial _t\nabla _{\mathbf {x}}\overline{\pi }\vert ^2 \right)}\, {d} \mathbf {x}\, {d}t\lesssim \mathcal {D}_*(g, \eta _0, \eta _\star, \overline{\mathbf {u}}_0, h, \mathbf {h},\mathbf {H}), \end{aligned} \end{align}$$ ()
where
D ( g , η 0 , η , u ¯ 0 , h , h , H ) : = η W 3 , 2 ( ω ) 2 + η 0 W 5 , 2 ( ω ) 2 + u ¯ 0 W 3 , 2 ( Ω ) 2 + S q ( ¯ ( 0 ) ) W 2 , 2 ( Ω ) 2 + h ( 0 ) W 1 , 2 ( Ω ) 2 + H ( 0 ) W 2 , 2 ( Ω ) 2 + I t 2 h W 1 , 2 ( Ω ) 2 d t + t h ( 0 ) L 2 ( Ω ) 2 + I t g W 1 , 2 ( ω ) 2 + t h W 1 , 2 ( Ω ) 2 + t h L 2 ( Ω ) 2 + S q ( t ¯ ) W 1 , 2 ( Ω ) 2 + t H W 1 , 2 ( Ω ) 2 d t . $$\begin{align*} \mathcal {D}_*&(g, \eta _0, \eta _\star, \overline{\mathbf {u}}_0, h, \mathbf {h},\mathbf {H}):= \Vert \eta _\star \Vert _{W^{3,2}(\omega)}^2 + \Vert \eta _0\Vert _{W^{5,2}(\omega)}^2 + \Vert \overline{\mathbf {u}}_0\Vert _{W^{3,2}(\Omega)}^2 + \Vert \mathbb {S}_\mathbf {q}(\overline{\hbar }(0)) \Vert _{W^{2,2}(\Omega)}^2 \\ & + \Vert \mathbf {h}(0)\Vert _{W^{1,2}(\Omega)}^2 + \Vert \mathbf {H}(0)\Vert _{W^{2,2}(\Omega)}^2 + \int _I\Vert \partial _t^2 h \Vert _{W^{-1,2}(\Omega)}^2\, {d}t+ \Vert \partial _t h(0) \Vert _{L^2(\Omega)}^2 \\ &+ \int _I {\left(\Vert \partial _t g \Vert _{W^{1,2}(\omega)}^2 + \Vert \partial _t h \Vert _{W^{1,2}(\Omega)}^2 + \Vert \partial _t\mathbf {h}\Vert _{L^2(\Omega)}^2 + \Vert \mathbb {S}_\mathbf {q}(\partial _t\overline{\hbar }) \Vert _{W^{1,2}(\Omega)}^2 + \Vert \partial _t\mathbf {H}\Vert _{W^{1,2}(\Omega)}^2 \right)} \, {d}t. \end{align*}$$

3.3 Fixed-point argument

In this section, we assume that the triplet ( ζ , w ¯ , q ¯ ) $(\zeta, \overline{\mathbf {w}}, \overline{q})$ are given and we wish to solve
B η 0 : x u ¯ = h ζ ( w ¯ ) , $$\begin{align} \mathbf {B}_{\eta _0}:\nabla _{\mathbf {x}}\overline{\mathbf {u}}= h_\zeta (\overline{\mathbf {w}}), \end{align}$$ ()
t 2 η t Δ y η + Δ y 2 η = g + n H ζ ( w ¯ , q ¯ ) A η 0 x u ¯ + B η 0 ( π ¯ I 3 × 3 S q ( ¯ ) ) φ n , $$\begin{align} \partial _t^2\eta - \partial _t\Delta _{\mathbf {y}}\eta + \Delta _{\mathbf {y}}^2\eta = g+\mathbf {n}^\top {\left[\mathbf {H}_\zeta (\overline{\mathbf {w}}, \overline{q})-\mathbf {A}_{\eta _0} \nabla _{\mathbf {x}}\overline{\mathbf {u}} +\mathbf {B}_{\eta _0}(\overline{\pi }\,\mathbb {I}_{3\times 3}- \mathbb {S}_\mathbf {q}(\overline{\hbar }))\right]}\circ \bm {\varphi } \mathbf {n}, \end{align}$$ ()
J η 0 t u ¯ div x ( A η 0 x u ¯ B η 0 π ¯ ) = div x ( B η 0 S q ( ¯ ) ) + h ζ ( w ¯ ) div x H ζ ( w ¯ , q ¯ ) $$\begin{align} J_{\eta _0}\partial _t \overline{\mathbf {u}} -\mathrm{div}_{\mathbf {x}}(\mathbf {A}_{\eta _0} \nabla _{\mathbf {x}}\overline{\mathbf {u}}-\mathbf {B}_{\eta _0}\overline{\pi }) = \mathrm{div}_{\mathbf {x}}(\mathbf {B}_{\eta _0}\mathbb {S}_\mathbf {q}(\overline{\hbar })) + \mathbf {h}_\zeta (\overline{\mathbf {w}})- \mathrm{div}_{\mathbf {x}}\mathbf {H}_\zeta (\overline{\mathbf {w}}, \overline{q}) \end{align}$$ ()
with u ¯ φ = ( t η ) n $\overline{\mathbf {u}} \circ \bm {\varphi } =(\partial _t\eta)\mathbf {n}$ on I × ω $I_*\times \omega$ . Here, I : = ( 0 , T ) $I_*:=(0,T_*)$ is to be determined later. Let us define the space
X I : = W 1 , I ; W 3 , 2 ( ω ) W 2 , 2 I ; W 1 , 2 ( ω ) W 3 , 2 I ; L 2 ( ω ) W 1 , 2 I ; W 3 , 2 ( ω ) L I ; W 4 , 2 ( ω ) L 2 I ; W 5 , 2 ( ω ) × W 1 , I ; W 1 , 2 ( Ω ) W 2 , 2 I ; L 2 ( Ω ) W 1 , 2 I ; W 2 , 2 ( Ω ) L 2 I ; W 3 , 2 ( Ω ) × W 1 , 2 I ; W 1 , 2 ( Ω ) L 2 I ; W 2 , 2 ( Ω ) $$\begin{align*} X_{I_*}:=& W^{1,\infty }{\left(I_*;W^{3,2}(\omega) \right)} \cap W^{2,2}{\left(I_*;W^{1,2}(\omega) \right)} \cap W^{3,2}{\left(I_*;L^2(\omega) \right)} \\ &\qquad \qquad \qquad \cap W^{1,2}{\left(I_*;W^{3,2}(\omega) \right)}\cap L^{\infty }{\left(I_*;W^{4,2}(\omega) \right)}\cap L^{2}{\left(I_*;W^{5,2}(\omega) \right)}\\ & \times W^{1,\infty } {\left(I_*; W^{1,2}(\Omega) \right)}\cap W^{2,2}{\left(I_*;L^2(\Omega) \right)}\cap W^{1,2}{\left(I_*;W^{2,2}(\Omega) \right)} \cap L^2{\left(I_*;W^{3,2}(\Omega) \right)} \\ & \times W^{1,2}{\left(I_*;W^{1,2}(\Omega) \right)} \cap L^2{\left(I_*;W^{2,2}(\Omega) \right)} \end{align*}$$
equipped with the norm
( ζ , w ¯ , q ¯ ) X I 2 : = sup I ω | t y 3 ζ | 2 + | y 4 ζ | 2 d y + I ω | t 3 ζ | 2 + | y 5 ζ | 2 d y d t + sup I Ω | t w ¯ | 2 + | t x w ¯ | 2 d x + I ω | t 2 w ¯ | 2 + | t x w ¯ | 2 + | t x 2 w ¯ | 2 + | x 3 w ¯ | 2 d x d t + I ω | t q ¯ | 2 + | t x q ¯ | 2 + | x 2 q ¯ | 2 d x d t . $$\begin{align*} \Vert (\zeta,\overline{\mathbf {w}}, \overline{q}) \Vert _{X_{I_*}}^2 &:= \sup _{I_*}\int _\omega {\left(\vert \partial _t\nabla _{\mathbf {y}}^3\zeta \vert ^2 +|\nabla _{\mathbf {y}}^4\zeta |^2 \right)}\, {d}\mathbf {y}+ \int _{I_*}\int _\omega {\left(\vert \partial _t^3\zeta \vert ^2 + \vert \nabla _{\mathbf {y}}^5\zeta \vert ^2 \right)}\, {d}\mathbf {y}\, {d}t\\ & +\sup _{I_*}\int _\Omega {\left(\vert \partial _t \overline{\mathbf {w}}\vert ^2 + \vert \partial _t\nabla _{\mathbf {x}}\overline{\mathbf {w}} \vert ^2 \right)}\, {d} \mathbf {x}\\ &+ \int _{I_*}\int _\omega {\left(\vert \partial _t^2 \overline{\mathbf {w}} \vert ^2 + \vert \partial _t\nabla _{\mathbf {x}}\overline{\mathbf {w}}\vert ^2 + \vert \partial _t \nabla _{\mathbf {x}}^2 \overline{\mathbf {w}} \vert ^2 + \vert \nabla _{\mathbf {x}}^3\overline{\mathbf {w}}\vert ^2 \right)}\, {d} \mathbf {x}\, {d}t\\ &+ \int _{I_*}\int _\omega {\left(\vert \partial _t\overline{q}\vert ^2 +\vert \partial _t\nabla _{\mathbf {x}}\overline{q}\vert ^2 +\vert \nabla _{\mathbf {x}}^2\overline{q}\vert ^2 \right)}\, {d} \mathbf {x}\, {d}t. \end{align*}$$
Note that for ζ $\zeta$ , we only keep track of the highest-order terms. However, on account of the embeddings
L 2 I ; W 5 , 2 ( ω ) W 3 , 2 I ; L 2 ( ω ) W 2 , 2 I ; W 1 , 2 ( ω ) , L 2 I ; W 5 , 2 ( ω ) W 3 , 2 I ; L 2 ( ω ) W 1 , 2 I ; W 3 , 2 ( ω ) , $$\begin{align} \begin{aligned} L^{2}{\left(I_*;W^{5,2}(\omega) \right)} \cap W^{3,2}{\left(I_*;L^{2}(\omega) \right)} \hookrightarrow W^{2,2}{\left(I_*;W^{1,2}(\omega) \right)}, \\ L^{2}{\left(I_*;W^{5,2}(\omega) \right)} \cap W^{3,2}{\left(I_*;L^{2}(\omega) \right)} \hookrightarrow W^{1,2}{\left(I_*;W^{3,2}(\omega) \right)}, \end{aligned} \end{align}$$ ()
the norm ( ζ , w ¯ , q ¯ ) X I 2 $\Vert (\zeta,\overline{\mathbf {w}}, \overline{q}) \Vert _{X_{I_*}}^2$ actually controls
sup I ω | t y 3 ζ | 2 + | y 4 ζ | 2 d y + I ω | t y 3 ζ | 2 + | t 2 y ζ | 2 + | t 3 ζ | 2 + | y 5 ζ | 2 d y d t . $$\begin{align*} &\sup _{I_*}\int _\omega {\left(\vert \partial _t\nabla _{\mathbf {y}}^3\zeta \vert ^2 +|\nabla _{\mathbf {y}}^4\zeta |^2 \right)}\, {d}\mathbf {y}\\ &+ \int _{I_*}\int _\omega {\left(\vert \partial _t\nabla _{\mathbf {y}}^3\zeta \vert ^2 + \vert \partial _t^2\nabla _{\mathbf {y}}\zeta \vert ^2 + \vert \partial _t^3\zeta \vert ^2 + \vert \nabla _{\mathbf {y}}^5\zeta \vert ^2 \right)}\, {d}\mathbf {y}\, {d}t. \end{align*}$$
Now, let B R X I $B_R^{X_{I_*}}$ be defined as
B R X I : = { ( ζ , w ¯ , q ¯ ) X I with ζ ( 0 ) = η 0 , t ζ ( 0 ) = η , w ¯ ( 0 ) = u ¯ 0 , such that ( ζ , w ¯ , q ¯ ) X I 2 R 2 } $$\begin{align*} B_R^{X_{I_*}}:= \big \lbrace (\zeta,\overline{\mathbf {w}}, \overline{q})\in X_{I_*} \text{ with } \,\, \zeta (0)=\eta _0, \,\, \partial _t\zeta (0) = \eta _\star, \,\, \overline{\mathbf {w}}(0) = \overline{\mathbf {u}}_0, \, \text{ such that }\, \Vert (\zeta,\overline{\mathbf {w}}, \overline{q})\Vert _{X_{I_*}}^2\le R^2 \big \rbrace \end{align*}$$
for some R > 0 $R>0$ large enough, where the data are chosen to satisfy (3.15). We want to show that the solution map T : X I X I $\mathcal {T}:X_{I_*}\rightarrow X_{I_*}$ defined by T ( ζ , w ¯ , q ¯ ) = ( η , u ¯ , π ¯ ) $\mathcal {T}(\zeta, \overline{\mathbf {w}}, \overline{q})=(\eta,\overline{\mathbf {u}}, \overline{\pi })$ maps the ball B R X I $B_R^{X_{I_*}}$ into itself and that it is a contraction. By so doing we obtain the existence of a unique fixed point. See, for example, [35, Lemma 2.3].
We will show these two properties of T $\mathcal {T}$ in two different spaces where one space is contained in the other. The fact that T $\mathcal {T}$ maps the ball into itself will be shown in the space X I $X_{I_*}$ defined above. For the contraction property, we consider the auxiliary space X ̂ I $\widehat{X}_{I_*}$ defined by
X ̂ I : = W 1 , I ; W 1 , 2 ( ω ) L I ; W 3 , 2 ( ω ) W 1 , 2 I ; W 2 , 2 ( ω ) W 2 , 2 I ; L 2 ( ω ) × L I ; W 1 , 2 ( Ω ) W 1 , 2 I ; L 2 ( Ω ) L 2 I ; W 2 , 2 ( Ω ) × L 2 I ; W 1 , 2 ( Ω ) $$\begin{align*} \widehat{X}_{I_*}\,{:=}\,&W^{1,\infty }{\left(I_*;W^{1,2}(\omega) \right)} \cap L^{\infty }{\left(I_*;W^{3,2}(\omega) \right)}\cap W^{1,2}{\left(I_*;W^{2,2}(\omega) \right)}\cap W^{2,2}{\left(I_*;L^{2}(\omega) \right)}\\ & \times L^{\infty } {\left(I_*; W^{1,2}(\Omega) \right)}\cap W^{1,2}{\left(I_*;L^2(\Omega) \right)}\cap L^{2}{\left(I_*;W^{2,2}(\Omega) \right)} \\ &\times L^2{\left(I_*;W^{1,2}(\Omega) \right)} \end{align*}$$
and equipped with its corresponding canonical norm · X ̂ I $\Vert \cdot \Vert _{\widehat{X}_{I_*}}$ . By keeping (3.66) in mind, one observes that X I X ̂ I $ X_{I_*} \subset \widehat{X}_{I_*}$ . Furthermore, with X ̂ I $ \widehat{X}_{I_*}$ in hand, we refer to [14] where we show that for any ( ζ i , w ¯ i , q ¯ i ) B R X I $(\zeta _i, \overline{\mathbf {w}}_i, \overline{q}_i)\in B_R^{X_{I_*}}$ , i = 1 , 2 $i=1,2$ , we can find ρ < 1 $\rho <1$ such that
T ( ζ 1 , w ¯ 1 , q ¯ 1 ) T ( ζ 2 , w ¯ 2 , q ¯ 2 ) X ̂ I ρ ( ζ 1 , w ¯ 1 , q ¯ 1 ) ( ζ 2 , w ¯ 2 , q ¯ 2 ) X ̂ I . $$\begin{align*} \Vert \mathcal {T}(\zeta _1, \overline{\mathbf {w}}_1, \overline{q}_1) - \mathcal {T}(\zeta _2, \overline{\mathbf {w}}_2, \overline{q}_2)\Vert _{\widehat{X}_{I_*}}\le \rho \Vert (\zeta _1, \overline{\mathbf {w}}_1, \overline{q}_1)-(\zeta _2, \overline{\mathbf {w}}_2, \overline{q}_2)\Vert _{\widehat{X}_{I_*}}. \end{align*}$$
Thus, T $\mathcal {T}$ is a contraction.
To show the mapping T : B R X I B R X I $\mathcal {T}:B_R^{X_{I_*}} \rightarrow B_R^{X_{I_*}}$ , we need to show that for any ( ζ , w ¯ , q ¯ ) B R X I $(\zeta, \overline{\mathbf {w}}, \overline{q}) \in B_R^{X_{I_*}}$ , we have that
T ( ζ , w ¯ , q ¯ ) X I 2 = ( η , u ¯ , π ¯ ) X I 2 R 2 . $$\begin{align} \Vert \mathcal {T}(\zeta, \overline{\mathbf {w}}, \overline{q})\Vert _{X_{I_*}}^2 = \Vert (\eta, \overline{\mathbf {u}}, \overline{\pi })\Vert _{X_{I_*}}^2\le R^2. \end{align}$$ ()
Indeed, from (3.59) and (3.62), we can deduce that the solution to (3.63)–(3.65) satisfies
( η , u ¯ , π ¯ ) X I 2 f 0 + I t 2 h ζ ( w ¯ ) W 1 , 2 ( Ω ) 2 + t h ζ ( w ¯ ) W 1 , 2 ( Ω ) 2 + t h ζ ( w ¯ ) L 2 ( Ω ) 2 + h ζ ( w ¯ ) W 1 , 2 ( Ω ) 2 + t H ζ ( w ¯ , q ¯ ) W 1 , 2 ( Ω ) 2 + H ζ ( w ¯ , q ¯ ) W 2 , 2 ( Ω ) 2 + h ζ ( w ¯ ) W 2 , 2 ( Ω ) 2 d t = : f 0 + K 1 + + K 7 $$\begin{equation} \begin{aligned} \Vert (\eta, \overline{\mathbf {u}}, \overline{\pi })\Vert _{X_{I_*}}^2 & \lesssim f_0+ \int _I {\left(\Vert \partial _t^2 h_\zeta (\overline{\mathbf {w}}) \Vert _{W^{-1,2}(\Omega)}^2 + \Vert \partial _t h_\zeta (\overline{\mathbf {w}}) \Vert _{W^{1,2}(\Omega)}^2 \right.}\\ & + \Vert \partial _t\mathbf {h}_\zeta (\overline{\mathbf {w}})\Vert _{L^2(\Omega)}^2 + \Vert \mathbf {h}_\zeta (\overline{\mathbf {w}})\Vert _{W^{1,2}(\Omega)}^2 + \Vert \partial _t\mathbf {H}_\zeta (\overline{\mathbf {w}}, \overline{q})\Vert _{W^{1,2}(\Omega)}^2 \\ &{\left.+ \Vert \mathbf {H}_\zeta (\overline{\mathbf {w}}, \overline{q})\Vert _{W^{2,2}(\Omega)}^2 + \Vert h_\zeta (\overline{\mathbf {w}}) \Vert _{W^{2,2}(\Omega)}^2 \right)}\, {d}t\\ & =: f_0+K_1+\cdots +K_7 \end{aligned} \end{equation}$$ ()
where for R > 0 $R>0$ large enough, the dataset estimate
f 0 : = η W 3 , 2 ( ω ) 2 + η 0 W 5 , 2 ( ω ) 2 + u ¯ 0 W 3 , 2 ( Ω ) 2 + S q ( ¯ ( 0 ) ) W 2 , 2 ( Ω ) 2 + I S q ( t ¯ ) W 1 , 2 ( Ω ) 2 + S q ( ¯ ) W 2 , 2 ( Ω ) 2 d t + g ( 0 ) W 1 , 2 ( ω ) 2 + I t g W 1 , 2 ( ω ) 2 + g W 1 , 2 ( ω ) 2 d t + h ζ ( 0 ) ( w ¯ ( 0 ) ) W 1 , 2 ( Ω ) 2 + H ζ ( 0 ) ( w ¯ ( 0 ) , q ¯ ( 0 ) ) W 2 , 2 ( Ω ) 2 $$\begin{equation} \begin{aligned} f_0\,{:=}\ & \Vert \eta _\star \Vert _{W^{3,2}(\omega)}^2 + \Vert \eta _0\Vert _{W^{5,2}(\omega)}^2 + \Vert \overline{\mathbf {u}}_0\Vert _{W^{3,2}(\Omega)}^2+ \Vert \mathbb {S}_\mathbf {q}(\overline{\hbar }(0)) \Vert _{W^{2,2}(\Omega)}^2 \\ &+ \int _I {\left(\Vert \mathbb {S}_\mathbf {q}(\partial _t\overline{\hbar }) \Vert _{W^{1,2}(\Omega)}^2 + \Vert \mathbb {S}_\mathbf {q}(\overline{\hbar }) \Vert _{W^{2,2}(\Omega)}^2 \right)}\, {d}t+ \Vert g(0)\Vert _{W^{1,2}(\omega)}^2 \\ &+ \int _I {\left(\Vert \partial _t g \Vert _{W^{1,2}(\omega)}^2 + \Vert g\Vert _{W^{1,2}(\omega)}^2 \right)}\, {d}t+ \Vert \mathbf {h}_{\zeta (0)}(\overline{\mathbf {w}}(0))\Vert _{W^{1,2}(\Omega)}^2 \\ &+ \Vert \mathbf {H}_{\zeta (0)}(\overline{\mathbf {w}}(0), \overline{q}(0))\Vert _{W^{2,2}(\Omega)}^2 \end{aligned} \end{equation}$$ ()
is such that
c f 0 < R 2 / 2 . $$\begin{align} \tilde{c}f_0<R^2/2. \end{align}$$ ()
Here, c $\tilde{c}$ is the constant in the inequality (3.68). Let us now estimate K 1 $K_1$ in (3.68). First of all, we write
t 2 h ζ ( w ¯ ) = ( B η 0 B ζ ) : t 2 x w ¯ + 2 t ( B η 0 B ζ ) : t x w ¯ + t 2 ( B η 0 B ζ ) : x w ¯ . $$\begin{align*} \partial _t^2 h_{\zeta }(\overline{\mathbf {w}}) & = (\mathbf {B}_{\eta _0}-\mathbf {B}_{\zeta }):\partial _t^2\nabla _{\mathbf {x}}\overline{\mathbf {w}} +2\partial _t(\mathbf {B}_{\eta _0}-\mathbf {B}_{\zeta }):\partial _t\nabla _{\mathbf {x}}\overline{\mathbf {w}} + \partial _t^2(\mathbf {B}_{\eta _0}-\mathbf {B}_{\zeta }):\nabla _{\mathbf {x}}\overline{\mathbf {w}}. \end{align*}$$
Now, note that it follows from (2.4)–(2.5) and the continuous embedding
L 2 ( I ; W 3 , 2 ( ω ) ) W 1 , 2 ( I ; W 2 , 2 ( ω ) ) C 0 , 1 / 4 ( I ¯ ; W 9 / 4 , 2 ( ω ) ) L ( I ; W 1 , ( ω ) ) , $$\begin{align} L^2(I_*;W^{3,2}(\omega))\cap W^{1,2}(I_*;W^{2,2}(\omega))\hookrightarrow C^{0,1/4}(\overline{I}_*;W^{9/4,2}(\omega))\hookrightarrow L^\infty (I_*;W^{1,\infty }(\omega)), \end{align}$$ ()
that
I ( B η 0 B ζ ) : t 2 x w ¯ W x 1 , 2 2 d t I x ( B η 0 B ζ ) L x 3 2 + B η 0 B ζ L x 2 t 2 w ¯ L x 2 2 d t sup I η 0 ζ W y 2 , 3 2 + η 0 ζ W y 1 , 2 I t 2 w ¯ L x 2 2 d t T 1 / 2 ( ζ , w ¯ , q ¯ ) X I 2 . $$\begin{equation} \begin{aligned} \int _{I_*}\Vert (\mathbf {B}_{\eta _0}-\mathbf {B}_{\zeta }):\partial _t^2\nabla _{\mathbf {x}}\overline{\mathbf {w}} \Vert _{W^{-1,2}_{\mathbf {x}}} ^2\, {d}t&\lesssim \int _{I_*}{\left(\Vert \nabla _{\mathbf {x}}(\mathbf {B}_{\eta _0}-\mathbf {B}_{\zeta })\Vert _{L^3_\mathbf {x}}^2 + \Vert \mathbf {B}_{\eta _0}-\mathbf {B}_{\zeta }\Vert _{L^\infty _\mathbf {x}}^2 \right)} \Vert \partial _t^2 \overline{\mathbf {w}} \Vert _{L^2_\mathbf {x}}^2 \, {d}t\\ &\lesssim \sup _{I_*}{\left(\Vert \eta _0 - \zeta \Vert _{W^{2,3}_\mathbf {y}}^2 + \Vert \eta _0 - \zeta \Vert _{W^{1,\infty }_\mathbf {y}}^2 \right)}\int _{I_*}\Vert \partial _t^2 \overline{\mathbf {w}} \Vert _{L^2_\mathbf {x}}^2 \, {d}t\\ & \lesssim T^{1/2}_* \Vert (\zeta, \overline{\mathbf {w}}, \overline{q}) \Vert _{X_{I_*}}^2. \end{aligned} \end{equation}$$ ()
On the other hand, due to the continuous embedding
L 2 ( I ; W 4 , 2 ( Ω ) ) W 2 , 2 ( I ; W 1 , 2 ( Ω ) ) W 3 / 2 , 2 ( I ; W 1 , 4 ( Ω ) ) W 1 , 4 ( I ; W 1 , 4 ( Ω ) ) $$\begin{align*} L^{2}(I_*;W^{4,2}(\Omega)) \cap W^{2,2}(I_*;W^{1,2}(\Omega)) \hookrightarrow W^{3/2,2}(I_*;W^{1,4}(\Omega))\hookrightarrow W^{1,4}(I_*;W^{1,4}(\Omega)) \end{align*}$$
and (3.66) it follows that
I 2 t ( B η 0 B ζ ) : t x w ¯ 1 W x 1 , 2 2 d t I t B ζ L x 4 2 t x w ¯ L x 2 2 d t T 1 / 2 I ( 1 + t ζ W y 1 , 4 ) 4 d t 1 2 sup I t x w ¯ L x 2 2 T 1 / 2 ( ζ , w ¯ , q ¯ ) X I 2 . $$\begin{equation} \begin{aligned} \int _{I_*}\Vert 2\partial _t (\mathbf {B}_{\eta _0}-\mathbf {B}_{\zeta }):\partial _t\nabla _{\mathbf {x}}\overline{\mathbf {w}}_1 \Vert _{W^{-1,2}_\mathbf {x}}^2 \, {d}t&\lesssim \int _{I_*}\Vert \partial _t\mathbf {B}_{\zeta }\Vert ^2_{L^4_\mathbf {x}}\Vert \partial _t\nabla _{\mathbf {x}}\overline{\mathbf {w}} \Vert _{L^2_\mathbf {x}}^2 \, {d}t\\ &\lesssim T^{1/2}_* {\left(\int _{I_*}{(1+\Vert \partial _t\zeta \Vert _{W^{1,4}_\mathbf {y}})}^4\, {d}t\right)}^\frac{1}{2} \sup _{I_*}\Vert \partial _t\nabla _{\mathbf {x}}\overline{\mathbf {w}} \Vert _{L^2_\mathbf {x}}^2 \\ & \lesssim T^{1/2}_* \Vert (\zeta, \overline{\mathbf {w}}, \overline{q}) \Vert _{X_{I_*}}^2. \end{aligned} \end{equation}$$ ()
Similar to (3.73), we can use the embeddings
W 3 , 2 ( I ; L 2 ( ω ) ) W 2 , 2 ( I ; W 2 , 2 ( ω ) ) W 5 / 2 , 2 ( I * ; W 1 , 2 ( ω ) ) W 2 , 2 ( I ; W 1 , 2 ( ω ) ) , W 1 , 2 ( I ; W 2 , 2 ( Ω ) ) L ( I ; W 1 , 4 ( Ω ) ) , $$\begin{align*} W^{3,2}(I_*;L^2(\omega))\cap W^{2,2}(I_*;W^{2,2}(\omega))\hookrightarrow W^{5/2,2}(I_\ast;W^{1,2}(\omega)) \hookrightarrow W^{2,2}(I_*;W^{1,2}(\omega)),\\ W^{1,2}(I_*;W^{2,2}(\Omega))\hookrightarrow L^\infty (I_*;W^{1,4}(\Omega)), \end{align*}$$
to obtain
I t 2 ( B η 0 B ζ ) : x w ¯ W x 1 , 2 2 d t sup I w ¯ W x 1 , 4 2 I t 2 ζ W y 1 , 2 2 d t T ( ζ , w ¯ , q ¯ ) X I 2 . $$\begin{equation*} \begin{aligned} \nonumber \int _{I_*}\Vert \partial _t^2 (\mathbf {B}_{\eta _0}-\mathbf {B}_{\zeta }):\nabla _{\mathbf {x}}\overline{\mathbf {w}} \Vert _{W^{-1,2}_\mathbf {x}}^2 \, {d}t&\lesssim \sup _{I_*} \Vert \overline{\mathbf {w}} \Vert _{W_{\mathbf {x}}^{1,4}}^2\int _{I_*}\Vert \partial _t^2\zeta \Vert ^2_{W^{1,2}_\mathbf {y}}\, {d}t\\ & \lesssim T_* \Vert (\zeta, \overline{\mathbf {w}}, \overline{q}) \Vert _{X_{I_*}}^2. \end{aligned} \end{equation*}$$
It follows from (3.72)–(3.74) that
K 1 T 1 / 2 ( ζ , w ¯ , q ¯ ) X I 2 . $$\begin{equation} \begin{aligned} K_1 \lesssim T^{1/2}_* \Vert (\zeta, \overline{\mathbf {w}}, \overline{q}) \Vert _{X_{I_*}}^2. \end{aligned} \end{equation}$$ ()
To estimate K 2 $K_2$ , note that
| t h ζ ( w ¯ ) | | | ( B η 0 B ζ ) t x w ¯ | + | t ( B η 0 B ζ ) x w ¯ | . $$\begin{align*} \vert \partial _t h_{\zeta }(\overline{\mathbf {w}}) \vert \vert &\lesssim \vert (\mathbf {B}_{\eta _0}-\mathbf {B}_{\zeta }) \partial _t\nabla _{\mathbf {x}}\overline{\mathbf {w}} \vert + \vert \partial _t(\mathbf {B}_{\eta _0}-\mathbf {B}_{\zeta }) \nabla _{\mathbf {x}}\overline{\mathbf {w}} \vert . \end{align*}$$
Using again the embedding (3.71) it follows from (2.4)–(2.5) that
I ( B η 0 B ζ ) t x w ¯ L x 2 2 d t + I ( B η 0 B ζ ) t x 2 w ¯ L x 2 2 d t sup I η 0 ζ W y 1 , 2 I t w ¯ W x 2 , 2 2 d t T 1 / 2 ( ζ , w ¯ , q ¯ ) X I 2 $$\begin{equation} \begin{aligned} \int _{I_*}\Vert (\mathbf {B}_{\eta _0}-\mathbf {B}_{\zeta }) \partial _t\nabla _{\mathbf {x}}\overline{\mathbf {w}} \Vert _{L^2_\mathbf {x}}^2\, {d}t&+ \int _{I_*}\Vert (\mathbf {B}_{\eta _0}-\mathbf {B}_{\zeta }) \partial _t\nabla _{\mathbf {x}}^2 \overline{\mathbf {w}} \Vert _{L^2_\mathbf {x}}^2\, {d}t\\ &\lesssim \sup _{I_*}\Vert \eta _0 - \zeta \Vert _{W^{1,\infty }_\mathbf {y}}^2 \int _{I_*} \Vert \partial _t \overline{\mathbf {w}} \Vert _{W^{2,2}_\mathbf {x}}^2\, {d}t\\ &\lesssim T^{1/2}_* \Vert (\zeta, \overline{\mathbf {w}}, \overline{q})\Vert _{X_{I_*}}^2 \end{aligned} \end{equation}$$ ()
and similarly,
I t ( B η 0 B ζ ) x w ¯ L x 2 2 d t + I t ( B η 0 B ζ ) x 2 w ¯ L x 2 2 d t sup I w ¯ W x 2 , 2 2 I t ζ W y 1 , 2 d t T ( ζ , w ¯ , q ¯ ) X I 2 $$\begin{equation} \begin{aligned} \int _{I_*}\Vert \partial _t(\mathbf {B}_{\eta _0}-\mathbf {B}_{\zeta }) \nabla _{\mathbf {x}}\overline{\mathbf {w}} \Vert _{L^2_\mathbf {x}}^2\, {d}t&+ \int _{I_*}\Vert \partial _t(\mathbf {B}_{\eta _0}-\mathbf {B}_{\zeta }) \nabla _{\mathbf {x}}^2 \overline{\mathbf {w}} \Vert _{L^2_\mathbf {x}}^2\, {d}t\\ &\lesssim \sup _{I_*} \Vert \overline{\mathbf {w}} \Vert _{W^{2,2}_\mathbf {x}}^2 \int _{I_*}\Vert \partial _t \zeta \Vert _{W^{1,\infty }_\mathbf {y}}^2\, {d}t\\ &\lesssim T_* \Vert (\zeta, \overline{\mathbf {w}}, \overline{q})\Vert _{X_{I_*}}^2 \end{aligned} \end{equation}$$ ()
holds due to the embedding
W 1 , ( I * ; W 3 , 2 ( ω ) ) W 1 , 2 ( I * , W 1 , ( ω ) ) . $$\begin{align*} W^{1,\infty }(I_\ast;W^{3,2}(\omega))\hookrightarrow W^{1,2}(I_\ast, W^{1,\infty }(\omega)). \end{align*}$$
It follows that
K 2 T 1 / 2 ( ζ , w ¯ , q ¯ ) X I 2 . $$\begin{align} K_2 \lesssim T^{1/2}_* \Vert (\zeta, \overline{\mathbf {w}}, \overline{q})\Vert _{X_{I_*}}^2. \end{align}$$ ()
Next, note that
| t [ h ζ ( w ¯ ) ] | | ( J η 0 J ζ ) t 2 w ¯ | + | J ζ t x w ¯ t Ψ ζ 1 Ψ ζ | + | J ζ x Ψ ζ 1 Ψ ζ x w ¯ t w ¯ | + | J ζ t f Ψ ζ | + | t ( J ζ ) f Ψ ζ | + L . O . T . $$\begin{align*} \vert \partial _t[\mathbf {h}_{\zeta }(\overline{\mathbf {w}}) &] \vert \lesssim \vert (J_{\eta _0}-J_{\zeta })\partial _t^2 \overline{\mathbf {w}} \vert + \big \vert J_{\zeta } \partial _t\nabla _{\mathbf {x}}\overline{\mathbf {w}} \partial _t \bm {\Psi }_{\zeta }^{-1}\circ \bm {\Psi }_{\zeta } \big \vert + \big \vert J_{\zeta }{\left(\nabla _{\mathbf {x}}\bm {\Psi }_{\zeta }^{-1}\circ \bm {\Psi }_{\zeta }\right)} \nabla _{\mathbf {x}}\overline{\mathbf {w}} \partial _t\overline{\mathbf {w}} \big \vert \\ & + \vert J_{\zeta } \partial _t \mathbf {f}\circ \bm {\Psi }_{\zeta } \vert + \vert \partial _t(J_{\zeta }) \mathbf {f}\circ \bm {\Psi }_{\zeta } \vert +\mathrm{L.O.T}. \end{align*}$$
where L . O . T $\mathrm{L.O.T}$ are lower-order terms satisfying
I L . O . T L 2 ( Ω ) 2 d t T 1 / 2 ( ζ , w ¯ , q ¯ ) X I 2 . $$\begin{align} \int _{I_*}\Vert \mathrm{L.O.T}\Vert _{L^2(\Omega)}^2\, {d}t\lesssim T^{1/2}_* \Vert (\zeta,\overline{\mathbf {w}}, \overline{q}) \Vert _{X_{I_*}}^2. \end{align}$$ ()
Due to the continuous embeddings (3.71), it follows from the definition J η = det ( x Ψ η ) $J_\eta =\det (\nabla _{\mathbf {x}}\bm {\Psi }_\eta)$ and (2.4)–(2.5) that
I ( J η 0 J ζ ) t 2 w ¯ L x 2 2 d t sup I η 0 ζ W y 1 , 2 I t 2 w ¯ L x 2 2 d t T 1 / 2 ( ζ , w ¯ , q ¯ ) X I 2 . $$\begin{equation} \begin{aligned} \int _{I_*}\Vert (J_{\eta _0}-J_{\zeta })\partial _t^2 \overline{\mathbf {w}} \Vert _{L^2_\mathbf {x}}^2\, {d}t&\lesssim \sup _{I_*}\Vert \eta _0 - \zeta \Vert _{W^{1,\infty }_\mathbf {y}}^2 \int _{I_*}\Vert \partial _t^2 \overline{\mathbf {w}} \Vert _{L^2_\mathbf {x}}^2\, {d}t\lesssim T^{1/2}_* \Vert (\zeta,\overline{\mathbf {w}}, \overline{q}) \Vert _{X_{I_*}}^2. \end{aligned} \end{equation}$$ ()
By using the embeddings
L ( I ; W 3 , 2 ( ω ) ) L ( I ; W 1 , ( ω ) ) , W 2 , 2 ( I ; L 2 ( ω ) ) L ( I ; W 3 , 2 ( ω ) ) W 1 , 4 ( I ; L ( ω ) ) , $$\begin{align*} &L^\infty (I_*;W^{3,2}(\omega))\hookrightarrow L^\infty (I_*;W^{1,\infty }(\omega)), \\ & W^{2,2}(I_*;L^2(\omega)) \cap L^\infty (I_*;W^{3,2}(\omega))\hookrightarrow W^{1,4}(I_*;L^{\infty }(\omega)), \end{align*}$$
we obtain
I J ζ t x w ¯ t Ψ ζ 1 Ψ ζ L x 2 2 d t I 1 + ζ W y 1 , 2 t x w ¯ L x 2 2 1 + t ζ L y 2 d t T 1 / 2 sup I 1 + ζ W y 1 , 2 sup I t x w ¯ L x 2 2 I 1 + t ζ L y 4 d t 1 2 T 1 / 2 ( ζ , w ¯ , q ¯ ) X I 2 . $$\begin{equation} \begin{aligned} \int _{I_*} \Vert J_{\zeta }& \partial _t \nabla _{\mathbf {x}}\overline{\mathbf {w}} \partial _t \bm {\Psi }_{\zeta }^{-1}\circ \bm {\Psi }_{\zeta } \Vert _{L^2_\mathbf {x}}^2\, {d}t\lesssim \int _{I_*}{\left(1+\Vert \zeta \Vert _{W^{1,\infty }_\mathbf {y}}^2 \right)} \Vert \partial _t\nabla _{\mathbf {x}}\overline{\mathbf {w}} \Vert _{L^2_\mathbf {x}}^2 {\left(1+ \Vert \partial _t\zeta \Vert _{L^\infty _\mathbf {y}}^2\right)} \, {d}t\\ & \lesssim T^{1/2}_* \sup _{I_*}{\left(1+\Vert \zeta \Vert _{W^{1,\infty }_\mathbf {y}}^2 \right)} \sup _{I_*} \Vert \partial _t\nabla _{\mathbf {x}}\overline{\mathbf {w}} \Vert _{L^2_\mathbf {x}}^2 {\left(\int _{I_*} {\left(1+ \Vert \partial _t\zeta \Vert _{L^\infty _\mathbf {y}}^4\right)} \, {d}t\right)}^\frac{1}{2} \\ & \lesssim T^{1/2}_* \Vert (\zeta,\overline{\mathbf {w}}, \overline{q}) \Vert _{X_{I_*}}^2. \end{aligned} \end{equation}$$ ()
Also, by using the embeddings
L ( I ; W 3 , 2 ( ω ) ) L ( I ; W 1 , ( ω ) ) , W 1 , 2 ( I ; W 2 , 2 ( Ω ) ) L ( I ; W 1 , 4 ( Ω ) ) , W 2 , 2 ( I ; L 2 ( Ω ) ) W 1 , 2 ( I ; W 2 , 2 ( Ω ) ) W 1 , 4 ( I ; L 4 ( Ω ) ) , $$\begin{align*} &L^\infty (I_*;W^{3,2}(\omega))\hookrightarrow L^\infty (I_*;W^{1,\infty }(\omega)), \\ & W^{1,2}(I_*;W^{2,2}(\Omega))\hookrightarrow L^\infty (I_*;W^{1,4}(\Omega)), \\ & W^{2,2}(I_*;L^2(\Omega)) \cap W^{1,2}(I_*;W^{2,2}(\Omega))\hookrightarrow W^{1,4}(I_*;L^{ 4}(\Omega)), \end{align*}$$
we obtain
I J ζ x Ψ ζ 1 Ψ ζ x w ¯ t w ¯ L x 2 2 d t I 1 + ζ W y 1 , 4 x w ¯ L x 4 2 t w ¯ L x 4 2 d t T 1 / 2 sup I ζ W y 1 , 4 + 1 sup I x w ¯ L x 4 2 I t w ¯ L x 4 4 d t 1 2 T 1 / 2 ( ζ , w ¯ , q ¯ ) X I 2 . $$\begin{equation} \begin{aligned} \int _{I_*}&\Vert J_{\zeta }{\left(\nabla _{\mathbf {x}}\bm {\Psi }_{\zeta }^{-1}\circ \bm {\Psi }_{\zeta }\right)}\nabla _{\mathbf {x}}\overline{\mathbf {w}} \partial _t \overline{\mathbf {w}} \Vert _{L^2_\mathbf {x}}^2\, {d}t\lesssim \int _{I_*}{\left(1+\Vert \zeta \Vert _{W^{1,\infty }_\mathbf {y}}^4\right)} \Vert \nabla _{\mathbf {x}}\overline{\mathbf {w}} \Vert _{L^4_\mathbf {x}}^2 \Vert \partial _t\overline{\mathbf {w}} \Vert _{L^4_\mathbf {x}}^2\, {d}t\\ &\lesssim T^{1/2}_* {\left(\sup _{I_*}\Vert \zeta \Vert _{W^{1,\infty }_\mathbf {y}}^4 +1\right)} \sup _{I_*} \Vert \nabla _{\mathbf {x}}\overline{\mathbf {w}} \Vert _{L^4_\mathbf {x}}^2 {\left(\int _{I_*}\Vert \partial _t \overline{\mathbf {w}} \Vert _{L^4_\mathbf {x}}^4\, {d}t\right)}^\frac{1}{2} \\ & \lesssim T^{1/2}_* \Vert (\zeta,\overline{\mathbf {w}}, \overline{q}) \Vert _{X_{I_*}}^2. \end{aligned} \end{equation}$$ ()
Next, we have that
I J ζ t ( f Ψ ζ ) L x 2 2 d t T sup I J ζ L x 2 sup I t f L x 2 2 + sup I f L x 2 2 sup I t ζ L y 2 T ( ζ , w ¯ , q ¯ ) X I 2 . $$\begin{equation} \begin{aligned} \int _{I_*}\Vert J_{\zeta } \partial _t(\mathbf {f}\circ \bm {\Psi }_{\zeta }) \Vert _{L^2_\mathbf {x}}^2\, {d}t& \lesssim T_*\sup _{I_*} \Vert J_{\zeta } \Vert _{L^\infty _\mathbf {x}}^2{\left(\sup _{I_*} \Vert \partial _t\mathbf {f}\Vert _{L^2_\mathbf {x}}^2+\sup _{I_*} \Vert \nabla \mathbf {f}\Vert _{L^2_\mathbf {x}}^2 \sup _{I_*} \Vert \partial _t \zeta \Vert _{L^\infty _\mathbf {y}}^2\right)}\\ & \lesssim T_* \Vert (\zeta,\overline{\mathbf {w}}, \overline{q}) \Vert _{X_{I_*}}^2. \end{aligned} \end{equation}$$ ()
Similarly, we have
I t ( J ζ ) f Ψ ζ L x 2 2 d t T sup I f L x 2 2 sup I Ψ ζ 1 L x 2 sup I t ζ W y 1 , 2 T ( ζ , w ¯ , q ¯ ) X I 2 . $$\begin{equation} \begin{aligned} \int _{I_*}\Vert \partial _t(J_{\zeta }) \mathbf {f}\circ \bm {\Psi }_{\zeta } \Vert _{L^2_\mathbf {x}}^2\, {d}t& \lesssim T_* \sup _{I_*} \Vert \mathbf {f}\Vert _{L^2_\mathbf {x}}^2 \sup _{I_*} \Vert \bm {\Psi }_{\zeta }^{-1} \Vert _{L^\infty _\mathbf {x}}^2 \sup _{I_*} \Vert \partial _t \zeta \Vert _{W^{1,\infty }_\mathbf {y}}^2 \lesssim T_* \Vert (\zeta,\overline{\mathbf {w}}, \overline{q}) \Vert _{X_{I_*}}^2. \end{aligned} \end{equation}$$ ()
It follows from (3.79)–(3.83) that
K 3 T 1 / 2 ( ζ , w ¯ , q ¯ ) X I 2 . $$\begin{equation} \begin{aligned} K_3 \lesssim T^{1/2}_* \Vert (\zeta,\overline{\mathbf {w}}, \overline{q}) \Vert _{X_{I_*}}^2. \end{aligned} \end{equation}$$ ()
Our next goal is to estimate K 4 $K_4$ . First of all, note that
| t H ζ ( w ¯ , q ¯ ) ] | | ( A η 0 A ζ ) t x w ¯ | + | t ( A η 0 A ζ ) x w ¯ | + | ( B η 0 B ζ ) t ( q ¯ 1 S q ( ¯ ) ) | + | t ( B η 0 B ζ ) ( q ¯ 1 I 3 × 3 S q ( ¯ ) ) | $$\begin{equation*} \begin{aligned} \nonumber \vert \partial _t \mathbf {H}_{\zeta }(\overline{\mathbf {w}}, \overline{q})]\vert &\lesssim \vert (\mathbf {A}_{\eta _0} -\mathbf {A}_{\zeta })\partial _t\nabla _{\mathbf {x}}\overline{\mathbf {w}} \vert + \vert \partial _t(\mathbf {A}_{\eta _0} -\mathbf {A}_{\zeta })\nabla _{\mathbf {x}}\overline{\mathbf {w}} \vert + \vert (\mathbf {B}_{\eta _0}-\mathbf {B}_{\zeta }) \partial _t (\overline{q}_1-\mathbb {S}_{\mathbf {q}}(\overline{\hbar })) \vert \\ &+ \vert \partial _t(\mathbf {B}_{\eta _0}-\mathbf {B}_{\zeta }) (\overline{q}_1\,\mathbb {I}_{3\times 3}-\mathbb {S}_{\mathbf {q}}(\overline{\hbar })) \vert \end{aligned} \end{equation*}$$
holds uniformly. Due to the continuous embeddings
W 1 , ( I ; W 3 , 2 ( ω ) ) W 1 , ( I ; W 1 , ( ω ) ) , L 2 ( I ; W 4 , 2 ( Ω ) ) W 2 , 2 ( I ; W 1 , 2 ( Ω ) ) W 3 / 2 , 2 ( I ; W 1 , 4 ( Ω ) ) W 1 , 4 ( I ; W 1 , 4 ( Ω ) ) , W 1 , 2 ( I * ; W 2 , 2 ( Ω ) ) C 0 , 1 / 2 ( I ¯ * ; W 2 , 2 ( Ω ) ) L ( I * ; W 2 , 2 ( Ω ) ) , $$\begin{align*} &\qquad \qquad \qquad \qquad W^{1,\infty }(I_*;W^{3,2}(\omega))\hookrightarrow W^{1,\infty }(I_*;W^{1,\infty }(\omega)), \\ &L^{2}(I_*;W^{4,2}(\Omega)) \cap W^{2,2}(I_*;W^{1,2}(\Omega)) \hookrightarrow W^{3/2,2}(I_*;W^{1,4}(\Omega))\hookrightarrow W^{1,4}(I_*;W^{1,4}(\Omega)),\\ &W^{1,2}(I_\ast;W^{2,2}(\Omega))\hookrightarrow C^{0,1/2}(\overline{I}_\ast;W^{2,2}(\Omega))\hookrightarrow L^{\infty }(I_\ast;W^{2,2}(\Omega)), \end{align*}$$
it follows from (2.4) and (2.5) that
I ( A η 0 A ζ ) t x w ¯ W x 1 , 2 2 d t + I t ( A η 0 A ζ ) x w ¯ W x 1 , 2 2 d t I x ( A η 0 A ζ ) L x 4 2 t x w ¯ L x 4 2 d t + I t x ( A η 0 A ζ ) L x 4 2 x w ¯ L x 4 2 d t + I A η 0 A ζ L x 2 t x 2 w ¯ L x 2 2 d t + I t ( A η 0 A ζ ) L x 2 x 2 w ¯ L x 2 2 d t T 1 / 2 sup I η 0 ζ W y 2 , 4 2 I t x w ¯ L x 4 4 d t 1 2 + T 1 / 2 sup I t ( η 0 ζ ) W y 2 , 4 2 I x w ¯ L x 4 4 d t 1 2 + sup I η 0 ζ W y 1 , 2 I t x 2 w ¯ L x 2 2 d t + sup I t ( η 0 ζ ) W y 1 , 2 I x 2 w ¯ L x 2 2 d t T 1 / 2 ( ζ , w ¯ , q ¯ ) X I 2 . $$\begin{equation} \begin{aligned} \int _{I_*}&\Vert (\mathbf {A}_{\eta _0} -\mathbf {A}_{\zeta }) \partial _t\nabla _{\mathbf {x}}\overline{\mathbf {w}} \Vert _{W^{1,2}_\mathbf {x}}^2\, {d}t+ \int _{I_*}\Vert \partial _t(\mathbf {A}_{\eta _0} -\mathbf {A}_{\zeta })\nabla _{\mathbf {x}}\overline{\mathbf {w}} \Vert _{W^{1,2}_\mathbf {x}}^2\, {d}t\\ &\lesssim \int _{I_*}\Vert \nabla _{\mathbf {x}}(\mathbf {A}_{\eta _0} -\mathbf {A}_{\zeta }) \Vert _{L^4_\mathbf {x}}^2\Vert \partial _t\nabla _{\mathbf {x}}\overline{\mathbf {w}} \Vert _{L^4_\mathbf {x}}^2\, {d}t+ \int _{I_*}\Vert \partial _t\nabla _{\mathbf {x}}(\mathbf {A}_{\eta _0} -\mathbf {A}_{\zeta }) \Vert _{L^4_\mathbf {x}}^2\Vert \nabla _{\mathbf {x}}\overline{\mathbf {w}} \Vert _{L^4_\mathbf {x}}^2\, {d}t\\ &+ \int _{I_*}\Vert \mathbf {A}_{\eta _0} -\mathbf {A}_{\zeta }\Vert _{L^\infty _\mathbf {x}}^2 \Vert \partial _t\nabla _{\mathbf {x}}^2 \overline{\mathbf {w}} \Vert _{L^2_\mathbf {x}}^2\, {d}t+ \int _{I_*}\Vert \partial _t(\mathbf {A}_{\eta _0} -\mathbf {A}_{\zeta })\Vert _{L^\infty _\mathbf {x}}^2 \Vert \nabla _{\mathbf {x}}^2 \overline{\mathbf {w}} \Vert _{L^2_\mathbf {x}}^2\, {d}t\\ &\lesssim T^{1/2}_* \sup _{I_*}\Vert \eta _0 - \zeta \Vert _{W^{2,4}_\mathbf {y}}^2{\left(\int _{I_*}\Vert \partial _t\nabla _{\mathbf {x}}\overline{\mathbf {w}} \Vert _{L^4_\mathbf {x}}^4\, {d}t\right)}^\frac{1}{2} \\ &+T^{1/2}_* \sup _{I_*}\Vert \partial _t(\eta _0 - \zeta) \Vert _{W^{2,4}_\mathbf {y}}^2{\left(\int _{I_*}\Vert \nabla _{\mathbf {x}}\overline{\mathbf {w}} \Vert _{L^4_\mathbf {x}}^4\, {d}t\right)}^\frac{1}{2} \\ &+ \sup _{I_*}\Vert \eta _0 - \zeta \Vert _{W^{1,\infty }_\mathbf {y}}^2 \int _{I_*}\Vert \partial _t\nabla _{\mathbf {x}}^2 \overline{\mathbf {w}} \Vert _{L^2_\mathbf {x}}^2\, {d}t\\ &+ \sup _{I_*}\Vert \partial _t(\eta _0 - \zeta) \Vert _{W^{1,\infty }_\mathbf {y}}^2 \int _{I_*}\Vert \nabla _{\mathbf {x}}^2 \overline{\mathbf {w}} \Vert _{L^2_\mathbf {x}}^2\, {d}t\\ &\lesssim T^{1/2}_* \Vert (\zeta, \overline{\mathbf {w}}, \overline{q})\Vert _{X_{I_*}}^2. \end{aligned} \end{equation}$$ ()
Similarly, we obtain
I t ( B η 0 B ζ ) ( q ¯ I 3 × 3 S q ( ¯ ) ) W x 1 , 2 2 d t + I ( B η 0 B ζ ) t ( q ¯ I 3 × 3 S q ( ¯ ) ) W x 1 , 2 2 d t I t x ( B η 0 B ζ ) L x 4 2 q ¯ I 3 × 3 S q ( ¯ ) L x 4 2 d t + I x ( B η 0 B ζ ) L x 4 2 t ( q ¯ I 3 × 3 S q ( ¯ ) ) L x 4 2 d t + I B η 0 B ζ L x 2 t x ( q ¯ I 3 × 3 S q ( ¯ ) ) L x 2 2 d t + I t ( B η 0 B ζ ) L x 2 x ( q ¯ I 3 × 3 S q ( ¯ ) ) L x 2 2 d t sup I t ( η 0 ζ ) W y 2 , 4 2 I q ¯ I 3 × 3 S q ( ¯ ) L x 4 2 d t + sup I η 0 ζ W y 2 , 4 2 I t ( q ¯ I 3 × 3 S q ( ¯ ) ) L x 4 2 d t + sup I η 0 ζ W y 1 , 2 I t ( q ¯ I 3 × 3 S q ( ¯ ) ) W x 1 , 2 2 d t + sup I t ( η 0 ζ ) W y 1 , 2 I q ¯ I 3 × 3 S q ( ¯ ) W x 1 , 2 2 d t T 1 / 2 ( ζ , w ¯ , q ¯ ) X I 2 + 1 $$\begin{equation} \begin{aligned} \int _{I_*}\Vert \partial _t(\mathbf {B}_{\eta _0}-&\mathbf {B}_{\zeta }) (\overline{q}\,\mathbb {I}_{3\times 3}-\mathbb {S}_{\mathbf {q}}(\overline{\hbar }))\Vert _{W^{1,2}_\mathbf {x}}^2\, {d}t+ \int _{I_*}\Vert (\mathbf {B}_{\eta _0}-\mathbf {B}_{\zeta }) \partial _t (\overline{q}\,\mathbb {I}_{3\times 3}-\mathbb {S}_{\mathbf {q}}(\overline{\hbar })) \Vert _{W^{1,2}_\mathbf {x}}^2\, {d}t\\ &\lesssim \int _{I_*}\Vert \partial _t\nabla _{\mathbf {x}}(\mathbf {B}_{\eta _0}-\mathbf {B}_{\zeta }) \Vert _{L^4_\mathbf {x}}^2 \Vert \overline{q}\,\mathbb {I}_{3\times 3}-\mathbb {S}_{\mathbf {q}}(\overline{\hbar }) \Vert _{L^4_\mathbf {x}}^2\, {d}t\\ & +\int _{I_*}\Vert \nabla _{\mathbf {x}}(\mathbf {B}_{\eta _0}-\mathbf {B}_{\zeta }) \Vert _{L^4_\mathbf {x}}^2 \Vert \partial _t (\overline{q}\,\mathbb {I}_{3\times 3}-\mathbb {S}_{\mathbf {q}}(\overline{\hbar })) \Vert _{L^4_\mathbf {x}}^2\, {d}t\\ &+ \int _{I_*}\Vert \mathbf {B}_{\eta _0}-\mathbf {B}_{\zeta } \Vert _{L^\infty _\mathbf {x}}^2 \Vert \partial _t\nabla _{\mathbf {x}}(\overline{q}\,\mathbb {I}_{3\times 3}-\mathbb {S}_{\mathbf {q}}(\overline{\hbar })) \Vert _{L^2_\mathbf {x}}^2\, {d}t\\ & + \int _{I_*}\Vert \partial _t(\mathbf {B}_{\eta _0}-\mathbf {B}_{\zeta }) \Vert _{L^\infty _\mathbf {x}}^2 \Vert \nabla _{\mathbf {x}}(\overline{q}\,\mathbb {I}_{3\times 3}-\mathbb {S}_{\mathbf {q}}(\overline{\hbar })) \Vert _{L^2_\mathbf {x}}^2\, {d}t\\ &\lesssim \sup _{I_*}\Vert \partial _t(\eta _0 - \zeta) \Vert _{W^{2,4}_\mathbf {y}}^2 \int _{I_*} \Vert \overline{q}\,\mathbb {I}_{3\times 3}-\mathbb {S}_{\mathbf {q}}(\overline{\hbar }) \Vert _{L^4_\mathbf {x}}^2\, {d}t\\ &+\sup _{I_*}\Vert \eta _0 - \zeta \Vert _{W^{2,4}_\mathbf {y}}^2 \int _{I_*} \Vert \partial _t (\overline{q}\,\mathbb {I}_{3\times 3}-\mathbb {S}_{\mathbf {q}}(\overline{\hbar })) \Vert _{L^4_\mathbf {x}}^2\, {d}t\\ &+ \sup _{I_*}\Vert \eta _0 - \zeta \Vert _{W^{1,\infty }_\mathbf {y}}^2 \int _{I_*} \Vert \partial _t (\overline{q}\,\mathbb {I}_{3\times 3}-\mathbb {S}_{\mathbf {q}}(\overline{\hbar }))\Vert _{W^{1,2}_\mathbf {x}}^2\, {d}t\\ &+ \sup _{I_*}\Vert \partial _t(\eta _0 - \zeta) \Vert _{W^{1,\infty }_\mathbf {y}}^2 \int _{I_*} \Vert \overline{q}\,\mathbb {I}_{3\times 3}-\mathbb {S}_{\mathbf {q}}(\overline{\hbar })\Vert _{W^{1,2}_\mathbf {x}}^2\, {d}t\\ &\lesssim T^{1/2}_*{\left(\Vert (\zeta, \overline{\mathbf {w}}, \overline{q})\Vert _{X_{I_*}}^2+1\right)} \end{aligned} \end{equation}$$ ()
using (3.70) to control S q ( ¯ ) $\mathbb {S}_{\mathbf {q}}(\overline{\hbar })$ in the last step.
By using (3.85)–(3.86), it follows that
K 4 T 1 / 2 ( ζ , w ¯ , q ¯ ) X I 2 + 1 . $$\begin{align} K_4 \lesssim T^{1/2}_* {\left(\Vert (\zeta,\overline{\mathbf {w}}, \overline{q}) \Vert _{X_{I_*}}^2+1\right)}. \end{align}$$ ()
Let us now obtain an estimate for K 5 $K_5$ . First, note that
| h ζ ( w ¯ ) | + | x h ζ ( w ¯ ) | | ( J η 0 J ζ ) t x w ¯ | + | x ( J η 0 J ζ 1 ) t w ¯ | + | J ζ x w ¯ t Ψ ζ 1 Ψ ζ + w ¯ x Ψ ζ 1 Ψ ζ | + | x [ J ζ x Ψ ζ 1 Ψ ζ ] w ¯ x w ¯ | + | J ζ x w ¯ x 2 t Ψ ζ 1 Ψ ζ | + | J ζ x ( f Ψ ζ ) | + | ( x J ζ ) f Ψ ζ | + L . O . T . $$\begin{align*} \vert \mathbf {h}_{\zeta }(\overline{\mathbf {w}}) \vert +\vert \nabla _{\mathbf {x}}\mathbf {h}_{\zeta }(\overline{\mathbf {w}}) \vert &\lesssim \vert (J_{\eta _0}-J_{\zeta })\partial _t\nabla _{\mathbf {x}}\overline{\mathbf {w}} \vert + \vert \nabla _{\mathbf {x}}(J_{\eta _0}-J_{\zeta _1})\partial _t \overline{\mathbf {w}} \vert \\ & + \big \vert J_{\zeta } \nabla _{\mathbf {x}}\overline{\mathbf {w}} {\left(\partial _t \bm {\Psi }_{\zeta }^{-1}\circ \bm {\Psi }_{\zeta } +\overline{\mathbf {w}}{\left(\nabla _{\mathbf {x}}\bm {\Psi }_{\zeta }^{-1}\circ \bm {\Psi }_{\zeta }\right)}\right)} \big \vert \\ & + \big \vert \nabla _{\mathbf {x}}[J_{\zeta }{\left(\nabla _{\mathbf {x}}\bm {\Psi }_{\zeta }^{-1}\circ \bm {\Psi }_{\zeta }\right)}] \overline{\mathbf {w}} \nabla _{\mathbf {x}}\overline{\mathbf {w}} \big \vert \\ & + \big \vert J_{\zeta } \nabla _{\mathbf {x}}\overline{\mathbf {w}} \nabla _{\mathbf {x}}^2{\left(\partial _t\bm {\Psi }_{\zeta }^{-1}\circ \bm {\Psi }_{\zeta } \right)} \big \vert \\ & + \vert J_{\zeta } \nabla _{\mathbf {x}}(\mathbf {f}\circ \bm {\Psi }_{\zeta }) \vert + \vert (\nabla _{\mathbf {x}}J_{\zeta }) \mathbf {f}\circ \bm {\Psi }_{\zeta } \vert +\mathrm{L.O.T}. \end{align*}$$
where L . O . T $\mathrm{L.O.T}$ are lower-order terms satisfying
I L . O . T L 2 ( Ω ) 2 d t T 1 / 2 ( ζ , w ¯ , q ¯ ) X I 2 + 1 . $$\begin{align} \int _{I_*}\Vert \mathrm{L.O.T}\Vert _{L^2(\Omega)}^2\, {d}t\lesssim T^{1/2}_* {\left(\Vert (\zeta,\overline{\mathbf {w}}, \overline{q}) \Vert _{X_{I_*}}^2+1\right)}. \end{align}$$ ()
Furthermore, the other terms can be treated as was done for K 3 $K_3$ leading to
K 5 T 1 / 2 ( ζ , w ¯ , q ¯ ) X I 2 + 1 . $$\begin{equation} \begin{aligned} K_5 \lesssim T^{1/2}_* {\left(\Vert (\zeta,\overline{\mathbf {w}}, \overline{q}) \Vert _{X_{I_*}}^2+1\right)}. \end{aligned} \end{equation}$$ ()
The estimate for K 6 $K_6$ is similar to that of K 4 $K_4$ by noticing that
k = 0 2 | x k H ζ ( w ¯ , q ¯ ) | | ( B η 0 B ζ ) x 2 ( q ¯ S q ( ¯ ) ) | + | x 2 ( B η 0 B ζ 1 ) ( q ¯ S q ( ¯ ) ) | + | ( A η 0 A ζ ) x 3 w ¯ | + | x 2 ( A η 0 A ζ ) x w ¯ | + L . O . T $$\begin{align*} \sum _{k=0}^2 \vert \nabla _{\mathbf {x}}^k \mathbf {H}_{\zeta }(\overline{\mathbf {w}},\overline{q}) \vert &\lesssim \vert (\mathbf {B}_{\eta _0}-\mathbf {B}_{\zeta }) \nabla _{\mathbf {x}}^2(\overline{q} - S_{\mathbf {q}}(\overline{\hbar }))\vert + \vert \nabla _{\mathbf {x}}^2(\mathbf {B}_{\eta _0}-\mathbf {B}_{\zeta _1}) (\overline{q} - S_{\mathbf {q}}(\overline{\hbar }))\vert \\ & + \vert (\mathbf {A}_{\eta _0} -\mathbf {A}_{\zeta })\nabla _{\mathbf {x}}^3\overline{\mathbf {w}} \vert + \vert \nabla _{\mathbf {x}}^2(\mathbf {A}_{\eta _0} -\mathbf {A}_{\zeta })\nabla _{\mathbf {x}}\overline{\mathbf {w}} \vert +\mathrm{L.O.T} \end{align*}$$
where L . O . T $\mathrm{L.O.T}$ are lower-order terms also satisfying (3.88).
Consequently, we obtain
K 6 T 1 / 2 ( ζ , w ¯ , q ¯ ) X I 2 + 1 . $$\begin{equation} \begin{aligned} K_6 \lesssim T^{1/2}_*{\left(\Vert (\zeta,\overline{\mathbf {w}}, \overline{q}) \Vert _{X_{I_*}}^2+1\right)}. \end{aligned} \end{equation}$$ ()
Similarly, we also obtain
K 7 T 1 / 2 ( ζ , w ¯ , q ¯ ) X I 2 . $$\begin{equation} \begin{aligned} K_7 \lesssim T^{1/2}_* \Vert (\zeta,\overline{\mathbf {w}}, \overline{q}) \Vert _{X_{I_*}}^2. \end{aligned} \end{equation}$$ ()
By collecting the estimates (3.74), (3.77), (3.84), (3.87), (3.89), (3.90) (3.91) and combining it with (3.68)–(3.70), we have shown that for R $R$ -dependent constants c ( R ) , C ( R ) $c(R),C(R)$
T ( ζ , w ¯ , q ¯ ) X I 2 R 2 / 2 + c ( R ) T 1 / 2 ( ζ , w ¯ , q ¯ ) X I 2 + 1 R 2 / 2 + C ( R ) T 1 / 2 . $$\begin{align*} \Vert \mathcal {T}(\zeta, \overline{\mathbf {w}}, \overline{q})\Vert _{X_{I_*}}^2 &\le R^2/2 + c(R) T^{1/2}_* {\left(\Vert (\zeta,\overline{\mathbf {w}}, \overline{q}) \Vert _{X_{I_*}}^2+1\right)} \le R^2/2 + C(R) T^{1/2}_*. \end{align*}$$
Choosing T $T_*$ in I = ( 0 , T ) $I_*=(0,T_*)$ so that T 1 / 2 C ( R ) 1 R 2 / 2 $T^{1/2}_*\le C(R)^{-1}R^2/2$ yields our desired result (3.67).

4 SOLVING THE EQUATION FOR THE SOLUTE

In this section, for a known moving domain Ω ζ $\Omega _{\zeta }$ and a known solenoidal velocity field w $\mathbf {w}$ , we aim to construct a strong solution of the Fokker–Planck equation
M t f ̂ + ( w · x ) f ̂ + div q ( x w ) q M f ̂ = Δ x ( M f ̂ ) + div q M q f ̂ $$\begin{align} M{\left(\partial _t \widehat{f} + (\mathbf {w}\cdot \nabla _{\mathbf {x}}) \widehat{f}\right)} + \mathrm{div}_{\mathbf {q}}{\left((\nabla _{\mathbf {x}}\mathbf {w}) \mathbf {q}M\widehat{f} \right)} = \Delta _{\mathbf {x}}(M\widehat{f}) + \mathrm{div}_{\mathbf {q}}{\left(M \nabla _{\mathbf {q}}\widehat{f} \right)} \end{align}$$ ()
in I × Ω ζ × B $I\times \Omega _\zeta \times B$ , where the Maxwellian M $M$ is given by
M ( q ) = e U 1 2 | q | 2 B e U 1 2 | q | 2 d q , U ( s ) = b 2 log 1 2 s b , s [ 0 , b / 2 ) $$\begin{align*} M(\mathbf {q}) = \frac{e^{-U {\left(\frac{1}{2}\vert \mathbf {q} \vert ^2 \right)} }}{\int _Be^{-U {\left(\frac{1}{2}\vert \mathbf {q} \vert ^2 \right)} }\,\mathrm{d}\mathbf {q}},\quad U (s) = -\frac{b}{2} \log {\left(1- \frac{2s}{b} \right)}, \quad s\in [0,b/2) \end{align*}$$
with b > 2 $b>2$ . Equation (4.1) is complemented with the conditions
f ̂ ( 0 , · , · ) = f ̂ 0 0 in Ω ζ 0 × B , $$\begin{align} &\widehat{f}(0, \cdot, \cdot) =\widehat{f}_0 \ge 0 \quad \text{in }\Omega _{\zeta _0} \times B, \end{align}$$ ()
x f ̂ · n ζ = 0 on I × Ω ζ × B , $$\begin{align} & \nabla _{\mathbf {x}}\widehat{f}\cdot \mathbf {n}_\zeta =0 \quad \text{on }I \times \partial \Omega _\zeta \times B, \end{align}$$ ()
M q f ̂ ( x w ) q f ̂ · q | q | = 0 on I × Ω ζ × B ¯ . $$\begin{align} &M{\left(\nabla _{\mathbf {q}}\widehat{f} - (\nabla _{\mathbf {x}}\mathbf {w}) \mathbf {q}\widehat{f} \right)} \cdot \frac{\mathbf {q}}{\vert \mathbf {q}\vert } =0 \quad \text{on }I \times \Omega _\zeta \times \partial \overline{B}. \end{align}$$ ()
Let us start with a precise definition of what we mean by a strong solution.

Definition 4.1.Assume that the triplet ( f ̂ 0 , ζ , w ) $(\widehat{f}_0,\zeta, \mathbf {w})$ satisfies

f ̂ 0 W 1 , 2 Ω ζ ( 0 ) ; L M 2 ( B ) , w L 2 ( I ; W div x 3 , 2 ( Ω ζ ) ) W 1 , ( I ; W 1 , 2 ( Ω ζ ) ) W 1 , 2 ( I ; W 2 , 2 ( Ω ζ ) ) , $$\begin{align} & \widehat{f}_0\in W^{1,2}{\left(\Omega _{\zeta (0)}; L^2_M(B) \right)}, \qquad \mathbf {w}\in L^2(I; W^{3,2}_{\mathrm{div}_{\mathbf {x}}}(\Omega _{\zeta })) \cap W^{1,\infty }(I;W^{1,2} (\Omega _{\zeta }))\cap W^{1,2}(I;W^{2,2} (\Omega _{\zeta })), \end{align}$$ ()
ζ W 1 , ( I ; W 2 , 2 ( ω ) ) , $$\begin{align} &\qquad \qquad \zeta \in W^{1,\infty }(I;W^{2,2}(\omega)), \end{align}$$ ()
w φ ζ = ( t ζ ) n on I × ω , ζ L ( I × ω ) < L . $$\begin{align} & \mathbf {w} \circ \bm {\varphi }_{\zeta } =(\partial _t\zeta)\mathbf {n}\quad \text{on }I \times \omega, \quad \Vert \zeta \Vert _{L^\infty (I\times \omega)}<L. \end{align}$$ ()
We call f ̂ $\widehat{f}$ a strong solution of (4.1) with data ( f ̂ 0 , ζ , w ) $(\widehat{f}_0,\zeta, \mathbf {w})$ if
  • (a) f ̂ $\widehat{f}$ satisfies
    f ̂ W 1 , I ; W 1 , 2 ( Ω η ( t ) ; L M 2 ( B ) ) W 1 , 2 I ; W 2 , 2 ( Ω η ( t ) ; L M 2 ( B ) ) W 1 , 2 I ; W 1 , 2 ( Ω η ( t ) ; H M 1 ( B ) ) ; $$\begin{align*} \widehat{f}&\in W^{1,\infty }{\left(I;W^{1,2}(\Omega _{\eta (t)};L^2_M(B)) \right)} \cap W^{1,2}{\left(I;W^{2,2}(\Omega _{\eta (t)};L^2_M(B)) \right)} \\ & \qquad \qquad \qquad \cap W^{1,2}{\left(I;W^{1,2}(\Omega _{\eta (t)};H^1_M(B)) \right)}; \end{align*}$$
  • (b) for all φ C ( I ¯ × R 3 × B ¯ ) $ \varphi \in C^\infty (\overline{I}\times \mathbb {R}^3 \times \overline{B})$ , we have
    I d d t Ω ζ × B M f ̂ φ d q d x d t = I Ω ζ × B M f ̂ t φ + M w f ̂ · x φ x f ̂ · x φ d q d x d t + I Ω ζ × B M ( x w ) q f ̂ M q f ̂ · q φ d q d x d t . $$\begin{equation} \begin{aligned} \int _I \frac{\mathrm{d}}{\, {d}t} \int _{\Omega _{\zeta }\times B}M \widehat{f} \, \varphi \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t&=\int _I\int _{\Omega _{\zeta }\times B}{\left(M \widehat{f} \,\partial _t \varphi + M\mathbf {w} \widehat{f} \cdot \nabla _{\mathbf {x}}\varphi - \nabla _{\mathbf {x}}\widehat{f} \cdot \nabla _{\mathbf {x}}\varphi \right)} \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\\ & + \int _I\int _{ \Omega _{\zeta }\times B} {\left(M (\nabla _{\mathbf {x}}\mathbf {w}) \mathbf {q}\widehat{f}- M \nabla _{\mathbf {q}}\widehat{f} \right)} \cdot \nabla _{\mathbf {q}}\varphi \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t. \end{aligned} \end{equation}$$ ()

We now formulate our result on the existence of a unique strong solution of (4.1).

Theorem 4.2.Let ( f ̂ 0 , ζ , w ) $(\widehat{f}_0,\zeta, \mathbf {w})$ satisfy (4.5)–(4.7) and suppose further that f 0 L 2 ( Ω ζ ( 0 ) ; L M 2 ( B ) ) $\widetilde{f}_0\in L^{2}(\Omega _{\zeta (0)};L^2_M(B))$ , where f 0 $\widetilde{f}_0$ is given by

M f 0 = Δ x ( M f ̂ 0 ) + div q M q f ̂ 0 M ( u 0 · x ) f ̂ 0 div q ( x u 0 ) q M f ̂ 0 . $$\begin{equation} \begin{aligned} M \widetilde{f}_0 &= \Delta _{\mathbf {x}}(M \widehat{f}_0) + \mathrm{div}_{\mathbf {q}}{\left(M \nabla _{\mathbf {q}}\widehat{f}_0 \right)} - M (\mathbf {u}_0\cdot \nabla _{\mathbf {x}}) \widehat{f}_0 - \mathrm{div}_{\mathbf {q}}{\left((\nabla _{\mathbf {x}}\mathbf {u}_0) \mathbf {q}M\widehat{f}_0 \right)} . \end{aligned} \end{equation}$$ ()
Then, there is a unique strong solution f ̂ $\widehat{f}$ of (4.1)–(4.4), in the sense of Definition 4.1, such that
sup I t f ̂ ( t ) L 2 ( Ω ζ ; L M 2 ( B ) ) 2 + I t f ̂ W 1 , 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t + I t f ̂ L 2 ( Ω ζ ; H M 1 ( B ) ) 2 d t + sup I f ̂ ( t ) W 1 , 2 ( Ω ζ ; L M 2 ( B ) ) 2 + I f ̂ W 2 , 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t + I f ̂ W 1 , 2 ( Ω ζ ; H M 1 ( B ) ) 2 d t exp c I w W 5 / 2 + κ , 2 ( Ω ζ ) 2 d t + c I t w W 3 / 2 + κ , 2 ( Ω ζ ) 2 d t × exp c sup I w W 7 / 4 , 2 ( Ω ζ ) 2 + c sup I t ζ W 1 , 2 ( ω ) 3 × f ̂ 0 W 1 , 2 ( Ω ζ ( 0 ) ; L M 2 ( B ) ) 2 + f 0 L 2 ( Ω ζ ( 0 ) ; L M 2 ( B ) ) 2 $$\begin{equation} \begin{aligned} & \sup _I \Vert \partial _t\widehat{f}(t) \Vert _{L^{2}(\Omega _{\zeta };L^2_M(B))}^2+ \int _I \Vert \partial _t\widehat{f} \Vert _{W^{1,2}(\Omega _{\zeta };L^2_M(B))}^2 \, {d}t+ \int _I \Vert \partial _t\widehat{f} \Vert _{L^{2}(\Omega _{\zeta };H^1_M(B))}^2 \, {d}t\\ &+ \sup _I \Vert \widehat{f}(t) \Vert _{W^{1,2}(\Omega _{\zeta };L^2_M(B))}^2+ \int _I \Vert \widehat{f} \Vert _{W^{2,2}(\Omega _{\zeta };L^2_M(B))}^2 \, {d}t+ \int _I \Vert \widehat{f} \Vert _{W^{1,2}(\Omega _{\zeta };H^1_M(B))}^2 \, {d}t\\ &\quad \lesssim \exp {\left(c\int _I \Vert \mathbf {w}\Vert _{W^{5/2+\kappa,2}(\Omega _{\zeta })}^2\, {d}t+ c\int _I \Vert \partial _t\mathbf {w}\Vert _{W^{3/2+\kappa,2 }(\Omega _{\zeta })}^2\, {d}t\right)} \\ &\qquad \qquad \times \exp {\left(c \sup _{I} \Vert \mathbf {w}\Vert _{ W^{7/4,2}(\Omega _{\zeta }) }^2 +c \sup _I\Vert \partial _t\zeta \Vert _{W^{1,2}(\omega)}^{3} \right)} \\ &\qquad \qquad \times {\left(\Vert \widehat{f}_0\Vert ^2_{W^{1,2}(\Omega _{\zeta (0)};L^2_M(B))}+ \Vert \widetilde{f}_0 \Vert _{L^{2}(\Omega _{\zeta (0)};L^2_M(B))}^2\right)} \end{aligned} \end{equation}$$ ()
holds for any κ ( 0 , 1 / 2 ) $\kappa \in (0,1/2)$ with a constant depending on the L ( I ; W 1 , ( ω ) ) $L^\infty (I;W^{1,\infty }(\omega))$ -norm of ζ $\zeta$ but otherwise being independent of the data.

We will obtain a solution of (4.1) by way of a limit to the following approximation:
M t f ̂ n + ( w · x ) f ̂ n + div q χ n ( x w ) q M f ̂ n = Δ x ( M f ̂ n ) + div q M q f ̂ n . $$\begin{equation} \begin{aligned} M{\left(\partial _t \widehat{f}^n + (\mathbf {w}\cdot \nabla _{\mathbf {x}}) \widehat{f}^n\right)} + \mathrm{div}_{\mathbf {q}}{\left(\chi ^n (\nabla _{\mathbf {x}}\mathbf {w}) \mathbf {q}M\widehat{f}^n \right)} &= \Delta _{\mathbf {x}}(M \widehat{f}^n) + \mathrm{div}_{\mathbf {q}}{\left(M \nabla _{\mathbf {q}}\widehat{f}^n \right)}. \end{aligned} \end{equation}$$ ()
Here, we solve the equation under the boundary conditions x f ̂ n · n ζ = 0 $\nabla _{\mathbf {x}}\widehat{f}^n\cdot \mathbf {n}_\zeta =0$ and M q f ̂ | B = 0 $M\nabla _{\mathbf {q}}\widehat{f} \vert _{\partial B}=0$ and consider the same initial condition f ̂ n ( 0 ) = f ̂ 0 $\widehat{f}^n(0)=\widehat{f}_0$ . Also, χ n = χ n ( q ) C c 1 ( B ) $\chi ^n=\chi ^n(\mathbf {q})\in C^1_c(B)$ is a cut-off function that is identically equal to 1 on a large part of the ball B $B$ and converges as n $n\rightarrow \infty$ to 1. In the following lemmas, we will derive several estimates for (4.11) which are uniform with respect to n $n$ . They transfer directly to (4.1) as the latter is linear. As far as (4.11) is concerned, we proceed formerly. A rigorous proof can be achieved by working with a Galerkin approximation as was done in [12, Section 4]. The next result is the following.

Lemma 4.3.Let ( f ̂ 0 , ζ , w ) $(\widehat{f}_0,\zeta, \mathbf {w})$ satisfy (4.5)–(4.7) and let f ̂ n $\widehat{f}^n$ be the corresponding solution to (4.11). Then, we have

sup I f ̂ n ( t ) L 2 ( Ω ζ ; L M 2 ( B ) ) 2 + I f ̂ n W 1 , 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t + I f ̂ n L 2 ( Ω ζ ; H M 1 ( B ) ) 2 d t c exp c I w W 1 , ( Ω ζ ) 2 d t f ̂ 0 L 2 ( Ω ζ ( 0 ) ; L M 2 ( B ) ) 2 $$\begin{equation} \begin{aligned} \sup _I \Vert \widehat{f}^n(t) \Vert _{L^2(\Omega _{\zeta };L^2_M(B))}^2 &+ \int _I \Vert \widehat{f}^n \Vert _{W^{1,2}(\Omega _{\zeta };L^2_M(B))}^2 \, {d}t+ \int _I \Vert \widehat{f}^n \Vert _{L^2(\Omega _{\zeta };H^1_M(B))}^2 \, {d}t\\ &\le c\exp {\left(c\int _I \Vert \mathbf {w} \Vert _{W^{1,\infty }(\Omega _{\zeta })}^2 \, {d}t\right)} \Vert \widehat{f}_0 \Vert _{L^2(\Omega _{\zeta (0)};L^2_M(B))}^2 \end{aligned} \end{equation}$$ ()
uniformly in n N $n\in \mathbb {N}$ .

Proof.If we test (4.11) with f ̂ n $ \widehat{f}^n$ and integrate the resulting equation over the ball B $B$ , we obtain by using the boundary condition M q f ̂ | B = 0 $M\nabla _{\mathbf {q}}\widehat{f}\vert _{\partial B}=0$ and the property of the cut-off function χ n $\chi ^n$ that

1 2 t f ̂ n L M 2 ( B ) 2 + 1 2 ( w · x ) f ̂ n L M 2 ( B ) 2 + x f ̂ n L M 2 ( B ) 2 + f ̂ n H M 1 ( B ) 2 = B χ n ( x w ) q M f ̂ n q f ̂ n d q 1 2 f ̂ n H M 1 ( B ) 2 + c | x w | 2 f ̂ n L M 2 ( B ) 2 . $$\begin{equation} \begin{aligned} \frac{1}{2}\partial _t\Vert \widehat{f}^n \Vert _{L^2_M(B)}^2 + \frac{1}{2}(\mathbf {w}\cdot \nabla _{\mathbf {x}})\Vert \widehat{f}^n \Vert _{L^2_M(B)}^2 &+ \Vert \nabla _{\mathbf {x}}\widehat{f}^n \Vert _{L^2_M(B)}^2 + \Vert \widehat{f}^n\Vert _{H^1_M(B)}^2 \\ &= \int _B \chi ^n(\nabla _{\mathbf {x}}\mathbf {w}) \mathbf {q}M\widehat{f}^n \nabla _{\mathbf {q}}\widehat{f}^n \, {d} \mathbf {q}\\ & \le \frac{1}{2} \Vert \widehat{f}^n \Vert _{H^1_M(B)}^2 + c \vert \nabla _{\mathbf {x}}\mathbf {w} \vert ^2\Vert \widehat{f}^n \Vert _{L^2_M(B)}^2. \end{aligned} \end{equation}$$ ()
If we now integrate (4.13) over spacetime, apply Reynolds transport theorem and Grönwall's lemma (keeping (4.7) in mind), we obtain (4.12). $\Box$

Remark 4.4.As it is common for parabolic equations, the proof of Lemma 4.3 can be repeated for powers q 2 $q\ge 2$ of f ̂ n $\widehat{f}^n$ obtaining (ignoring the dissipative terms)

sup I f ̂ n ( t ) L q ( Ω ζ ; L M 2 ( B ) ) q c exp c I w W 1 , ( Ω ζ ) 2 d t f ̂ 0 L q ( Ω ζ ( 0 ) ; L M 2 ( B ) ) q $$\begin{equation} \begin{aligned} \sup _I \Vert \widehat{f}^n(t) \Vert _{L^q(\Omega _{\zeta };L^2_M(B))}^q\le c\exp {\left(c\int _I \Vert \mathbf {w} \Vert _{W^{1,\infty }(\Omega _{\zeta })}^2 \, {d}t\right)} \Vert \widehat{f}_0 \Vert _{L^q(\Omega _{\zeta (0)};L^2_M(B))}^q \end{aligned} \end{equation}$$ ()
uniformly in n N $n\in \mathbb {N}$ . Checking that the q $q$ -dependent constant does not explode, we obtain the maximum principle
sup I f ̂ n ( t ) L ( Ω η ; L M 2 ( B ) ) c exp c I w W 1 , ( Ω ζ ) 2 d t f ̂ 0 L ( Ω ζ ( 0 ) ; L M 2 ( B ) ) ; $$\begin{equation} \begin{aligned} \sup _I \Vert \widehat{f}^n(t) \Vert _{L^\infty (\Omega _\eta;L^2_M(B))}\le c\exp {\left(c\int _I \Vert \mathbf {w} \Vert _{W^{1,\infty }(\Omega _{\zeta })}^2 \, {d}t\right)} \Vert \widehat{f}_0 \Vert _{L^\infty (\Omega _{\zeta (0)};L^2_M(B))}; \end{aligned} \end{equation}$$ ()
a minimum principle can be proved similarly, but it is not needed for our purposes.

Next, we show the following lemma.

Lemma 4.5.Let ( f ̂ 0 , ζ , w ) $(\widehat{f}_0,\zeta, \mathbf {w})$ satisfy (4.5)–(4.7) and let f ̂ n $\widehat{f}^n$ be the corresponding solution to (4.11). Then, we have

sup I x f ̂ n ( t ) L 2 ( Ω ζ ; L M 2 ( B ) ) 2 + I Δ x f ̂ n L 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t + I x f ̂ n L 2 ( Ω ζ ; H M 1 ( B ) ) 2 d t c exp c I w W 5 / 2 + κ , 2 ( Ω ζ ) 2 d t + c I t ζ W 2 / 3 , 2 ( ω ) 3 d t f ̂ 0 W 1 , 2 ( Ω ζ ( 0 ) ; L M 2 ( B ) ) 2 $$\begin{equation} \begin{aligned} &\sup _I \Vert \nabla _{\mathbf {x}}\widehat{f}^n(t) \Vert _{L^2(\Omega _{\zeta };L^2_M(B))}^2+ \int _I \Vert \Delta _{\mathbf {x}}\widehat{f}^n \Vert _{L^2(\Omega _{\zeta };L^2_M(B))}^2 \, {d}t+ \int _I \Vert \nabla _{\mathbf {x}}\widehat{f}^n \Vert _{L^2(\Omega _{\zeta };H^1_M(B))}^2 \, {d}t\\ & \qquad \quad \le c\exp {\left(c\int _I \Vert \mathbf {w} \Vert _{W^{5/2+\kappa,2}(\Omega _{\zeta })}^2 \, {d}t+ c \int _I\Vert \partial _t\zeta \Vert _{W^{ 2/3,2}(\omega)}^3\, {d}t\right)} \Vert \widehat{f}_0 \Vert _{W^{1,2}(\Omega _{\zeta (0)};L^2_M(B))}^2 \end{aligned} \end{equation}$$ ()
for any κ ( 0 , 1 / 2 ) $\kappa \in (0,1/2)$ uniformly in n N $n\in \mathbb {N}$ .

Proof.Now, we test (4.11) with Δ x f ̂ n $\Delta _{\mathbf {x}}\widehat{f}^n$ . First of all, note that by (4.3), the Reynolds transport theorem and (4.7),

I Ω ζ × B M t f ̂ n Δ x f ̂ n d q d x d t = 1 2 I Ω ζ n ζ · ( ( t ζ ) n ) φ ζ 1 x f ̂ n L M 2 ( B ) 2 d H 2 d t 1 2 I d d t x f ̂ n L 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t , $$\begin{equation} \begin{aligned} \int _I\int _{\Omega _{\zeta }\times B}M \partial _t \widehat{f}^n \Delta _{\mathbf {x}}\widehat{f}^n\, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t&= \frac{1}{2} \int _I\int _{\partial \Omega _{\zeta }} \mathbf {n}_\zeta \cdot ((\partial _t\zeta)\mathbf {n})\circ \bm {\varphi }_\zeta ^{-1} \Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert _{L^2_M(B)}^2\,{d}\mathcal {H}^2\, {d}t\\ &- \frac{1}{2}\int _I\frac{\,{d}}{\, {d}t} \Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert _{L^2(\Omega _{\zeta };L^2_M(B))}^2\, {d}t, \end{aligned} \end{equation}$$ ()
where, by interpolation, the trace theorem and Young's inequality,
| I Ω ζ n ζ · ( ( t ζ ) n ) φ ζ 1 x f ̂ n L M 2 ( B ) 2 d H 2 d t | I n ζ · ( ( t ζ ) n ) φ ζ 1 L 6 ( Ω ζ ) x f ̂ n L 12 / 5 ( Ω ζ ; L M 2 ( B ) ) 2 d t I t ζ W 2 / 3 , 2 ( ω ) x f ̂ n W 2 / 3 , 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t I t ζ W 2 / 3 , 2 ( ω ) x f ̂ n L 2 ( Ω ζ ; L M 2 ( B ) ) 2 / 3 x f ̂ n W 1 , 2 ( Ω ζ ; L M 2 ( B ) ) 4 / 3 d t δ I x f ̂ n W 1 , 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t + c ( δ ) I t ζ W 2 / 3 , 2 ( ω ) 3 x f ̂ n L 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t . $$\begin{equation} \begin{aligned} \bigg \vert \int _I&\int _{\partial \Omega _{\zeta }}\mathbf {n}_\zeta \cdot ((\partial _t\zeta)\mathbf {n})\circ \bm {\varphi }_\zeta ^{-1}\Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert _{L^2_M(B)}^2\,{d}\mathcal {H}^2\, {d}t\bigg \vert \\ &\lesssim \int _I\Vert \mathbf {n}_\zeta \cdot ((\partial _t\zeta)\mathbf {n})\circ \bm {\varphi }_\zeta ^{-1}\Vert _{L^6(\partial \Omega _{\zeta })}\Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert _{L^{12/5}(\partial \Omega _{\zeta };L^2_M(B))}^2 \, {d}t\\ & \lesssim \int _I\Vert \partial _t\zeta \Vert _{W^{2/3,2}(\omega)}\Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert _{W^{2/3,2}(\Omega _{\zeta };L^2_M(B))}^2 \, {d}t\\ & \lesssim \int _I\Vert \partial _t\zeta \Vert _{W^{ 2/3,2}(\omega)}\Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert _{L^2(\Omega _{\zeta };L^2_M(B))}^{2/3} \Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert _{W^{1,2}(\Omega _{\zeta };L^2_M(B))}^{4/3} \, {d}t\\ & \le \delta \int _I \Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert _{W^{1,2}(\Omega _{\zeta };L^2_M(B))}^2 \, {d}t+ c(\delta) \int _I\Vert \partial _t\zeta \Vert _{W^{2/3,2}(\omega)}^{3}\Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert _{L^2(\Omega _{\zeta };L^2_M(B))}^2 \, {d}t. \end{aligned} \end{equation}$$ ()
Next,
| I Ω ζ × B M ( w · x ) f ̂ n Δ x f ̂ n d q d x d t | δ I Δ x f ̂ n L 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t + c ( δ ) I w L ( Ω ζ ) 2 x f ̂ n L 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t . $$\begin{equation} \begin{aligned} \bigg \vert \int _I\int _{\Omega _{\zeta }\times B}M (\mathbf {w}\cdot \nabla _{\mathbf {x}}) \widehat{f}^n &\Delta _{\mathbf {x}}\widehat{f}^n\, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\bigg \vert \le \delta \int _I \Vert \Delta _{\mathbf {x}}\widehat{f}^n\Vert _{L^2(\Omega _{\zeta };L^2_M(B))}^2 \, {d}t\\ &+ c(\delta) \int _I\Vert \mathbf {w}\Vert _{L^\infty (\Omega _{\zeta })}^2\Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert _{L^2(\Omega _{\zeta };L^2_M(B))}^2 \, {d}t. \end{aligned} \end{equation}$$ ()
For the dissipative term, we obtain
I Ω ζ × B Δ x ( M f ̂ n ) Δ x f ̂ n d q d x d t = I Δ x f ̂ n L 2 ( Ω ζ ; L M 2 ( B ) ) d t . $$\begin{align} \int _I\int _{\Omega _{\zeta }\times B} \Delta _{\mathbf {x}}(M \widehat{f}^n) \Delta _{\mathbf {x}}\widehat{f}^n\, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t= \int _I\Vert \Delta _{\mathbf {x}}\widehat{f}^n\Vert _{L^2(\Omega _{\zeta };L^2_M(B))}\, {d}t. \end{align}$$ ()
Next, we use (4.3) and (4.4) and Sobolev embeddings and we obtain
I Ω ζ × B div q χ n ( x w ) q M f ̂ n M q f ̂ n Δ x f ̂ n d q d x d t = I Ω ζ × B x χ n ( x w ) q M f ̂ n M q f ̂ n : x q f ̂ n d q d x d t I x f ̂ n L 2 ( Ω ζ ; H M 1 ( B ) ) 2 d t + c I x 2 w L 3 ( Ω ζ ) f ̂ n L 6 ( Ω ζ ; L M 2 ( B ) ) x f ̂ n L 2 ( Ω ζ ; H M 1 ( B ) ) d t + c I x w L ( Ω ζ ) x f ̂ n L 2 ( Ω ζ ; L M 2 ( B ) ) x f ̂ n L 2 ( Ω ζ ; H M 1 ( B ) ) d t 1 2 I x f ̂ n L 2 ( Ω ζ ; H M 1 ( B ) ) 2 d t + c I w W 5 / 2 + κ , 2 ( Ω ζ ) 2 f ̂ n W 1 , 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t , $$\begin{align} \int _I&\int _{\Omega _{\zeta }\times B}\mathrm{div}_{\mathbf {q}}{\left(\chi ^n (\nabla _{\mathbf {x}}\mathbf {w}) \mathbf {q}M\widehat{f}^n - M \nabla _{\mathbf {q}}\widehat{f}^n \right)}\Delta _{\mathbf {x}}\widehat{f}^n\, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\nonumber \\ & = \int _I\int _{\Omega _{\zeta }\times B}\nabla _{\mathbf {x}}{\left(\chi ^n (\nabla _{\mathbf {x}}\mathbf {w}) \mathbf {q}M\widehat{f}^n - M \nabla _{\mathbf {q}}\widehat{f}^n \right)}:\nabla _{\mathbf {x}}\nabla _{\mathbf {q}}\widehat{f}^n\, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\nonumber \\ & \le -\int _I\Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert _{L^2(\Omega _{\zeta };H^1_M(B))}^2\, {d}t+c \int _I\Vert \nabla _{\mathbf {x}}^2\mathbf {w}\Vert _{L^3(\Omega _{\zeta })}\Vert \widehat{f}^n\Vert _{L^6(\Omega _{\zeta };L^2_M(B))} \Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert _{L^2(\Omega _{\zeta };H^1_M(B))}\, {d}t\nonumber \\ & +c \int _I\Vert \nabla _{\mathbf {x}}\mathbf {w}\Vert _{L^\infty (\Omega _{\zeta })}\Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert _{L^2(\Omega _{\zeta };L^2_M(B))} \Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert _{L^2(\Omega _{\zeta };H^1_M(B))}\, {d}t\nonumber \\ & \le -\frac{1}{2}\int _I\Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert _{L^2(\Omega _{\zeta };H^1_M(B))}^2\, {d}t+c \int _I\Vert \mathbf {w}\Vert _{W^{5/2+\kappa,2}(\Omega _{\zeta })}^2\Vert \widehat{f}^n\Vert _{W^{1,2}(\Omega _{\zeta };L^2_M(B))}^2\, {d}t, \end{align}$$ ()
where κ ( 0 , 1 / 2 ) $\kappa \in (0,1/2)$ . By combining (4.18)–(4.21) and applying Sobolev embeddings to the w $\mathbf {w}$ -terms, we obtain (4.16) uniformly in n N $n\in \mathbb {N}$ . $\Box$

Our next lemma is the following.

Lemma 4.6.Let ( f ̂ 0 , ζ , w ) $(\widehat{f}_0,\zeta, \mathbf {w})$ satisfy (4.5)–(4.7) and let f ̂ n $\widehat{f}^n$ be the corresponding solution to (4.11). Then, we have

I t f ̂ n L 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t + sup I x f ̂ n ( t ) L 2 ( Ω ζ ; L M 2 ( B ) ) 2 + sup I f ̂ n ( t ) L 2 ( Ω ζ ; H M 1 ( B ) ) 2 c exp c I w W 5 / 2 + κ , 2 ( Ω ζ ) 2 d t + c I t x w L 2 ( Ω ζ ) 2 d t × exp c sup I w W 7 / 4 , 2 ( Ω ζ ) 2 + c sup I t ζ W 2 / 3 , 2 ( ω ) 3 f ̂ 0 W 1 , 2 ( Ω ζ ( 0 ) ; L M 2 ( B ) ) 2 $$\begin{equation} \begin{aligned} &\int _I\Vert \partial _t\widehat{f}^n \Vert _{L^2(\Omega _{\zeta };L^2_M(B))}^2\, {d}t+ \sup _I \Vert \nabla _{\mathbf {x}}\widehat{f}^n(t) \Vert _{L^2(\Omega _{\zeta };L^2_M(B))}^2 + \sup _I \Vert \widehat{f}^n(t) \Vert _{L^2(\Omega _{\zeta };H^1_M(B))}^2 \\ &\qquad \quad \le \,c \exp {\left(c\int _I \Vert \mathbf {w}\Vert _{W^{5/2+\kappa,2}(\Omega _{\zeta })}^2\, {d}t+c \int _I \Vert \partial _t \nabla _{\mathbf {x}}\mathbf {w}\Vert _{L^{2}(\Omega _{\zeta })}^2\, {d}t\right)} \\ &\qquad \qquad \,\times \exp {\left(c \sup _{I} \Vert \mathbf {w}\Vert _{ W^{7/4,2}(\Omega _{\zeta }) }^2 +c \sup _I\Vert \partial _t\zeta \Vert _{W^{2/3,2}(\omega)}^{3}\right)} \Vert \widehat{f}_0\Vert ^2_{W^{1,2}(\Omega _{\zeta (0)};L^2_M(B))} \end{aligned} \end{equation}$$ ()
for any κ ( 0 , 1 / 2 ) $\kappa \in (0,1/2)$ uniformly in n N $n\in \mathbb {N}$ .

Proof.Test (4.11) with t f ̂ n $\partial _t \widehat{f}^n$ . This yields

t f ̂ n L M 2 ( B ) 2 = 1 2 t x f ̂ n L M 2 ( B ) 2 1 2 t f ̂ n H M 1 ( B ) 2 + B div x ( M x f ̂ n t f ̂ n ) d q B M w · x f ̂ n t f ̂ n d q B div q ( χ n ( x w ) q M f ̂ n ) t f ̂ n d q = : I 1 + + I 5 . $$\begin{equation} \begin{aligned} \Vert \partial _t \widehat{f}^n \Vert _{L^2_M(B)}^2 &= - \frac{1}{2} \partial _t \Vert \nabla _{\mathbf {x}}\widehat{f}^n \Vert _{L^2_M(B)}^2 - \frac{1}{2} \partial _t \Vert \widehat{f}^n\Vert _{H^1_M(B)}^2 + \int _B\mathrm{div}_{\mathbf {x}}(M\nabla _{\mathbf {x}}\widehat{f}^n\partial _t\widehat{f}^n)\, {d} \mathbf {q}\\ & - \int _B M\mathbf {w}\cdot \nabla _{\mathbf {x}}\widehat{f}^n\partial _t\widehat{f}^n\, {d} \mathbf {q}- \int _B \mathrm{div}_{\mathbf {q}}(\chi ^n(\nabla _{\mathbf {x}}\mathbf {w}) \mathbf {q}M\widehat{f}^n) \partial _t \widehat{f}^n \, {d} \mathbf {q}\\ & =:I_1+\cdots +I_5. \end{aligned} \end{equation}$$ ()
By Reynold's transport theorem,
I Ω ζ ( I 1 + I 2 ) d x d t = 1 2 I d d t x f ̂ n L 2 ( Ω ζ ; L M 2 ( B ) ) 2 + f ̂ n L 2 ( Ω ζ ; H M 1 ( B ) ) 2 d t + 1 2 I Ω ζ n ζ · ( ( t ζ ) n ) φ ζ 1 x f ̂ n L M 2 ( B ) 2 + f ̂ n H M 1 ( B ) 2 d H 2 d t , $$\begin{equation} \begin{aligned} \int _I\int _{\Omega _{\zeta }}(I_1&+I_2)\, {d} \mathbf {x}\, {d}t= - \frac{1}{2} \int _I \frac{\,{d}}{\, {d}t} {\left(\Vert \nabla _{\mathbf {x}}\widehat{f}^n \Vert _{L^2(\Omega _{\zeta };L^2_M(B))}^2 + \Vert \widehat{f}^n\Vert _{L^2(\Omega _{\zeta };H^1_M(B))}^2 \right)}\, {d}t\\ &+ \frac{1}{2} \int _I \int _{\partial \Omega _{\zeta }} \mathbf {n}_\zeta \cdot ((\partial _t\zeta)\mathbf {n})\circ \bm {\varphi }_\zeta ^{-1} {\left(\Vert \nabla _{\mathbf {x}}\widehat{f}^n \Vert _{L^2_M(B)}^2 + \Vert \widehat{f}^n\Vert _{H^1_M(B)}^2 \right)}\,{d}\mathcal {H}^2\, {d}t, \end{aligned} \end{equation}$$ ()
where, by the trace theorem, (4.6) and Lemma 4.5 for κ ( 0 , 1 / 2 ) $\kappa \in (0,1/2)$
1 2 I Ω ζ n ζ · ( ( t ζ ) n ) φ ζ 1 x f ̂ n L M 2 ( B ) 2 + f ̂ n H M 1 ( B ) 2 d H 2 d t I n ζ · ( ( t ζ ) n ) φ ζ 1 L 4 ( Ω ζ ) x f ̂ n L 8 / 3 ( Ω ζ ; L M 2 ( B ) ) 2 + f ̂ n L 8 / 3 ( Ω ζ ; H M 1 ( B ) ) 2 d t sup I t ζ W 1 / 2 , 2 ( ω ) I x f ̂ n W 1 , 2 ( Ω ζ ; L M 2 ( B ) ) 2 + f ̂ n W 1 , 2 ( Ω ζ ; H M 1 ( B ) ) 2 d t sup I t ζ W 1 / 2 , 2 ( ω ) exp c I w W 5 / 2 + κ , 2 ( Ω ζ ) 2 d t + c I t ζ W 2 / 3 , 2 ( ω ) 3 d t f ̂ 0 W 1 , 2 ( Ω ζ ( 0 ) ; L M 2 ( B ) ) 2 exp c I w W 5 / 2 + κ , 2 ( Ω ζ ) 2 d t + c sup I t ζ W 2 / 3 , 2 ( ω ) 3 f ̂ 0 W 1 , 2 ( Ω ζ ( 0 ) ; L M 2 ( B ) ) 2 . $$\begin{align*} \frac{1}{2}& \int _I \int _{\partial \Omega _{\zeta }} \mathbf {n}_\zeta \cdot ((\partial _t\zeta)\mathbf {n})\circ \bm {\varphi }_\zeta ^{-1}{\left(\Vert \nabla _{\mathbf {x}}\widehat{f}^n \Vert _{L^2_M(B)}^2 + \Vert \widehat{f}^n\Vert _{H^1_M(B)}^2 \right)}\,{d}\mathcal {H}^2\, {d}t\\ &\lesssim \int _I \Vert \mathbf {n}_\zeta \cdot ((\partial _t\zeta)\mathbf {n})\circ \bm {\varphi }_\zeta ^{-1}\Vert _{L^4(\partial \Omega _{\zeta })} {\left(\Vert \nabla _{\mathbf {x}}\widehat{f}^n \Vert _{L^{8/3}(\partial \Omega _{\zeta };L^2_M(B))}^2 + \Vert \widehat{f}^n\Vert _{L^{8/3}(\partial \Omega _{\zeta };H^1_M(B))}^2 \right)}\, {d}t\\ &\lesssim \sup _I\Vert \partial _t\zeta \Vert _{W^{1/2,2}(\omega)} \int _I{\left(\Vert \nabla _{\mathbf {x}}\widehat{f}^n \Vert _{W^{1,2}(\Omega _{\zeta };L^2_M(B))}^2 + \Vert \widehat{f}^n\Vert _{W^{1,2}(\Omega _{\zeta };H^1_M(B))}^2 \right)}\, {d}t\\ &\lesssim \sup _I\Vert \partial _t\zeta \Vert _{W^{1/2,2}(\omega)} \exp {\left(c\int _I \Vert \mathbf {w} \Vert _{W^{5/2+\kappa,2}(\Omega _{\zeta })}^2 \, {d}t+c\int _I\Vert \partial _t\zeta \Vert _{W^{2/3,2}(\omega)}^{3}\, {d}t\right)} \Vert \widehat{f}_0 \Vert _{W^{1,2}(\Omega _{\zeta (0)};L^2_M(B))}^2 \\ &\lesssim \exp {\left(c\int _I \Vert \mathbf {w} \Vert _{W^{5/2+\kappa,2}(\Omega _{\zeta })}^2 \, {d}t+c\sup _I\Vert \partial _t\zeta \Vert _{W^{2/3,2}(\omega)}^{3} \right)} \Vert \widehat{f}_0 \Vert _{W^{1,2}(\Omega _{\zeta (0)};L^2_M(B))}^2. \end{align*}$$
By Gauss theorem and (4.3), we obtain Ω ζ I 3 d x = 0 $\int _{\Omega _\zeta }I_3\, {d} \mathbf {x}=0$ . Also, by Lemma 4.5, for any δ > 0 $\delta >0$ ,
I Ω ζ I 4 d x d t c ( δ ) I w L ( Ω ζ ) 2 d t sup I x f ̂ n L 2 ( Ω ζ ; L M 2 ( B ) ) 2 + δ I t f ̂ n L 2 ( Ω ζ ; L M 2 ( B ) ) 2 c ( δ ) exp c I w W 5 / 2 + κ , 2 ( Ω ζ ) 2 d t + c I t ζ W 2 / 3 , 2 ( ω ) 3 d t f ̂ 0 W 1 , 2 ( Ω ζ ( 0 ) ; L M 2 ( B ) ) 2 + δ I t f ̂ n L 2 ( Ω ζ ; L M 2 ( B ) ) 2 . $$\begin{equation*} \begin{aligned} \int _I\int _{\Omega _{\zeta }}I_4\, {d} \mathbf {x}\, {d}t&\le c(\delta)\int _I\Vert \mathbf {w}\Vert ^2_{L^\infty (\Omega _\zeta)}\, {d}t\sup _I\Vert \nabla _{\mathbf {x}}\widehat{f}^n \Vert _{L^2(\Omega _{\zeta };L^2_M(B))}^2+\delta \int _I\Vert \partial _t \widehat{f}^n \Vert _{L^2(\Omega _{\zeta };L^2_M(B))}^2 \\ & \le c(\delta)\exp {\left(c\int _I \Vert \mathbf {w} \Vert _{W^{5/2+\kappa,2}(\Omega _{\zeta })}^2 \, {d}t+ c\int _I\Vert \partial _t\zeta \Vert _{W^{2/3,2}(\omega)}^{3}\, {d}t\right)} \Vert \widehat{f}_0 \Vert _{W^{1,2}(\Omega _{\zeta (0)};L^2_M(B))}^2\\ &+\delta \int _I\Vert \partial _t \widehat{f}^n \Vert _{L^2(\Omega _{\zeta };L^2_M(B))}^2. \end{aligned} \end{equation*}$$
Using integration by parts and applying Reynolds transport theorem,
I Ω ζ I 5 d x d t = I Ω ζ × B χ n ( x w ) q M f ̂ n t q f ̂ n d q d x d t = I Ω ζ × B χ n ( t x w ) q M f ̂ n q f ̂ n d q d x d t I Ω ζ × B χ n ( x w ) q M t f ̂ n q f ̂ n d q d x d t + I d d t Ω ζ × B χ n ( x w ) q M f ̂ n q f ̂ n d q d x d t I Ω ζ × B n ζ · ( ( t ζ ) n ) φ ζ 1 χ n ( x w ) q M f ̂ n q f ̂ n d q d H 2 d t = : I 5 1 + + I 5 4 , $$\begin{equation} \begin{aligned} \int _I\int _{\Omega _{\zeta }}I_5\, {d} \mathbf {x}\, {d}t&= \int _I\int _{\Omega _{\zeta }\times B} \chi ^n(\nabla _{\mathbf {x}}\mathbf {w}) \mathbf {q}M \widehat{f}^n \partial _t \nabla _{\mathbf {q}}\widehat{f}^n \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\\ &=- \int _I\int _{\Omega _{\zeta }\times B} \chi ^n(\partial _t\nabla _{\mathbf {x}}\mathbf {w}) \mathbf {q}M \widehat{f}^n \nabla _{\mathbf {q}}\widehat{f}^n \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\\ &- \int _I\int _{\Omega _{\zeta }\times B} \chi ^n(\nabla _{\mathbf {x}}\mathbf {w}) \mathbf {q}M \partial _t\widehat{f}^n \nabla _{\mathbf {q}}\widehat{f}^n \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\\ &+ \int _I\frac{\,{d}}{\, {d}t} \int _{\Omega _{\zeta }\times B} \chi ^n(\nabla _{\mathbf {x}}\mathbf {w}) \mathbf {q}M \widehat{f}^n \nabla _{\mathbf {q}}\widehat{f}^n \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\\ &- \int _I\int _{\partial \Omega _{\zeta }\times B}\mathbf {n}_\zeta \cdot ((\partial _t\zeta)\mathbf {n})\circ \bm {\varphi }_\zeta ^{-1} \chi ^n(\nabla _{\mathbf {x}}\mathbf {w}) \mathbf {q}M \widehat{f}^n \nabla _{\mathbf {q}}\widehat{f}^n \, {d} \mathbf {q}\,{d}\mathcal {H}^2\, {d}t\\ &=: I_5^1+\cdots +I_5^4, \end{aligned} \end{equation}$$ ()
where, by (4.5)–(4.7) as well as Lemmas 4.3 and 4.5,
I 5 1 I f ̂ n L 6 ( Ω ζ ; H M 1 ( B ) ) 2 d t + I t x w L 2 ( Ω ζ ) 2 f ̂ n L 3 ( Ω ζ ; L M 2 ( B ) ) 2 d t I f ̂ n W 1 , 2 ( Ω ζ ; H M 1 ( B ) ) 2 d t + sup I f ̂ n ( t ) W 1 , 2 ( Ω ζ ; L M 2 ( B ) ) 2 I t x w L 2 ( Ω ζ ) 2 d t exp c I w W 5 / 2 + κ , 2 ( Ω ζ ) 2 d t + c I t x w L 2 ( Ω ζ ) 2 d t + c I t ζ W 2 / 3 , 2 ( ω ) 3 d t × f ̂ 0 W 1 , 2 ( Ω ζ ( 0 ) ; L M 2 ( B ) ) 2 . $$\begin{equation} \begin{aligned} I_5^1 &\lesssim \int _I \Vert \widehat{f}^n\Vert _{L^6(\Omega _{\zeta };H^1_M(B))}^2\, {d}t+ \int _I \Vert \partial _t\nabla _{\mathbf {x}}\mathbf {w}\Vert _{L^2(\Omega _{\zeta })}^2\Vert \widehat{f}^n\Vert _{L^3(\Omega _{\zeta };L^2_M(B))}^2\, {d}t\\ &\lesssim \int _I \Vert \widehat{f}^n\Vert _{W^{1,2}(\Omega _{\zeta };H^1_M(B))}^2\, {d}t+ \sup _I\Vert \widehat{f}^n(t)\Vert _{W^{1,2}(\Omega _{\zeta };L^2_M(B))}^2\int _I \Vert \partial _t \nabla _{\mathbf {x}}\mathbf {w}\Vert _{L^{2}(\Omega _{\zeta })}^2\, {d}t\\ &\lesssim \exp {\left(c\int _I \Vert \mathbf {w} \Vert _{W^{5/2+\kappa,2}(\Omega _{\zeta })}^2 \, {d}t+ c\int _I \Vert \partial _t \nabla _{\mathbf {x}}\mathbf {w}\Vert _{L^{2}(\Omega _{\zeta })}^2\, {d}t+c\int _I\Vert \partial _t\zeta \Vert _{W^{2/3,2}(\omega)}^{3}\, {d}t\right)} \\ & \qquad \times \Vert \widehat{f}_0 \Vert _{W^{1,2}(\Omega _{\zeta (0)};L^2_M(B))}^2 . \end{aligned} \end{equation}$$ ()
Also,
I 5 2 δ I t f ̂ n L 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t + c ( δ ) I w W 1 , ( Ω ζ ) 2 f ̂ n L 2 ( Ω ζ ; H M 1 ( B ) ) 2 d t $$\begin{align*} I_5^2 &\le \delta \int _I \Vert \partial _t\widehat{f}^n\Vert _{L^2(\Omega _{\zeta };L^2_M(B))}^2\, {d}t+ c(\delta) \int _I \Vert \mathbf {w}\Vert _{W^{1,\infty }(\Omega _{\zeta })}^2\Vert \widehat{f}^n\Vert _{L^2(\Omega _{\zeta };H^1_M(B))}^2\, {d}t \end{align*}$$
holds for any δ > 0 $\delta >0$ , where the second term will be handled using Grönwall's lemma. Also, by Lemma 4.5,
I 5 3 c ( δ ) sup I x w ( t ) L 4 ( Ω ζ ) 2 f ̂ n ( t ) L 4 ( Ω ζ ; L M 2 ( B ) ) 2 + δ sup I f ̂ n ( t ) L 2 ( Ω ζ ; H M 1 ( B ) ) 2 c ( δ ) sup I w ( t ) W 7 / 4 , 2 ( Ω ζ ) 2 f ̂ n ( t ) W 1 , 2 ( Ω ζ ; L M 2 ( B ) ) 2 + δ sup I f ̂ n ( t ) L 2 ( Ω ζ ; H M 1 ( B ) ) 2 c ( δ ) exp c I w W 5 / 2 + , 2 ( Ω ζ ) 2 d t + c sup I w W 7 / 4 , 2 ( Ω ζ ) 2 + c I t ζ W 2 / 3 , 2 ( ω ) 3 d t f ̂ 0 W 1 , 2 ( Ω ζ ( 0 ) ; L M 2 ( B ) ) 2 + δ sup I f ̂ n ( t ) L 2 ( Ω ζ ; H M 1 ( B ) ) 2 . $$\begin{align*} I_5^3 &\le c(\delta) \sup _{I}{\left(\Vert \nabla _{\mathbf {x}}\mathbf {w}(t)\Vert _{L^4(\Omega _{\zeta })}^2\Vert \widehat{f}^n(t)\Vert _{L^4(\Omega _{\zeta };L^2_M(B))}^2\right)}+\delta \sup _{I} \Vert \widehat{f}^n(t)\Vert _{L^2(\Omega _{\zeta };H^1_M(B))}^2 \\ &\le c(\delta) \sup _{I}{\left(\Vert \mathbf {w}(t)\Vert _{W^{7/4,2}(\Omega _{\zeta })}^2 \Vert \widehat{f}^n(t)\Vert _{W^{1,2}(\Omega _{\zeta };L^2_M(B))}^2\right)}+\delta \sup _{I} \Vert \widehat{f}^n(t)\Vert _{L^2(\Omega _{\zeta };H^1_M(B))}^2 \\ &\le c(\delta) \exp {\left(c\int _I \Vert \mathbf {w} \Vert _{W^{5/2+,2}(\Omega _{\zeta })}^2 \, {d}t+ c \sup _{I} \Vert \mathbf {w}\Vert _{W^{7/4,2}(\Omega _{\zeta })}^2 + c\int _I\Vert \partial _t\zeta \Vert _{W^{2/3,2}(\omega)}^{3}\, {d}t\right)} \Vert \widehat{f}_0 \Vert _{W^{1,2}(\Omega _{\zeta (0)};L^2_M(B))}^2\\ &+\delta \sup _{I} \Vert \widehat{f}^n(t)\Vert _{L^2(\Omega _{\zeta };H^1_M(B))}^2. \end{align*}$$
By the trace theorem, (4.5)–(4.7), Lemmas 4.3 and 4.5,
I 5 4 I n ζ · ( ( t ζ ) n ) φ ζ 1 L 4 ( Ω ζ ) 2 x w L 4 ( Ω ζ ) 2 f ̂ n L 4 ( Ω ζ ; L M 2 ( B ) ) 2 d t + I f ̂ n L 4 ( Ω ζ ; H M 1 ( B ) ) 2 d t I t ζ W 1 / 2 , 2 ( ω ) 2 w W 1 / 2 , 2 ( Ω ζ ) 2 f ̂ n W 1 , 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t + I f ̂ n W 1 , 2 ( Ω ζ ; H M 1 ( B ) ) 2 d t I t ζ W 1 / 2 , 2 ( ω ) 2 w W 2 , 2 ( Ω ζ ) 2 d t exp c I w W 5 / 2 + κ , 2 ( Ω ζ ) 2 d t + c I t ζ W 2 / 3 , 2 ( ω ) 3 d t × f ̂ 0 W 1 , 2 ( Ω ζ ( 0 ) ; L M 2 ( B ) ) 2 exp c I w W 5 / 2 + κ , 2 ( Ω ζ ) 2 d t + c sup I t ζ W 2 / 3 , 2 ( ω ) 3 f ̂ 0 W 1 , 2 ( Ω ζ ( 0 ) ; L M 2 ( B ) ) 2 . $$\begin{align*} I_5^4 &\lesssim \int _I\Vert \mathbf {n}_\zeta \cdot ((\partial _t\zeta)\mathbf {n})\circ \bm {\varphi }_\zeta ^{-1}\Vert _{L^4(\partial \Omega _{\zeta })}^2 \Vert \nabla _{\mathbf {x}}\mathbf {w}\Vert _{L^4(\partial \Omega _{\zeta })}^2 \Vert \widehat{f}^n\Vert _{L^4(\partial \Omega _{\zeta };L^2_M(B))}^2 \, {d}t+ \int _I \Vert \widehat{f}^n\Vert _{L^4(\partial \Omega _{\zeta };H^1_M(B))}^2\, {d}t\\ & \lesssim \int _I\Vert \partial _t\zeta \Vert _{W^{1/2,2}(\omega)}^2\Vert \nabla \mathbf {w}\Vert _{W^{1/2,2}(\partial \Omega _{\zeta })}^2\Vert \widehat{f}^n\Vert _{W^{1,2}(\Omega _{\zeta };L^2_M(B))}^2 \, {d}t+ \int _I \Vert \widehat{f}^n\Vert _{W^{1,2}(\Omega _{\zeta };H^1_M(B))}^2\, {d}t\\ &\lesssim \int _I\Vert \partial _t\zeta \Vert _{W^{1/2,2}(\omega)}^2\Vert \mathbf {w}\Vert _{W^{2,2}(\Omega _{\zeta })}^2 \, {d}t\exp {\left(c\int _I \Vert \mathbf {w}\Vert _{W^{5/2+\kappa,2}(\Omega _{\zeta })}^2\, {d}t+ c \int _I\Vert \partial _t\zeta \Vert _{W^{2/3,2}(\omega)}^{3}\, {d}t\right)} \\ & \qquad \times \Vert \widehat{f}_0\Vert ^2_{W^{1,2}(\Omega _{\zeta (0)};L^2_M(B))} \\ &\lesssim \exp {\left(c\int _I \Vert \mathbf {w}\Vert _{W^{5/2+\kappa,2}(\Omega _{\zeta })}^2\, {d}t+c \sup _I\Vert \partial _t\zeta \Vert _{W^{2/3,2}(\omega)}^{3} \right)}\Vert \widehat{f}_0\Vert ^2_{W^{1,2}(\Omega _{\zeta (0)};L^2_M(B))}. \end{align*}$$
Collecting all estimates, we obtain the desired estimate (4.22). $\Box$

Lemma 4.7.Let ( f ̂ 0 , ζ , w ) $(\widehat{f}_0,\zeta, \mathbf {w})$ satisfy (4.5)–(4.7) and let f ̂ n $\widehat{f}^n$ be the corresponding solution to (4.11). Suppose further that f 0 $\widetilde{f}_0$ satisfies (4.9). Then, we have

sup I t f ̂ n ( t ) L 2 ( Ω ζ ; L M 2 ( B ) ) 2 + I t f ̂ n W 1 , 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t + I t f ̂ n L 2 ( Ω ζ ; H M 1 ( B ) ) 2 d t exp c I w W 5 / 2 + κ , 2 ( Ω ζ ) 2 d t + c I t w W 3 / 2 + κ , 2 ( Ω ζ ) 2 d t + c sup I t ζ W 1 , 2 ( ω ) 3 × f ̂ 0 W 1 , 2 ( Ω ζ ( 0 ) ; L M 2 ( B ) ) 2 + f 0 L 2 ( Ω ζ ( 0 ) ; L M 2 ( B ) ) 2 $$\begin{equation} \begin{aligned} \sup _I &\Vert \partial _t\widehat{f}^n(t) \Vert _{L^2(\Omega _{\zeta };L^2_M(B))}^2+ \int _I \Vert \partial _t\widehat{f}^n \Vert _{W^{1,2}(\Omega _{\zeta };L^2_M(B))}^2 \, {d}t+ \int _I \Vert \partial _t\widehat{f}^n \Vert _{L^2(\Omega _{\zeta };H^1_M(B))}^2 \, {d}t\\ &\lesssim \exp {\left(c\int _I \Vert \mathbf {w}\Vert _{W^{5/2+\kappa,2}(\Omega _{\zeta })}^2\, {d}t+ c\int _I \Vert \partial _t\mathbf {w}\Vert _{W^{3/2+\kappa,2}(\Omega _{\zeta })}^2\, {d}t+c \, \sup _I\Vert \partial _t\zeta \Vert _{W^{1,2}(\omega)}^{3} \right)} \\ & \qquad \times {\left(\Vert \widehat{f}_0\Vert ^2_{W^{1,2}(\Omega _{\zeta (0)};L^2_M(B))}+ \Vert \widetilde{f}_0 \Vert _{L^{2}(\Omega _{\zeta (0)};L^2_M(B))}^2\right)} \end{aligned} \end{equation}$$ ()
for all κ ( 0 , 1 / 2 ) $\kappa \in (0,1/2)$ uniformly in n N $n\in \mathbb {N}$ .

Proof.Now set f n : = t f ̂ n $\widetilde{f}^n:=\partial _t\widehat{f}^n$ and consider the following equation:

M t f n + ( w · x ) f n + div q χ n ( x w ) q M f n Δ x ( M f n ) div q M q f n = M ( t w · x ) f ̂ n + div q χ n ( t x w ) q M f ̂ n $$\begin{equation} \begin{aligned} M{\left(\partial _t \widetilde{f}^n + (\mathbf {w}\cdot \nabla _{\mathbf {x}}) \widetilde{f}^n\right)} &+ \mathrm{div}_{\mathbf {q}}{\left(\chi ^n (\nabla _{\mathbf {x}}\mathbf {w}) \mathbf {q}M\widetilde{f}^n \right)} - \Delta _{\mathbf {x}}(M \widetilde{f}^n) - \mathrm{div}_{\mathbf {q}}{\left(M \nabla _{\mathbf {q}}\widetilde{f}^n \right)} \\ & = - M (\partial _t\mathbf {w}\cdot \nabla _{\mathbf {x}}) \widehat{f}^n + \mathrm{div}_{\mathbf {q}}{\left(\chi ^n (\partial _t\nabla _{\mathbf {x}}\mathbf {w}) \mathbf {q}M\widehat{f}^n \right)} \end{aligned} \end{equation}$$ ()
in I × Ω ζ × B $I\times \Omega _\zeta \times B$ subject to
f n ( 0 , · , · ) = f 0 0 in Ω ζ 0 × B , $$\begin{align} &\widetilde{f}^n(0, \cdot, \cdot) =\widetilde{f}_0 \ge 0 \quad \text{in }\Omega _{\zeta _0} \times B, \end{align}$$ ()
x f n · n ζ = x f ̂ n · t n ζ on I × Ω ζ × B , $$\begin{align} & \nabla _{\mathbf {x}}\widetilde{f}^n\cdot \mathbf {n}_\zeta =-\nabla _{\mathbf {x}}\widehat{f}^n\cdot \partial _t\mathbf {n}_\zeta \quad \text{on }I \times \partial \Omega _\zeta \times B, \end{align}$$ ()
M q f n · q | q | = 0 on I × Ω ζ × B ¯ $$\begin{align} & M\nabla _{\mathbf {q}}\widetilde{f}^n \cdot \frac{\mathbf {q}}{\vert \mathbf {q}\vert } =0 \quad \text{on }I \times \Omega _\zeta \times \partial \overline{B} \end{align}$$ ()
and where f 0 $\widetilde{f}_0$ satisfies (4.9).

We now test (4.28) with f n $\widetilde{f}^n$ . Since the left-hand side of (4.28) is of the same form as (4.11), we obtain similar to (4.13)

I Ω ζ 1 2 t f n L M 2 ( B ) 2 + 1 2 ( w · x ) f n L M 2 ( B ) 2 + x f n L M 2 ( B ) 2 + 1 2 f n H M 1 ( B ) 2 d x d t I x w L ( Ω ζ ) 2 f n L 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t I Ω ζ × B M t n ζ · x f ̂ n f n d q d x d t + I Ω ζ × B χ n ( t x w ) q M f ̂ n · q f n d q d x d t I Ω ζ × B M ( t w · x ) f ̂ n f n d q d x d t , $$\begin{equation} \begin{aligned} \int _I\int _{\Omega _{\zeta }} &{\left(\frac{1}{2}\partial _t\Vert \widetilde{f}^n \Vert _{L^2_M(B)}^2 + \frac{1}{2}(\mathbf {w}\cdot \nabla _{\mathbf {x}})\Vert \widetilde{f}^n \Vert _{L^2_M(B)}^2 + \Vert \nabla _{\mathbf {x}}\widetilde{f}^n \Vert _{L^2_M(B)}^2 + \frac{1}{2} \Vert \widetilde{f}^n\Vert _{H^1_M(B)}^2 \right)}\, {d} \mathbf {x}\, {d}t\\ & \lesssim \int _I \Vert \nabla _{\mathbf {x}}\mathbf {w} \Vert _{L^\infty (\Omega _{\zeta })}^2\Vert \widetilde{f}^n \Vert _{L^2(\Omega _{\zeta };L^2_M(B))}^2\, {d}t- \int _I\int _{\partial \Omega _{\zeta }\times B} M\partial _t\mathbf {n}_\zeta \cdot \nabla _{\mathbf {x}}\widehat{f}^n \widetilde{f}^n\, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\\ & + \int _I\int _{\Omega _{\zeta }\times B} \chi ^n (\partial _t\nabla _{\mathbf {x}}\mathbf {w}) \mathbf {q}M\widehat{f}^n \cdot \nabla _{\mathbf {q}}\widetilde{f}^n\, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t- \int _I\int _{\Omega _{\zeta }\times B} M (\partial _t\mathbf {w}\cdot \nabla _{\mathbf {x}}) \widehat{f}^n \widetilde{f}^n\, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t, \end{aligned} \end{equation}$$ ()
where the second term on the right-hand side is due to (4.30). For the boundary term, we use the trace theorem and Lemma 4.5 to obtain
| I Ω ζ × B M t n ζ · x f ̂ n f n d q d x d t | I f n L 4 ( Ω ζ ; L M 2 ( B ) ) t ζ W 1 , 2 ( ω ) x f ̂ n L 4 ( Ω ζ ; L M 2 ( B ) ) d t δ I f n W 1 , 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t + c ( δ ) sup I t ζ W 1 , 2 ( ω ) 2 I x f ̂ n W 1 , 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t δ I f n W 1 , 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t + c ( δ ) exp c I w W 5 / 2 + κ , 2 ( Ω ζ ) 2 d t + c sup I t ζ W 1 , 2 3 f ̂ 0 W 1 , 2 ( Ω ζ ( 0 ) ; L M 2 ( B ) ) 2 . $$\begin{align*} \bigg \vert \int _I&\int _{\partial \Omega _{\zeta }\times B} M\partial _t\mathbf {n}_\zeta \cdot \nabla _{\mathbf {x}}\widehat{f}^n \widetilde{f}^n\, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\bigg \vert \\ &\le \int _I \Vert \widetilde{f}^n\Vert _{L^{4}(\partial \Omega _{\zeta };L^2_M(B))}\Vert \partial _t\zeta \Vert _{W^{1,2}(\omega)} \Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert _{L^{4}(\partial \Omega _{\zeta };L^2_M(B))}\, {d}t\\ &\le \delta \int _I \Vert \widetilde{f}^n\Vert _{W^{1,2}(\Omega _{\zeta };L^2_M(B))}^2\, {d}t+c(\delta)\sup _I\Vert \partial _t\zeta \Vert _{W^{1,2}(\omega)}^2 \int _I \Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert _{W^{1,2}(\Omega _{\zeta };L^2_M(B))}^2\, {d}t\\ &\le \delta \int _I \Vert \widetilde{f}^n\Vert _{W^{1,2}(\Omega _{\zeta };L^2_M(B))}^2\, {d}t\\ &\quad + c(\delta)\exp {\left(c\int _I \Vert \mathbf {w}\Vert _{W^{5/2+\kappa,2}(\Omega _{\zeta })}^2\, {d}t+ c\,\sup _I\Vert \partial _t\zeta \Vert _{W^{1,2}}^{3} \right)}\Vert \widehat{f}_0\Vert ^2_{W^{1,2}(\Omega _{\zeta (0)};L^2_M(B))}. \end{align*}$$
Next, we use (4.5) and Lemma 4.5 to obtain
| I Ω ζ × B χ n ( t x w ) q M f ̂ n · q f n d q d x d t | c ( δ ) I Ω ζ | t x w | 2 f ̂ n L M 2 ( B ) 2 d x d t + δ I f n L 2 ( Ω ζ ; H M 1 ( B ) ) 2 d t c I t x w L 3 ( Ω ζ ) 2 d t sup I f ̂ n W 1 , 2 ( Ω ζ ; L M 2 ( B ) ) 2 + δ I f n L 2 ( Ω ζ ; H M 1 ( B ) ) 2 d t c exp c I w W 5 / 2 + κ , 2 ( Ω ζ ) 2 d t + c I t x w L 3 ( Ω ζ ) 2 d t + c I t ζ W 1 , 2 ( ω ) 3 d t × f ̂ 0 W 1 , 2 ( Ω ζ ( 0 ) ; L M 2 ( B ) ) 2 + δ I f n L 2 ( Ω ζ ; H M 1 ( B ) ) 2 d t . $$\begin{equation} \begin{aligned} \bigg \vert \int _I&\int _{ \Omega _{\zeta }\times B} \chi ^n (\partial _t\nabla _{\mathbf {x}}\mathbf {w}) \mathbf {q}M\widehat{f}^n \cdot \nabla _{\mathbf {q}}\widetilde{f}^n\, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\bigg \vert \\ &\le c(\delta) \int _I\int _{ \Omega _{\zeta }} \vert \partial _t\nabla _{\mathbf {x}}\mathbf {w}\vert ^2 \Vert \widehat{f}^n\Vert _{L^2_M(B)}^2\, {d} \mathbf {x}\, {d}t+\delta \int _I\Vert \widetilde{f}^n\Vert _{L^2(\Omega _{\zeta };H^1_M(B))}^2\, {d}t\\ & \le c \int _I \Vert \partial _t\nabla _{\mathbf {x}}\mathbf {w}\Vert _{L^3(\Omega _{\zeta })}^2\, {d}t\sup _I \Vert \widehat{f}^n\Vert _{W^{1,2}(\Omega _{\zeta };L^2_M(B))}^2 +\delta \int _I\Vert \widetilde{f}^n\Vert _{L^2(\Omega _{\zeta };H^1_M(B))}^2\, {d}t\\ & \le c \exp {\left(c\int _I \Vert \mathbf {w}\Vert _{W^{5/2+\kappa,2}(\Omega _{\zeta })}^2\, {d}t+ c\int _I \Vert \partial _t\nabla _{\mathbf {x}}\mathbf {w}\Vert _{L^3(\Omega _{\zeta })}^2\, {d}t+ c\int _I\Vert \partial _t\zeta \Vert _{W^{1,2}(\omega)}^{3}\, {d}t\right)} \\ &\quad \times \Vert \widehat{f}_0\Vert ^2_{W^{1,2}(\Omega _{\zeta (0)};L^2_M(B))} + \delta \int _I\Vert \widetilde{f}^n\Vert _{L^2(\Omega _{\zeta };H^1_M(B))}^2\, {d}t. \end{aligned} \end{equation}$$ ()
Finally, we use Lemma 4.3 to also obtain
| I Ω ζ × B M ( t w · x ) f ̂ n f n d q d x d t | I x f ̂ n L 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t + I Ω ζ | t w | 2 f n L M 2 ( B ) 2 d x d t exp c I w W 1 , ( Ω ζ ) 2 d t f ̂ 0 L 2 ( Ω ζ ( 0 ) ; L M 2 ( B ) ) 2 + I t w L ( Ω ζ ) 2 f n L 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t . $$\begin{align*} \bigg \vert \int _I\int _{ \Omega _{\zeta }\times B}& M (\partial _t\mathbf {w}\cdot \nabla _{\mathbf {x}}) \widehat{f}^n \widetilde{f}^n\, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\bigg \vert \\ &\lesssim \int _I \Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert _{L^2(\Omega _{\zeta };L^2_M(B))}^2\, {d}t+ \int _I\int _{ \Omega _{\zeta }} \vert \partial _t\mathbf {w}\vert ^2 \Vert \widetilde{f}^n\Vert _{L^2_M(B)}^2\, {d} \mathbf {x}\, {d}t\\ &\lesssim \exp {\left(c\int _I \Vert \mathbf {w}\Vert _{W^{1,\infty }(\Omega _{\zeta })}^2\, {d}t\right)}\Vert \widehat{f}_0\Vert ^2_{L^{2}(\Omega _{\zeta (0)};L^2_M(B))} \\ &\quad + \int _I \Vert \partial _t\mathbf {w}\Vert _{L^{\infty }(\Omega _{\zeta })}^2 \Vert \widetilde{f}^n\Vert _{L^2(\Omega _{\zeta };L^2_M(B))}^2 \, {d}t. \end{align*}$$
Subsequently, similar to (4.12), we use Reynold's transport theorem and the embedding
W 3 / 2 + κ , 2 ( Ω ζ ) L ( Ω ζ ) W 1 , 3 ( Ω ζ ) $$\begin{equation*} W^{3/2+\kappa,2}(\Omega _\zeta)\hookrightarrow L^\infty (\Omega _\zeta)\cap W^{1,3}(\Omega _\zeta) \end{equation*}$$
for any κ > 0 $\kappa >0$ and obtain
sup I f n L 2 ( Ω ζ ; L M 2 ( B ) ) 2 + I f n W 1 , 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t + I f n L 2 ( Ω ζ ; H M 1 ( B ) ) 2 d t exp c I w W 5 / 2 + κ , 2 ( Ω ζ ) 2 d t + c I t w W 3 / 2 + κ , 2 ( Ω ζ ) 2 d t + c sup I t ζ W 1 , 2 ( ω ) 3 × f ̂ 0 W 1 , 2 ( Ω ζ ( 0 ) ; L M 2 ( B ) ) 2 + I t w W 3 / 2 + κ , 2 ( Ω ζ ) 2 + w W 1 , ( Ω ζ ) 2 f n L 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t . $$\begin{equation} \begin{aligned} \sup _I &\Vert \widetilde{f}^n \Vert _{L^2(\Omega _{\zeta };L^2_M(B))}^2 + \int _I \Vert \widetilde{f}^n \Vert _{W^{1,2}(\Omega _{\zeta };L^2_M(B))}^2 \, {d}t+ \int _I \Vert \widetilde{f}^n \Vert _{L^2(\Omega _{\zeta };H^1_M(B))}^2 \, {d}t\\ &\lesssim \exp {\left(c\int _I \Vert \mathbf {w}\Vert _{W^{5/2+\kappa,2}(\Omega _{\zeta })}^2\, {d}t+ c \int _I \Vert \partial _t\mathbf {w}\Vert _{W^{3/2+\kappa,2}(\Omega _{\zeta })}^2\, {d}t+c\, \sup _I \Vert \partial _t\zeta \Vert _{W^{1,2}(\omega)}^{3}\right)} \\ & \quad \times \Vert \widehat{f}_0\Vert ^2_{W^{1,2}(\Omega _{\zeta (0)};L^2_M(B))} + \int _I {\left(\Vert \partial _t\mathbf {w}\Vert _{W^{3/2+\kappa,2}(\Omega _{\zeta })}^2 + \Vert \mathbf {w} \Vert _{W^{1,\infty }(\Omega _{\zeta })}^2 \right)} \Vert \widetilde{f}^n \Vert _{L^2(\Omega _{\zeta };L^2_M(B))}^2 \, {d}t. \end{aligned} \end{equation}$$ ()
Applying Grönwall's lemma yields the claim. $\Box$

5 THE FULLY COUPLED SYSTEM

In the section, we use yet again, a fixed point argument to establish the existence of a unique local strong solution to the fully mutually coupled solute–solvent–structure system. As already shown in Section 3, such a fixed point argument requires showing the closedness of an anticipated solution in a ball and a contraction argument. These two properties will be shown in two different spaces, where one space is a subspace of the other. More precisely, we consider
X : = L I ; W 1 , 2 ( Ω η ( t ) ; L M 2 ( B ) ) L 2 I ; W 2 , 2 ( Ω η ( t ) ; L M 2 ( B ) ) L 2 I ; W 1 , 2 ( Ω η ( t ) ; H M 1 ( B ) ) W 1 , I ; L 2 ( Ω η ( t ) ; L M 2 ( B ) ) W 1 , 2 I ; W 1 , 2 ( Ω η ( t ) ; L M 2 ( B ) ) W 1 , 2 I ; L 2 ( Ω η ( t ) ; H M 1 ( B ) ) , Y : = L I ; L 2 ( Ω η ( t ) ; L M 2 ( B ) ) L 2 I ; W 1 , 2 ( Ω η ( t ) ; L M 2 ( B ) ) L 2 I ; L 2 ( Ω η ( t ) ; H M 1 ( B ) ) $$\begin{align*} X&:= L^{\infty }{\left(I;W^{1,2}(\Omega _{\eta (t)};L^2_M(B)) \right)} \cap L^{2}{\left(I;W^{2,2}(\Omega _{\eta (t)};L^2_M(B)) \right)} \cap L^{2}{\left(I;W^{1,2}(\Omega _{\eta (t)};H^1_M(B)) \right)}\\ &\cap W^{1,\infty }{\left(I;L^{2}(\Omega _{\eta (t)};L^2_M(B)) \right)} \cap W^{1,2}{\left(I;W^{1,2}(\Omega _{\eta (t)};L^2_M(B)) \right)} \cap W^{1,2}{\left(I;L^{2}(\Omega _{\eta (t)};H^1_M(B)) \right)}, \\ Y&:= L^{\infty }{\left(I;L^2(\Omega _{\eta (t)};L^2_M(B)) \right)} \cap L^2{\left(I;W^{1,2}(\Omega _{\eta (t)};L^2_M(B)) \right)} \cap L^2{\left(I;L^2(\Omega _{\eta (t)};H^1_M(B)) \right)} \end{align*}$$
equipped with their canonical norms · X $\Vert \cdot \Vert _X$ and · Y $\Vert \cdot \Vert _Y$ , respectively. Here, and in what follows, we have abused notation by reusing I : = I $I:=I_{**}$ , where I = ( 0 , T ) $I_{**}=(0,T_{**})$ is such that T < T $T_{**}<T_*$ with I = ( 0 , T ) $I_*=(0,T_*)$ being the local time on which the solution to the purely solvent–structure system was constructed in Section 3. Accordingly, we also abuse notation and set T : = T $T:=T_{**}$ .
For the purpose of a contraction argument, which is to be performed in the larger space Y $Y$ , it is convenient to transform the moving domain to the fixed reference domain. For this reason, we also introduce the space
Y ¯ : = L I ; L 2 ( Ω ; L M 2 ( B ) ) L 2 I ; W 1 , 2 ( Ω ; L M 2 ( B ) ) L 2 I ; L 2 ( Ω ; H M 1 ( B ) ) $$\begin{align*} \overline{Y}:= L^{\infty }{\left(I;L^2(\Omega;L^2_M(B)) \right)} \cap L^2{\left(I;W^{1,2}(\Omega;L^2_M(B)) \right)} \cap L^2{\left(I;L^2(\Omega;H^1_M(B)) \right)} \end{align*}$$
equipped with its canonical norm · Y ¯ $\Vert \cdot \Vert _{\overline{Y}}$ .
Now, for Y ${\hbar }\in Y$ , let ( η , u , π ) $(\eta,\mathbf {u},\pi)$ be a unique solution of (3.3)–(3.2) with dataset ( f , g , η 0 , η , u 0 , S q ( ) ) $(\mathbf {f}, g, \eta _0, \eta _\star, \mathbf {u}_0, \mathbb {S}_\mathbf {q}(\hbar))$ as shown in Section 3. On the other hand, for
( η , u ) W 1 , ( I ; W 3 , 2 ( ω ) ) W 2 , 2 I ; W 1 , 2 ( ω ) × W 1 , ( I ; W div x 1 , 2 ( Ω η ( t ) ) ) L 2 ( I ; W 3 , 2 ( Ω η ( t ) ) ) W 1 , 2 ( I ; W 2 , 2 ( Ω η ( t ) ) ) , $$\begin{align*} (\eta,\mathbf {u})\in W^{1,\infty }(I&;W^{3,2}(\omega)) { \cap W^{2,2}{\left(I;W^{1,2}(\omega) \right)} } \times W^{1,\infty }(I;W^{1,2}_{\mathrm{div}_{\mathbf {x}}} (\Omega _{\eta (t)})) \\ & \cap L^2(I; W^{3,2}(\Omega _{\eta (t)})) \cap W^{1,2}(I;W^{2,2} (\Omega _{\eta (t)})), \end{align*}$$
let f ̂ $\widehat{f}$ be the solution of (4.1) with dataset ( f ̂ 0 , η , u ) $(\widehat{f}_0,\eta,\mathbf {u})$ as shown in Section 4. Now, define the mapping T = T 1 T 2 $\mathtt {T}=\mathtt {T}_1\circ \mathtt {T}_2$ , where
T ( ) = f ̂ , T 2 ( ) = ( η , u , π ) , T 1 ( η , u , π ) = f ̂ $$\begin{align*} \mathtt {T}(\hbar)=\widehat{f}, \qquad \mathtt {T}_2(\hbar)=(\eta,\mathbf {u},\pi), \qquad \mathtt {T}_1(\eta,\mathbf {u},\pi)=\widehat{f} \end{align*}$$
and let
B R : = { X : X 2 R 2 } . $$\begin{align*} B_R:=\big \lbrace \hbar \in X \,:\,\Vert \hbar \Vert _X^2 \le R^2 \big \rbrace . \end{align*}$$
Let show that T : X X $\mathtt {T}:X\rightarrow X$ maps B R $B_R$ into B R $B_R$ , that is, for any B R $ \hbar \in B_R$ , we have that
f ̂ X 2 = T ( ) X 2 = T 1 T 2 ( ) X 2 = T 1 ( η , u , π ) X 2 R 2 . $$\begin{align*} \Vert \widehat{f}\Vert _X^2=\Vert T(\hbar) \Vert _X^2=\Vert T_1\circ T_2(\hbar) \Vert _X^2=\Vert T_1(\eta,\mathbf {u}, \pi) \Vert _X^2 \le R^2. \end{align*}$$
Indeed if we let B R $\hbar \in B_R$ then by the a priori estimate (4.10),
sup I t f ̂ ( t ) L 2 ( Ω η ( t ) ; L M 2 ( B ) ) 2 + I t f ̂ W 1 , 2 ( Ω η ( t ) ; L M 2 ( B ) ) 2 d t + I t f ̂ L 2 ( Ω η ( t ) ; H M 1 ( B ) ) 2 d t + sup I f ̂ ( t ) W 1 , 2 ( Ω η ( t ) ; L M 2 ( B ) ) 2 + I f ̂ W 2 , 2 ( Ω η ( t ) ; L M 2 ( B ) ) 2 d t + I f ̂ W 1 , 2 ( Ω η ( t ) ; H M 1 ( B ) ) 2 d t exp c I u W 5 / 2 + κ , 2 ( Ω η ( t ) ) 2 d t + c I t u W 3 / 2 + κ , 2 ( Ω η ( t ) ) 2 d t × exp c sup I u W 7 / 4 , 2 ( Ω η ( t ) ) 2 + c sup I t η W 1 , 2 ( ω ) 3 × f ̂ 0 W 1 , 2 ( Ω η 0 ; L M 2 ( B ) ) 2 + f 0 L 2 ( Ω η 0 ; L M 2 ( B ) ) 2 $$\begin{equation} \begin{aligned} & \sup _I \Vert \partial _t\widehat{f}(t) \Vert _{L^{2}(\Omega _{\eta (t)};L^2_M(B))}^2+ \int _I \Vert \partial _t\widehat{f} \Vert _{W^{1,2}(\Omega _{\eta (t)};L^2_M(B))}^2 \, {d}t+ \int _I \Vert \partial _t\widehat{f} \Vert _{L^{2}(\Omega _{\eta (t)};H^1_M(B))}^2 \, {d}t\\ &+ \sup _I \Vert \widehat{f}(t) \Vert _{W^{1,2}(\Omega _{\eta (t)};L^2_M(B))}^2+ \int _I \Vert \widehat{f} \Vert _{W^{2,2}(\Omega _{\eta (t)};L^2_M(B))}^2 \, {d}t+ \int _I \Vert \widehat{f} \Vert _{W^{1,2}(\Omega _{\eta (t)};H^1_M(B))}^2 \, {d}t\\ &\quad \lesssim \exp {\left(c\int _I \Vert \mathbf {u}\Vert _{W^{5/2+\kappa,2}(\Omega _{\eta (t)})}^2\, {d}t+ c\int _I \Vert \partial _t\mathbf {u}\Vert _{W^{3/2+\kappa,2 }(\Omega _{\eta (t)})}^2\, {d}t\right)} \\ &\qquad \qquad \times \exp {\left(c \sup _{I} \Vert \mathbf {u}\Vert _{ W^{7/4,2}(\Omega _{\eta (t)}) }^2 +c \sup _I\Vert \partial _t\eta \Vert _{W^{1,2}(\omega)}^{3} \right)} \\ &\qquad \qquad \times {\left(\Vert \widehat{f}_0\Vert ^2_{W^{1,2}(\Omega _{\eta _0};L^2_M(B))}+ \Vert \widetilde{f}_0 \Vert _{L^{2}(\Omega _{\eta _0};L^2_M(B))}^2\right)} \end{aligned} \end{equation}$$ ()
We now aim to derive an estimate for the terms in the exponential. By interpolation we obtain for some θ 1 ( 0 , 1 ) $\theta _1\in (0,1)$
I u W 5 / 2 + κ , 2 ( Ω η ( t ) ) 2 d t I u W 2 , 2 ( Ω η ( t ) ) 2 θ 1 u W 3 , 2 ( Ω η ( t ) ) 2 ( 1 θ 1 ) d t I u W 2 , 2 ( Ω η ( t ) ) 2 d t θ 1 I u W 3 , 2 ( Ω η ( t ) ) 2 d t 1 θ 1 T θ 1 sup I u W 2 , 2 ( Ω η ( t ) ) 2 θ 1 I u W 3 , 2 ( Ω η ( t ) ) 2 d t 1 θ 1 T θ 1 sup I u W 2 , 2 ( Ω η ( t ) ) 2 + I u W 3 , 2 ( Ω η ( t ) ) 2 d t $$\begin{align*} \int _I \Vert \mathbf {u}\Vert _{W^{5/2+\kappa,2}(\Omega _{\eta (t)})}^2\, {d}t&\le \int _I \Vert \mathbf {u}\Vert _{W^{2,2}(\Omega _{\eta (t)})}^{2\theta _1}\Vert \mathbf {u}\Vert _{W^{3,2}(\Omega _{\eta (t)})}^{2(1-\theta _1)}\, {d}t\\ &\le {\left(\int _I \Vert \mathbf {u}\Vert _{W^{2,2}(\Omega _{\eta (t)})}^{2}\, {d}t\right)}^{\theta _1}{\left(\int _I\Vert \mathbf {u}\Vert _{W^{3,2}(\Omega _{\eta (t)})}^{2}\, {d}t\right)}^{1-\theta _1} \\ &\le T^{\theta _1}\sup _I \Vert \mathbf {u}\Vert _{W^{2,2}(\Omega _{\eta (t)})}^{2\theta _1}{\left(\int _I\Vert \mathbf {u}\Vert _{W^{3,2}(\Omega _{\eta (t)})}^{2}\, {d}t\right)}^{1-\theta _1}\\ &\lesssim T^{\theta _1}{\left(\sup _I \Vert \mathbf {u}\Vert _{W^{2,2}(\Omega _{\eta (t)})}^{2}+\int _I\Vert \mathbf {u}\Vert _{W^{3,2}(\Omega _{\eta (t)})}^{2}\, {d}t\right)} \end{align*}$$
and, similarly, for some θ 2 , θ 3 ( 0 , 1 ) $\theta _2,\theta _3\in (0,1)$ ,
I t u W 3 / 2 + κ , 2 ( Ω η ( t ) ) 2 d t I t u W 1 , 2 ( Ω η ( t ) ) 2 θ 2 t u W 2 , 2 ( Ω η ( t ) ) 2 ( 1 θ 2 ) d t T θ 2 sup I t u W 1 , 2 ( Ω η ( t ) ) 2 + I t u W 2 , 2 ( Ω η ( t ) ) 2 d t , sup I u W 7 / 4 , 2 ( Ω η ( t ) ) 2 sup I u W 2 , 2 ( Ω η ( t ) ) 2 u L 2 ( I ; W 2 , 2 ( Ω η ( t ) ) ) 2 θ 3 u W 1 , 2 ( I ; W 2 , 2 ( Ω η ( t ) ) ) 2 ( 1 θ 3 ) T θ 3 u L ( I ; W 2 , 2 ( Ω η ( t ) ) ) 2 + u W 1 , 2 ( I ; W 2 , 2 ( Ω η ( t ) ) ) 2 T θ 3 u W 1 , 2 ( I ; W 2 , 2 ( Ω η ( t ) ) ) 2 . $$\begin{align*} \int _I \Vert \partial _t\mathbf {u}\Vert _{W^{3/2+\kappa,2}(\Omega _{\eta (t)})}^2\, {d}t&\le \int _I \Vert \partial _t\mathbf {u}\Vert _{W^{1,2}(\Omega _{\eta (t)})}^{2\theta _2}\Vert \partial _t\mathbf {u}\Vert _{W^{2,2}(\Omega _{\eta (t)})}^{2(1-\theta _2)}\, {d}t\\ &\lesssim T^{\theta _2}{\left(\sup _I \Vert \partial _t\mathbf {u}\Vert _{W^{1,2}(\Omega _{\eta (t)})}^{2}+\int _I\Vert \partial _t\mathbf {u}\Vert _{W^{2,2}(\Omega _{\eta (t)})}^{2}\, {d}t\right)}, \\ \sup _I \Vert \mathbf {u}\Vert _{W^{7/4,2}(\Omega _{\eta (t)})}^2 &\lesssim \sup _I \Vert \mathbf {u}\Vert _{W^{2,2}(\Omega _{\eta (t)})}^2 \\ &\lesssim \Vert \mathbf {u}\Vert _{L^2(I;W^{2,2}(\Omega _{\eta (t)}))}^{2\theta _3}\Vert \mathbf {u}\Vert _{W^{1,2}(I;W^{2,2}(\Omega _{\eta (t)}))}^{2(1-\theta _3)} \\ &\le T^{\theta _3}{\left(\Vert \mathbf {u}\Vert _{L^\infty (I;W^{2,2}(\Omega _{\eta (t)}))}^{2}+\Vert \mathbf {u}\Vert ^2_{W^{1,2}(I;W^{2,2}(\Omega _{\eta (t)}))}\right)}\\ &\lesssim T^{\theta _3}\Vert \mathbf {u}\Vert ^2_{W^{1,2}(I;W^{2,2}(\Omega _{\eta (t)}))}. \end{align*}$$
Finally, we have for some θ 4 ( 0 , 1 ) $\theta _4\in (0,1)$
sup I t η W 1 , 2 ( ω ) 2 t η L 2 ( I ; W 1 , 2 ( ω ) ) 2 θ 4 t η W 1 , 2 ( I ; W 1 , 2 ( ω ) ) 2 ( 1 θ 4 ) T θ 4 t η L ( I ; W 1 , 2 ( ω ) ) 2 θ 4 t η W 1 , 2 ( I ; W 1 , 2 ( ω ) ) 2 ( 1 θ 4 ) T θ 4 t η L ( I ; W 1 , 2 ( ω ) ) 2 + t η W 1 , 2 ( I ; W 1 , 2 ( ω ) ) 2 T θ 4 η W 2 , 2 ( I ; W 1 , 2 ( ω ) ) 2 . $$\begin{align*} \sup _I \Vert \partial _t\eta \Vert _{W^{1,2}(\omega)}^2&\le \Vert \partial _t\eta \Vert _{L^2(I;W^{1,2}(\omega))}^{2\theta _4}\Vert \partial _t\eta \Vert _{W^{1,2}(I;W^{1,2}(\omega))}^{2(1-\theta _4)} \\ &\le T^{\theta _4}\Vert \partial _t\eta \Vert _{L^\infty (I;W^{1,2}(\omega))}^{2\theta _4}\Vert \partial _t\eta \Vert _{W^{1,2}(I;W^{1,2}(\omega))}^{2(1-\theta _4)}\\ &\le T^{\theta _4}{\left(\Vert \partial _t\eta \Vert _{L^\infty (I;W^{1,2}(\omega))}^{2}+\Vert \partial _t\eta \Vert _{W^{1,2}(I;W^{1,2}(\omega))}^{2}\right)} \\ &\lesssim T^{\theta _4}\Vert \eta \Vert _{W^{2,2}(I;W^{1,2}(\omega))}^{2}. \end{align*}$$
By Theorem 3.3, we can control
u L 2 ( I ; W 3 , 2 ( Ω η ( t ) ) ) 2 + u W 1 , ( I ; W 1 , 2 ( Ω η ( t ) ) ) 2 + u W 1 , 2 ( I ; W 2 , 2 ( Ω η ( t ) ) ) 2 + η W 2 , 2 ( I ; W 1 , 2 ( ω ) ) 2 $$\begin{equation} \begin{aligned} \Vert \mathbf {u}\Vert ^2_{L^{2}(I;W^{3,2}(\Omega _{\eta (t)}))} &+\Vert \mathbf {u}\Vert ^2_{W^{1,\infty }(I;W^{1,2}(\Omega _{\eta (t)}))}+ \Vert \mathbf {u}\Vert ^2_{W^{1,2}(I;W^{2,2}(\Omega _{\eta (t)}))} + \Vert \eta \Vert _{W^{2,2}(I;W^{1,2}(\omega))}^{2} \end{aligned} \end{equation}$$ ()
in terms of
E ( f , g , η 0 , η , u 0 ) + I S q ( t ) W 1 , 2 ( Ω η ( t ) ) 2 + S q ( ) W 2 , 2 ( Ω η ( t ) ) 2 d t , $$\begin{equation} \begin{aligned} \mathcal {E}_{**}(\mathbf {f},g, \eta _0, \eta _\star, \mathbf {u}_0) + \int _{I} {\left(\Vert \mathbb {S}_\mathbf {q}(\partial _t\hbar) \Vert _{W^{1,2}(\Omega _{\eta (t)})}^2 + \Vert \mathbb {S}_\mathbf {q}(\hbar) \Vert _{W^{2,2}(\Omega _{\eta (t)})}^2 \right)} \, {d}t, \end{aligned} \end{equation}$$ ()
where
E ( f , g , η 0 , η , u 0 ) : = η W 3 , 2 ( ω ) 2 + η 0 W 5 , 2 ( ω ) 2 + u 0 W 3 , 2 ( Ω η 0 ) 2 + S q ( ( 0 ) ) W 2 , 2 ( Ω η 0 ) 2 + f ( 0 ) W 1 , 2 ( Ω η 0 ) 2 + g ( 0 ) W 1 , 2 ( ω ) 2 + I t g W 1 , 2 ( ω ) 2 + t f L 2 ( Ω η ( t ) ) 2 d t . $$\begin{equation} \begin{aligned} \mathcal {E}_{**}(\mathbf {f},g, \eta _0, \eta _\star, \mathbf {u}_0)&:= \Vert \eta _\star \Vert _{W^{3,2}(\omega)}^2 + \Vert \eta _0\Vert _{W^{5,2}(\omega)}^2 + \Vert \mathbf {u}_0\Vert _{W^{3,2}(\Omega _{\eta _0})}^2 + \Vert \mathbb {S}_\mathbf {q}(\hbar (0)) \Vert _{W^{2,2}(\Omega _{\eta _0})}^2 \\ & + \Vert \mathbf {f}(0)\Vert _{W^{1,2}(\Omega _{\eta _0})}^2 + \Vert g(0)\Vert _{W^{1,2}(\omega)}^2 \\ &+ \int _I {\left(\Vert \partial _t g \Vert _{W^{1,2}(\omega)}^2 + \Vert \partial _t\mathbf {f}\Vert _{L^2(\Omega _{\eta (t)})}^2 \right)} \, {d}t. \end{aligned} \end{equation}$$ ()
However, by using [46, (3.4)] (for k > 1 $k>1$ ), we obtain
I S q ( t ¯ ) W 1 , 2 ( Ω η ( t ) ) 2 + S q ( ) W 2 , 2 ( Ω η ( t ) ) 2 d t I t W 1 , 2 ( Ω η ( t ) ; L M 2 ( B ) ) 2 d t + I W 2 , 2 ( Ω η ( t ) ; L M 2 ( B ) ) 2 d t R 2 . $$\begin{equation} \begin{aligned} &\int _{I} {\left(\Vert \mathbb {S}_\mathbf {q}(\partial _t\overline{\hbar }) \Vert _{W^{1,2}(\Omega _{\eta (t)})}^2 + \Vert \mathbb {S}_\mathbf {q}(\hbar) \Vert _{W^{2,2}(\Omega _{\eta (t)})}^2\right)} \, {d}t\\ &\lesssim \int _{I} \Vert \partial _t\hbar \Vert _{W^{1,2}(\Omega _{\eta (t)};L^2_M(B))}^2 \, {d}t+ \int _{I} \Vert \hbar \Vert _{W^{2,2}(\Omega _{\eta (t)};L^2_M(B))}^2 \, {d}t\le R^2. \end{aligned} \end{equation}$$ ()

For small enough T $T$ and for R $R$ very large, we obtain from (5.1)–(5.5) that f ̂ X 2 R $\Vert \widehat{f}\Vert _X^2 \le R$ . Thus, T : X X $\mathtt {T}:X\rightarrow X$ maps B R $B_R$ into B R $B_R$ .

Next, we show that T $\mathtt {T}$ is a contraction in the larger space Y $Y$ . For this reason, on one hand, we let f ̂ 1 $\widehat{f}^1$ and f ̂ 2 $\widehat{f}^2$ be two solutions of (4.1) with data ( f ̂ 0 , η 1 , u 1 ) $(\widehat{f}_0,\eta ^1, \mathbf {u}^1)$ and ( f ̂ 0 , η 2 , u 2 ) $(\widehat{f}_0,\eta ^2, \mathbf {u}^2)$ , respectively. On the other hand, we let ( η 1 , u 1 , π 1 ) $(\eta ^1,\mathbf {u}^1,\pi ^1)$ and ( η 2 , u 2 , π 2 ) $(\eta ^2,\mathbf {u}^2,\pi ^2)$ be two solutions of (3.3) and (3.2) with dataset ( f , g , η 0 , η , u 0 , S q ( 1 ) ) $(\mathbf {f}, g, \eta _0, \eta _\star, \mathbf {u}_0, \mathbb {S}_\mathbf {q}(\hbar ^1))$ and ( f , g , η 0 , η , u 0 , S q ( 2 ) ) $(\mathbf {f}, g, \eta _0, \eta _\star, \mathbf {u}_0, \mathbb {S}_\mathbf {q}(\hbar ^2))$ , respectively. For the former, by setting f ̂ 12 = f ̂ 1 f ̂ 2 $\widehat{f}^{12}=\widehat{f}^1-\widehat{f}^2$ , u 12 = u 1 u 2 $\mathbf {u}^{12}=\mathbf {u}^1-\mathbf {u}^2$ and η 12 = η 1 η 2 $\eta ^{12}=\eta ^1-\eta ^2$ , we wish to obtain a bound for f ̂ 12 $\widehat{f}^{12}$ in the norm Y $Y$ in terms of a suitable norm of u 12 $\mathbf {u}^{12}$ and η 12 $\eta ^{12}$ . This bound is achieved by transforming Equation (4.1) from the moving domain to the fixed reference domain and obtaining the equivalent bound for f ̂ 12 ¯ $\overline{\widehat{f}^{12}}$ in the norm Y ¯ $\overline{Y}$ in terms of a suitable norm of u ¯ 12 $\overline{\mathbf {u}}^{12}$ and η ¯ 12 $\overline{\eta }^{12}$ . Here, f ̂ 12 ¯ = f ̂ 1 ¯ f ̂ 2 ¯ $\overline{\widehat{f}^{12}}=\overline{\widehat{f}^1}-\overline{\widehat{f}^2}$ and u ¯ 12 = u ¯ 1 u ¯ 2 $\overline{\mathbf {u}}^{12}=\overline{\mathbf {u}}^1-\overline{\mathbf {u}}^2$ with f ̂ i ¯ = f ̂ i Ψ η i $\overline{\widehat{f}^i}= \widehat{f}^i\circ \bm {\Psi }_{\eta ^i}$ and u ¯ i = u i Ψ η i $\overline{\mathbf {u}}^i=\mathbf {u}^i\circ \bm {\Psi }_{\eta ^i}$ , i = 1 , 2 $i=1,2$ . Before obtaining this latter bound, let us see how a single strong solution f ̂ $\widehat{f}$ of (4.1) with a data ( f ̂ 0 , η , u ) $(\widehat{f}_0,\eta, \mathbf {u})$ transforms to a fixed domain. The difference equation will then be deduced from the equation of the single equation.

Let φ = φ ¯ Ψ η 1 $\varphi =\overline{\varphi }\circ \bm {\Psi }_{\eta }^{-1}$ , f ̂ ¯ = f ̂ Ψ η $\overline{\widehat{f}}= \widehat{f}\circ \bm {\Psi }_{\eta }$ and u ¯ = u Ψ η $\overline{\mathbf {u}}=\mathbf {u}\circ \bm {\Psi }_{\eta }$ . Since f ̂ $\widehat{f}$ is a strong solution of (4.1) with a data ( f ̂ 0 , η , u ) $(\widehat{f}_0,\eta, \mathbf {u})$ , it follows from (4.8) that
I d d t Ω η ( t ) × B M f ̂ ¯ Ψ η 1 φ ¯ Ψ η 1 d q d x d t = I Ω η ( t ) × B M f ̂ ¯ Ψ η 1 t φ ¯ Ψ η 1 + x φ ¯ Ψ η 1 · t Ψ η 1 d q d x d t + I Ω η ( t ) × B M u ¯ Ψ η 1 f ̂ ¯ Ψ η 1 · x Ψ η 1 x φ ¯ Ψ η 1 d q d x d t + I Ω η ( t ) × B M ( x Ψ η 1 ) ( x u ¯ Ψ η 1 ) q f ̂ ¯ Ψ η 1 · q φ ¯ Ψ η 1 d q d x d t I Ω η ( t ) × B M ( x Ψ η 1 ) x Ψ η 1 x f ̂ ¯ Ψ η 1 · x φ ¯ Ψ η 1 d q d x d t I Ω η ( t ) × B M q f ̂ ¯ Ψ η 1 · q φ ¯ Ψ η 1 d q d x d t $$\begin{align*} \int _I \frac{\mathrm{d}}{\, {d}t} \int _{\Omega _{\eta (t)}\times B}&M \overline{\widehat{f}}\circ \bm {\Psi }_{\eta }^{-1} \, \overline{\varphi }\circ \bm {\Psi }_{\eta }^{-1} \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\\ &= \int _I\int _{\Omega _{\eta (t)}\times B}M \overline{\widehat{f}}\circ \bm {\Psi }_{\eta }^{-1} {\left(\partial _t \overline{\varphi }\circ \bm {\Psi }_{\eta }^{-1} + \nabla _{\mathbf {x}}\overline{\varphi }\circ \bm {\Psi }_{\eta }^{-1}\cdot \partial _t\bm {\Psi }_{\eta }^{-1} \right)} \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\\ &+ \int _I\int _{\Omega _{\eta (t)}\times B}{\left(M\overline{\mathbf {u}}\circ \bm {\Psi }_{\eta }^{-1}\overline{\widehat{f}}\circ \bm {\Psi }_{\eta }^{-1} \cdot \nabla _{\mathbf {x}}\bm {\Psi }_{\eta }^{-1} \nabla _{\mathbf {x}}\overline{\varphi }\circ \bm {\Psi }_{\eta }^{-1}\right)} \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\\ & + \int _I\int _{ \Omega _{\eta (t)}\times B} M {(\nabla _{\mathbf {x}}\bm {\Psi }_{\eta }^{-1})}^\top (\nabla _{\mathbf {x}}\overline{\mathbf {u}}\circ \bm {\Psi }_{\eta }^{-1}) \mathbf {q}\overline{\widehat{f}}\circ \bm {\Psi }_{\eta }^{-1} \cdot \nabla _{\mathbf {q}}\overline{\varphi }\circ \bm {\Psi }_{\eta }^{-1} \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\\ & - \int _I\int _{ \Omega _{\eta (t)}\times B} M {(\nabla _{\mathbf {x}}\bm {\Psi }_{\eta }^{-1})}^\top \nabla _{\mathbf {x}}\bm {\Psi }_{\eta }^{-1}\nabla _{\mathbf {x}}\overline{\widehat{f}}\circ \bm {\Psi }_{\eta }^{-1} \cdot \nabla _{\mathbf {x}}\overline{\varphi }\circ \bm {\Psi }_{\eta }^{-1} \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\\ & - \int _I\int _{ \Omega _{\eta (t)}\times B} M \nabla _{\mathbf {q}}\overline{\widehat{f}}\circ \bm {\Psi }_{\eta }^{-1} \cdot \nabla _{\mathbf {q}}\overline{\varphi }\circ \bm {\Psi }_{\eta }^{-1} \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t \end{align*}$$
and thus,
I d d t Ω × B J η M f ̂ ¯ φ ¯ d q d x d t = I Ω × B J η M f ̂ ¯ t φ ¯ + x φ ¯ · t Ψ η 1 Ψ η d q d x d t + I Ω × B J η M u ¯ f ̂ ¯ · x Ψ η 1 Ψ η x φ ¯ d q d x d t + I Ω × B J η M ( x Ψ η 1 Ψ η ) ( x u ¯ ) q f ̂ ¯ · q φ ¯ d q d x d t I Ω × B J η M ( x Ψ η 1 Ψ η ) x Ψ η 1 Ψ η x f ̂ ¯ · x φ ¯ d q d x d t I Ω × B J η M q f ̂ ¯ · q φ ¯ d q d x d t . $$\begin{align*} \int _I \frac{\mathrm{d}}{\, {d}t} \int _{\Omega \times B}J_\eta M \overline{\widehat{f}}\, \overline{\varphi } \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t&= \int _I\int _{\Omega \times B}J_\eta M \overline{\widehat{f}} {\left(\partial _t \overline{\varphi } + \nabla _{\mathbf {x}}\overline{\varphi } \cdot \partial _t\bm {\Psi }_{\eta }^{-1}\circ \bm {\Psi }_{\eta } \right)} \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\\ &+ \int _I\int _{\Omega \times B}J_\eta M\overline{\mathbf {u}}\overline{\widehat{f}} \cdot \nabla _{\mathbf {x}}\bm {\Psi }_{\eta }^{-1}\circ \bm {\Psi }_{\eta } \nabla _{\mathbf {x}}\overline{\varphi } \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\\ & + \int _I\int _{ \Omega \times B} J_\eta M {(\nabla _{\mathbf {x}}\bm {\Psi }_{\eta }^{-1}\circ \bm {\Psi }_{\eta })}^\top (\nabla _{\mathbf {x}}\overline{\mathbf {u}}) \mathbf {q}\overline{\widehat{f}} \cdot \nabla _{\mathbf {q}}\overline{\varphi } \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\\ & - \int _I\int _{ \Omega \times B} J_\eta M {(\nabla _{\mathbf {x}}\bm {\Psi }_{\eta }^{-1}\circ \bm {\Psi }_{\eta })}^\top \nabla _{\mathbf {x}}\bm {\Psi }_{\eta }^{-1}\circ \bm {\Psi }_{\eta }\nabla _{\mathbf {x}}\overline{\widehat{f}} \cdot \nabla _{\mathbf {x}}\overline{\varphi } \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\\ & - \int _I\int _{ \Omega \times B} J_\eta M \nabla _{\mathbf {q}}\overline{\widehat{f}} \cdot \nabla _{\mathbf {q}}\overline{\varphi } \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t. \end{align*}$$
Replace φ ¯ $\overline{\varphi }$ with φ ¯ / J η $\overline{\varphi }/J_\eta$ to obtain
I d d t Ω × B M f ̂ ¯ φ ¯ d q d x d t = I Ω × B M f ̂ ¯ t φ ¯ + J η M f ̂ ¯ t ( J η 1 ) φ ¯ d q d x d t + I Ω × B M f ̂ ¯ x φ ¯ · t Ψ η 1 Ψ η + J η M f ̂ ¯ ( x J η 1 ) φ ¯ · t Ψ η 1 Ψ η d q d x d t + I Ω × B M u ¯ f ̂ ¯ · x Ψ η 1 Ψ η x φ ¯ + J η M u ¯ f ̂ ¯ · x Ψ η 1 Ψ η ( x J η 1 ) φ ¯ d q d x d t I Ω × B M ( x Ψ η 1 Ψ η ) x Ψ η 1 Ψ η x f ̂ ¯ · ( x φ ¯ + J η ( x J η 1 ) φ ¯ ) d q d x d t + I Ω × B M ( x Ψ η 1 Ψ η ) ( x u ¯ ) q f ̂ ¯ · q φ ¯ d q d x d t I Ω × B M q f ̂ ¯ · q φ ¯ d q d x d t . $$\begin{align*} \int _I \frac{\mathrm{d}}{\, {d}t}& \int _{\Omega \times B} M \overline{\widehat{f}}\, \overline{\varphi } \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t= \int _I\int _{\Omega \times B}{\left(M \overline{\widehat{f}} \partial _t \overline{\varphi } + J_\eta M \overline{\widehat{f}} \partial _t (J_\eta ^{-1}) \overline{\varphi } \right)} \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\\ &+ \int _I\int _{\Omega \times B}{\left(M \overline{\widehat{f}} \nabla _{\mathbf {x}}\overline{\varphi } \cdot \partial _t\bm {\Psi }_{\eta }^{-1}\circ \bm {\Psi }_{\eta } + J_\eta M \overline{\widehat{f}} (\nabla _{\mathbf {x}}J_{\eta }^{-1})\overline{\varphi } \cdot \partial _t\bm {\Psi }_{\eta }^{-1}\circ \bm {\Psi }_{\eta } \right)} \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\\ &+ \int _I\int _{\Omega \times B}{\left(M\overline{\mathbf {u}}\overline{\widehat{f}} \cdot \nabla _{\mathbf {x}}\bm {\Psi }_{\eta }^{-1}\circ \bm {\Psi }_{\eta } \nabla _{\mathbf {x}}\overline{\varphi } + J_\eta M\overline{\mathbf {u}}\overline{\widehat{f}} \cdot \nabla _{\mathbf {x}}\bm {\Psi }_{\eta }^{-1}\circ \bm {\Psi }_{\eta } (\nabla _{\mathbf {x}}J_\eta ^{-1})\overline{\varphi } \right)} \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\\ & - \int _I\int _{ \Omega \times B} M {(\nabla _{\mathbf {x}}\bm {\Psi }_{\eta }^{-1}\circ \bm {\Psi }_{\eta })}^\top \nabla _{\mathbf {x}}\bm {\Psi }_{\eta }^{-1}\circ \bm {\Psi }_{\eta }\nabla _{\mathbf {x}}\overline{\widehat{f}} \cdot (\nabla _{\mathbf {x}}\overline{\varphi } + J_\eta (\nabla _{\mathbf {x}}J_\eta ^{-1})\overline{\varphi })\, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\\ & + \int _I\int _{ \Omega \times B} M {(\nabla _{\mathbf {x}}\bm {\Psi }_{\eta }^{-1}\circ \bm {\Psi }_{\eta })}^\top (\nabla _{\mathbf {x}}\overline{\mathbf {u}}) \mathbf {q}\overline{\widehat{f}} \cdot \nabla _{\mathbf {q}}\overline{\varphi } \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\\ & - \int _I\int _{ \Omega \times B} M \nabla _{\mathbf {q}}\overline{\widehat{f}} \cdot \nabla _{\mathbf {q}}\overline{\varphi } \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t. \end{align*}$$
Set f ̂ 12 ¯ = f ̂ 1 ¯ f ̂ 2 ¯ $\overline{\widehat{f}^{12}}=\overline{\widehat{f}^1}-\overline{\widehat{f}^2}$ , η 12 = η 1 η 2 $\eta ^{12}=\eta ^1-\eta ^2$ and u ¯ 12 = u ¯ 1 u ¯ 2 $\overline{\mathbf {u}}^{12}=\overline{\mathbf {u}}^1-\overline{\mathbf {u}}^2$ . Then, we obtain
1 2 I d d t Ω × B M f ̂ 12 ¯ φ ¯ d q d x d t + I Ω × B M q f ̂ 12 ¯ · q φ ¯ d q d x d t + I Ω × B M ( x Ψ η 2 1 Ψ η 2 ) x Ψ η 2 1 Ψ η 2 x f ̂ 12 ¯ · x φ ¯ d q d x d t = I Ω × B h 2 1 ( φ ¯ ) d q d x d t + I Ω × B J η 2 M f ̂ 12 ¯ t ( J η 1 1 ) φ ¯ d q d x d t + I Ω × B M f ̂ 12 ¯ x φ ¯ + J η 2 ( x J η 1 1 ) φ ¯ · t Ψ η 1 1 Ψ η 1 d q d x d t + I Ω × B M u ¯ 12 f ̂ 1 ¯ + u ¯ 2 f ̂ 12 ¯ · x Ψ η 1 1 Ψ η 1 x φ ¯ d q d x d t + I Ω × B J η 2 M u ¯ 12 f ̂ 1 ¯ + u ¯ 2 f ̂ 12 ¯ · x Ψ η 1 1 Ψ η 1 ( x J η 1 1 ) φ ¯ d q d x d t I Ω × B M ( x Ψ η 2 1 Ψ η 2 ) x Ψ η 2 1 Ψ η 2 x f ̂ 12 ¯ · J η 1 ( x J η 1 1 ) φ ¯ d q d x d t + I Ω × B M ( x Ψ η 2 1 Ψ η 2 ) ( x u ¯ 12 ) q f ̂ 1 ¯ + ( x u ¯ 2 ) q f ̂ 12 ¯ · q φ ¯ d q d x d t , $$\begin{align*} \frac{1}{2} \int _I \frac{\mathrm{d}}{\, {d}t}& \int _{\Omega \times B} M \overline{\widehat{f}^{12}}\, \overline{\varphi } \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t+ \int _I\int _{ \Omega \times B} M \nabla _{\mathbf {q}}\overline{\widehat{f}^{12}} \cdot \nabla _{\mathbf {q}}\overline{\varphi } \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\\ & + \int _I\int _{ \Omega \times B} M {(\nabla _{\mathbf {x}}\bm {\Psi }_{\eta ^2}^{-1}\circ \bm {\Psi }_{\eta ^2})}^\top \nabla _{\mathbf {x}}\bm {\Psi }_{\eta ^2}^{-1}\circ \bm {\Psi }_{\eta ^2}\nabla _{\mathbf {x}}\overline{\widehat{f}^{12}} \cdot \nabla _{\mathbf {x}}\overline{\varphi } \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\\ &= \int _I\int _{\Omega \times B} h^1_2(\overline{\varphi }) \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t+ \int _I\int _{\Omega \times B} J_{\eta ^2} M \overline{\widehat{f}^{12}} \partial _t (J_{\eta ^1}^{-1}) \overline{\varphi } \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\\ &+ \int _I\int _{\Omega \times B}M \overline{\widehat{f}^{12}} {\left[ \nabla _{\mathbf {x}}\overline{\varphi } + J_{\eta ^2} (\nabla _{\mathbf {x}}J_{\eta ^1}^{-1})\overline{\varphi } \right]}\cdot \partial _t\bm {\Psi }_{\eta ^1}^{-1}\circ \bm {\Psi }_{\eta ^1} \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\\ &+ \int _I\int _{\Omega \times B} M{\left[\overline{\mathbf {u}}^{12}\overline{\widehat{f}^1} + \overline{\mathbf {u}}^2\overline{\widehat{f}^{12}} \right]}\cdot \nabla _{\mathbf {x}}\bm {\Psi }_{\eta ^1}^{-1}\circ \bm {\Psi }_{\eta ^1} \nabla _{\mathbf {x}}\overline{\varphi } \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\\ &+ \int _I\int _{\Omega \times B} J_{\eta ^2} M{\left[\overline{\mathbf {u}}^{12}\overline{\widehat{f}^1} + \overline{\mathbf {u}}^2\overline{\widehat{f}^{12}} \right]} \cdot \nabla _{\mathbf {x}}\bm {\Psi }_{\eta ^1}^{-1}\circ \bm {\Psi }_{\eta ^1} (\nabla _{\mathbf {x}}J_{\eta ^1}^{-1})\overline{\varphi } \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\\ & - \int _I\int _{ \Omega \times B} M (\nabla _{\mathbf {x}}\bm {\Psi }_{\eta ^2}^{-1}\circ \bm {\Psi }_{\eta ^2})^\top \nabla _{\mathbf {x}}\bm {\Psi }_{\eta ^2}^{-1}\circ \bm {\Psi }_{\eta ^2}\nabla _{\mathbf {x}}\overline{\widehat{f}^{12}} \cdot J_{\eta ^1} (\nabla _{\mathbf {x}}J_{\eta ^1}^{-1})\overline{\varphi } \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\\ & + \int _I\int _{ \Omega \times B} M (\nabla _{\mathbf {x}}\bm {\Psi }_{\eta ^2}^{-1}\circ \bm {\Psi }_{\eta ^2})^\top {\left[(\nabla _{\mathbf {x}}\overline{\mathbf {u}}^{12}) \mathbf {q}\overline{\widehat{f}^1} + (\nabla _{\mathbf {x}}\overline{\mathbf {u}}^2) \mathbf {q}\overline{\widehat{f}^{12}} \right]} \cdot \nabla _{\mathbf {q}}\overline{\varphi } \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t, \end{align*}$$
where
h 2 1 ( φ ¯ ) : = ( J η 1 J η 2 ) M f ̂ 1 ¯ t ( J η 1 1 ) φ ¯ + J η 2 M f ̂ 2 ¯ t ( J η 1 1 J η 2 1 ) φ ¯ + M f ̂ 2 ¯ x φ ¯ · t ( Ψ η 1 1 Ψ η 2 1 ) Ψ η 1 + · t Ψ η 2 1 ( Ψ η 1 Ψ η 2 ) + ( J η 1 J η 2 ) M f ̂ 1 ¯ ( x J η 1 1 ) + J η 2 M f ̂ 2 ¯ ( x ( J η 1 1 J η 2 1 ) ) φ ¯ · t Ψ η 1 1 Ψ η 1 + J η 2 M f ̂ 2 ¯ ( x J η 2 1 ) φ ¯ · t ( Ψ η 1 1 Ψ η 2 1 ) Ψ η 1 + t Ψ η 2 1 ( Ψ η 1 Ψ η 2 ) + M u ¯ 2 f ̂ 2 ¯ · x ( Ψ η 1 1 Ψ η 2 1 ) Ψ η 1 + x Ψ η 2 1 ( Ψ η 1 Ψ η 2 ) x φ ¯ + M ( J η 1 J η 2 ) u ¯ 1 f ̂ ¯ 1 · x Ψ η 1 1 + J η 2 u ¯ 2 f ̂ 2 ¯ · x ( Ψ η 1 1 Ψ η 2 1 ) Ψ η 1 ( x J η 1 1 ) φ ¯ + J η 2 M u ¯ 2 f ̂ 2 ¯ · x Ψ η 2 1 ( Ψ η 1 Ψ η 2 ) ( x J η 1 1 ) + x Ψ η 2 1 Ψ η 2 ( x ( J η 1 1 J η 2 1 ) ) φ ¯ + M ( x Ψ η 2 1 Ψ η 2 ) x ( Ψ η 1 1 Ψ η 2 1 ) Ψ η 1 + x Ψ η 2 1 ( Ψ η 1 1 Ψ η 2 ) x f ̂ 1 ¯ · x φ ¯ + M ( x ( Ψ η 1 1 Ψ η 2 1 ) Ψ η 1 ) + ( x Ψ η 2 1 ( Ψ η 1 1 Ψ η 2 ) ) x Ψ η 1 1 Ψ η 1 x f ̂ 1 ¯ · x φ ¯ + M ( x Ψ η 2 1 Ψ η 2 ) x Ψ η 2 1 Ψ η 2 x f ̂ 2 ¯ · ( J η 1 J η 2 ) x J η 1 1 + J η 2 x ( J η 1 1 J η 2 1 ) φ ¯ + M ( x Ψ η 2 1 Ψ η 2 ) x ( Ψ η 1 1 Ψ η 2 1 ) Ψ η 1 + x Ψ η 2 1 ( Ψ η 1 1 Ψ η 2 ) x f ̂ 1 ¯ · J η 1 ( x J η 1 1 ) φ ¯ + M ( x ( Ψ η 1 1 Ψ η 2 1 ) Ψ η 1 ) + ( x Ψ η 2 1 ( Ψ η 1 1 Ψ η 2 ) ) x Ψ η 1 1 Ψ η 1 x f ̂ 1 ¯ · J η 1 ( x J η 1 1 ) φ ¯ + M ( x ( Ψ η 1 1 Ψ η 2 1 ) Ψ η 1 ) + ( x Ψ η 2 1 ( Ψ η 1 Ψ η 2 ) ) ( x u ¯ 1 ) q f ̂ 1 ¯ · q φ ¯ . $$\begin{align*} h^1_2(\overline{\varphi })&:=(J_{\eta ^1}-J_{\eta ^2}) M \overline{\widehat{f}^{1}} \partial _t (J_{\eta ^1}^{-1}) \overline{\varphi } + J_{\eta ^2} M \overline{\widehat{f}^{2}} \partial _t (J_{\eta ^1}^{-1}-J_{\eta ^2}^{-1}) \overline{\varphi } \\ &+ M \overline{\widehat{f}^2} \nabla _{\mathbf {x}}\overline{\varphi } \cdot {\left[\partial _t(\bm {\Psi }_{\eta ^1}^{-1}-\bm {\Psi }_{\eta ^2}^{-1})\circ \bm {\Psi }_{\eta ^1} + \cdot \partial _t\bm {\Psi }_{\eta ^2}^{-1}\circ (\bm {\Psi }_{\eta ^1} -\bm {\Psi }_{\eta ^2}) \right]} \\ &+ {\left[(J_{\eta ^1}-J_{\eta ^2}) M \overline{\widehat{f}^1} (\nabla _{\mathbf {x}}J_{\eta ^1}^{-1}) + J_{\eta ^2} M \overline{\widehat{f}^2} (\nabla _{\mathbf {x}}(J_{\eta ^1}^{-1}-J_{\eta ^2}^{-1}))\right]}\overline{\varphi } \cdot \partial _t\bm {\Psi }_{\eta ^1}^{-1}\circ \bm {\Psi }_{\eta ^1} \\ &+ J_{\eta ^2} M \overline{\widehat{f}^2} (\nabla _{\mathbf {x}}J_{\eta ^2}^{-1})\overline{\varphi } \cdot {\left[\partial _t(\bm {\Psi }_{\eta ^1}^{-1}-\bm {\Psi }_{\eta ^2}^{-1})\circ \bm {\Psi }_{\eta ^1} + \partial _t\bm {\Psi }_{\eta ^2}^{-1}\circ (\bm {\Psi }_{\eta ^1}-\bm {\Psi }_{\eta ^2})\right]} \\ &+ M\overline{\mathbf {u}}^2\overline{\widehat{f}^2} \cdot {\left[\nabla _{\mathbf {x}}(\bm {\Psi }_{\eta ^1}^{-1}-\bm {\Psi }_{\eta ^2}^{-1})\circ \bm {\Psi }_{\eta ^1} + \nabla _{\mathbf {x}}\bm {\Psi }_{\eta ^2}^{-1}\circ (\bm {\Psi }_{\eta ^1}-\bm {\Psi }_{\eta ^2}) \right]} \nabla _{\mathbf {x}}\overline{\varphi } \\ & + M{\left[(J_{\eta ^1}-J_{\eta ^2}) \overline{\mathbf {u}}^1\overline{\widehat{f}}^1 \cdot \nabla _{\mathbf {x}}\bm {\Psi }_{\eta ^1}^{-1} + J_{\eta ^2} \overline{\mathbf {u}}^2\overline{\widehat{f}^2} \cdot \nabla _{\mathbf {x}}(\bm {\Psi }_{\eta ^1}^{-1}-\bm {\Psi }_{\eta ^2}^{-1}) \right]} \circ \bm {\Psi }_{\eta ^1} (\nabla _{\mathbf {x}}J_{\eta ^1}^{-1})\overline{\varphi } \\ & + J_{\eta ^2} M\overline{\mathbf {u}}^2\overline{\widehat{f}^2} \cdot {\left[\nabla _{\mathbf {x}}\bm {\Psi }_{\eta ^2}^{-1}\circ (\bm {\Psi }_{\eta ^1}-\bm {\Psi }_{\eta ^2}) (\nabla _{\mathbf {x}}J_{\eta ^1}^{-1}) + \nabla _{\mathbf {x}}\bm {\Psi }_{\eta ^2}^{-1}\circ \bm {\Psi }_{\eta ^2} (\nabla _{\mathbf {x}}(J_{\eta ^1}^{-1}-J_{\eta ^2}^{-1})) \right]}\overline{\varphi } \\ & + M (\nabla _{\mathbf {x}}\bm {\Psi }_{\eta ^2}^{-1}\circ \bm {\Psi }_{\eta ^2})^\top {\left[ \nabla _{\mathbf {x}}(\bm {\Psi }_{\eta ^1}^{-1}-\bm {\Psi }_{\eta ^2}^{-1})\circ \bm {\Psi }_{\eta ^1} + \nabla _{\mathbf {x}}\bm {\Psi }_{\eta ^2}^{-1}\circ (\bm {\Psi }_{\eta ^1}^{-1}-\bm {\Psi }_{\eta ^2}) \right]}\nabla _{\mathbf {x}}\overline{\widehat{f}^1} \cdot \nabla _{\mathbf {x}}\overline{\varphi } \\ & + M {\left[ (\nabla _{\mathbf {x}}(\bm {\Psi }_{\eta ^1}^{-1}-\bm {\Psi }_{\eta ^2}^{-1})\circ \bm {\Psi }_{\eta ^1})^\top + (\nabla _{\mathbf {x}}\bm {\Psi }_{\eta ^2}^{-1}\circ (\bm {\Psi }_{\eta ^1}^{-1}-\bm {\Psi }_{\eta ^2}))^\top \right]}\nabla _{\mathbf {x}}\bm {\Psi }_{\eta ^1}^{-1}\circ \bm {\Psi }_{\eta 1}\nabla _{\mathbf {x}}\overline{\widehat{f}^1} \cdot \nabla _{\mathbf {x}}\overline{\varphi } \\ & + M (\nabla _{\mathbf {x}}\bm {\Psi }_{\eta ^2}^{-1}\circ \bm {\Psi }_{\eta ^2})^\top \nabla _{\mathbf {x}}\bm {\Psi }_{\eta ^2}^{-1}\circ \bm {\Psi }_{\eta ^2}\nabla _{\mathbf {x}}\overline{\widehat{f}^2} \cdot {\left[ (J_{\eta ^1}-J_{\eta ^2})\nabla _{\mathbf {x}}J_{\eta ^1}^{-1}+ J_{\eta ^2} \nabla _{\mathbf {x}}(J_{\eta ^1}^{-1}-J_{\eta ^2}^{-1})\right]}\overline{\varphi } \\ & + M (\nabla _{\mathbf {x}}\bm {\Psi }_{\eta ^2}^{-1}\circ \bm {\Psi }_{\eta ^2})^\top {\left[ \nabla _{\mathbf {x}}(\bm {\Psi }_{\eta ^1}^{-1}-\bm {\Psi }_{\eta ^2}^{-1})\circ \bm {\Psi }_{\eta ^1} + \nabla _{\mathbf {x}}\bm {\Psi }_{\eta ^2}^{-1}\circ (\bm {\Psi }_{\eta ^1}^{-1}-\bm {\Psi }_{\eta ^2}) \right]}\nabla _{\mathbf {x}}\overline{\widehat{f}^1} \cdot J_{\eta ^1} (\nabla _{\mathbf {x}}J_{\eta ^1}^{-1})\overline{\varphi } \\ & + M {\left[ (\nabla _{\mathbf {x}}(\bm {\Psi }_{\eta ^1}^{-1}-\bm {\Psi }_{\eta ^2}^{-1})\circ \bm {\Psi }_{\eta ^1})^\top + (\nabla _{\mathbf {x}}\bm {\Psi }_{\eta ^2}^{-1}\circ (\bm {\Psi }_{\eta ^1}^{-1}-\bm {\Psi }_{\eta ^2}))^\top \right]}\nabla _{\mathbf {x}}\bm {\Psi }_{\eta ^1}^{-1}\circ \bm {\Psi }_{\eta ^1}\nabla _{\mathbf {x}}\overline{\widehat{f}^1} \cdot J_{\eta ^1} (\nabla _{\mathbf {x}}J_{\eta ^1}^{-1})\overline{\varphi } \\ &+ M {\left[(\nabla _{\mathbf {x}}(\bm {\Psi }_{\eta ^1}^{-1}-\bm {\Psi }_{\eta ^2}^{-1})\circ \bm {\Psi }_{\eta ^1})^\top + (\nabla _{\mathbf {x}}\bm {\Psi }_{\eta ^2}^{-1}\circ (\bm {\Psi }_{\eta ^1}-\bm {\Psi }_{\eta ^2}))^\top \right]} (\nabla _{\mathbf {x}}\overline{\mathbf {u}}^1) \mathbf {q}\overline{\widehat{f}^1} \cdot \nabla _{\mathbf {q}}\overline{\varphi }. \end{align*}$$
Take φ ¯ = f ̂ 12 ¯ $\overline{\varphi } =\overline{\widehat{f}^{12}}$ as test function. Note that the estimate from Theorem 4.2 does not yields boundedness of f ̂ i $\widehat{f}^i$ , i = 1 , 2 $i=1,2$ in spacetime. However, the maximum principle from Remark 4.4 does the job and will be used repeatedly in the following. To estimate h 2 1 $h^1_2$ , we need the following estimates for the critical terms
I Ω × B M f ̂ 2 ¯ x f ̂ 12 ¯ · t ( Ψ η 1 1 Ψ η 2 1 ) Ψ η 1 d q d x d t + I Ω × B M u ¯ 2 f ̂ 2 ¯ · x ( Ψ η 1 1 Ψ η 2 1 ) Ψ η 1 x f ̂ 12 ¯ d q d x d t δ I x f ̂ 12 ¯ L 2 ( Ω ; L M 2 ( B ) ) 2 d t + c ( δ , η 1 , f ̂ 2 ¯ ) I t ( Ψ η 1 1 Ψ η 2 1 ) L 2 ( Ω ) 2 d t + δ I x f ̂ 12 ¯ L 2 ( Ω ; L M 2 ( B ) ) 2 d t + c ( δ , η 1 , f ̂ 2 ¯ , u ¯ 2 ) sup I x ( Ψ η 1 1 Ψ η 2 1 ) L 2 ( Ω ) 2 . $$\begin{equation} \begin{aligned} \int _I&\int _{ \Omega \times B} M \overline{\widehat{f}^2} \nabla _{\mathbf {x}}\overline{\widehat{f}^{12}}\cdot \partial _t(\bm {\Psi }_{\eta ^1}^{-1}-\bm {\Psi }_{\eta ^2}^{-1})\circ \bm {\Psi }_{\eta ^1} \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\\ &+ \int _I\int _{ \Omega \times B} M \overline{\mathbf {u}}^2\overline{\widehat{f}^2} \cdot \nabla _{\mathbf {x}}(\bm {\Psi }_{\eta ^1}^{-1}-\bm {\Psi }_{\eta ^2}^{-1})\circ \bm {\Psi }_{\eta ^1}\nabla _{\mathbf {x}}\overline{\widehat{f}^{12}} \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\\ & \le \delta \int _I \Vert \nabla _{\mathbf {x}}\overline{\widehat{f}^{12}} \Vert _{L^{2}(\Omega;L^2_M(B))}^2 \, {d}t+ c(\delta,\eta ^1, \overline{\widehat{f}^{2}}) \int _I\Vert \partial _t(\bm {\Psi }_{\eta ^1}^{-1}-\bm {\Psi }_{\eta ^2}^{-1}) \Vert _{L^{2}(\Omega)}^2 \, {d}t\\ & + \delta \int _I \Vert \nabla _{\mathbf {x}}\overline{\widehat{f}^{12}} \Vert _{L^{2}(\Omega;L^2_M(B))}^2 \, {d}t+ c(\delta,\eta ^1, \overline{\widehat{f}^{2}},\overline{\mathbf {u}}^2) \sup _I \Vert \nabla _{\mathbf {x}}(\bm {\Psi }_{\eta ^1}^{-1}-\bm {\Psi }_{\eta ^2}^{-1}) \Vert _{L^{2}(\Omega)}^2 . \end{aligned} \end{equation}$$ ()
Subsequently, by using (2.5), we obtain
I Ω × B h 2 1 ( f ̂ 12 ¯ ) d q d x d t δ I x f ̂ 12 ¯ L 2 ( Ω ; L M 2 ( B ) ) 2 d t + δ I f ̂ 12 ¯ L 2 ( Ω ; H M 1 ( B ) ) 2 d t + c ( δ , η 1 , η 2 , f ̂ 1 ¯ , f ̂ 2 ¯ , u ¯ 1 , u ¯ 2 ) I f ̂ 12 ¯ L 2 ( Ω ; L M 2 ( B ) ) 2 d t + I t η 12 W 1 , 2 ( ω ) 2 + sup I η 12 W 2 , 2 ( ω ) 2 $$\begin{equation} \begin{aligned} \int _I&\int _{ \Omega \times B} h^1_2(\overline{\widehat{f}^{12}}) \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\le \delta \int _I \Vert \nabla _{\mathbf {x}}\overline{\widehat{f}^{12}} \Vert _{L^2(\Omega;L^2_M(B))}^2 \, {d}t+ \delta \int _I \Vert \overline{\widehat{f}^{12}} \Vert _{L^2(\Omega;H^1_M(B))}^2 \, {d}t\\ & + c(\delta, \eta ^1, \eta ^2,\overline{\widehat{f}^{1}},\overline{\widehat{f}^{2}},\overline{\mathbf {u}}^1,\overline{\mathbf {u}}^2) {\left(\int _I \Vert \overline{\widehat{f}^{12}} \Vert _{L^2(\Omega;L^2_M(B))}^2 \, {d}t+ \int _I\Vert \partial _t\eta ^{12} \Vert _{W^{1,2} (\omega)}^2 + \sup _I \Vert \eta ^{12} \Vert _{ W^{2,2}(\omega)}^2 \right)} \end{aligned} \end{equation}$$ ()
for any δ > 0 $\delta >0$ . Next,
I Ω × B M f ̂ 12 ¯ x f ̂ 12 ¯ · t Ψ η 1 1 Ψ η 1 d q d x d t δ I f ̂ 12 ¯ L 2 ( Ω ; H M 1 ( B ) ) 2 d t + c ( δ , η 1 ) I f ̂ 12 ¯ L 2 ( Ω ; L M 2 ( B ) ) 2 d t $$\begin{align*} \int _I\int _{\Omega \times B}M \overline{\widehat{f}^{12}} \nabla _{\mathbf {x}}\overline{\widehat{f}^{12}} \cdot \partial _t\bm {\Psi }_{\eta ^1}^{-1}\circ \bm {\Psi }_{\eta ^1} \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\lesssim \delta \int _I \Vert \overline{\widehat{f}^{12}} \Vert _{L^2(\Omega;H^1_M(B))}^2 \, {d}t+ c(\delta, \eta ^1) \int _I \Vert \overline{\widehat{f}^{12}} \Vert _{L^2(\Omega;L^2_M(B))}^2\, {d}t \end{align*}$$
as well as
I Ω × B J η 2 M f ̂ 12 ¯ t ( J η 1 1 ) f ̂ 12 ¯ + M f ̂ 12 ¯ J η 2 ( x J η 1 1 ) f ̂ 12 ¯ · t Ψ η 1 1 Ψ η 1 d q d x d t c ( η 1 , η 2 ) I f ̂ 12 ¯ L 2 ( Ω ; L M 2 ( B ) ) 2 d t . $$\begin{equation} \begin{aligned} \int _I&\int _{\Omega \times B}{\left[ J_{\eta ^2} M \overline{\widehat{f}^{12}} \partial _t (J_{\eta ^1}^{-1}) \overline{\widehat{f}^{12}} + M \overline{\widehat{f}^{12}} J_{\eta ^2} (\nabla _{\mathbf {x}}J_{\eta ^1}^{-1})\overline{\widehat{f}^{12}} \cdot \partial _t\bm {\Psi }_{\eta ^1}^{-1}\circ \bm {\Psi }_{\eta ^1}\right]} \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\\ & \le c(\eta ^1, \eta ^2)\int _I \Vert \overline{\widehat{f}^{12}} \Vert _{L^2(\Omega;L^2_M(B))}^2 \, {d}t. \end{aligned} \end{equation}$$ ()
Similar to (5.6), we have that
I Ω × B M u ¯ 12 f ̂ 1 ¯ · x Ψ η 1 1 Ψ η 1 x f ̂ 12 ¯ d q d x d t c ( δ , η 1 , f ̂ 1 ¯ ) I u ¯ 12 W 1 , 2 ( Ω ) 2 d t + δ I f ̂ 12 ¯ W 1 , 2 ( Ω ; L M 2 ( B ) ) 2 d t . $$\begin{equation} \begin{aligned} \int _I&\int _{\Omega \times B} M \overline{\mathbf {u}}^{12}\overline{\widehat{f}^1} \cdot \nabla _{\mathbf {x}}\bm {\Psi }_{\eta ^1}^{-1}\circ \bm {\Psi }_{\eta ^1} \nabla _{\mathbf {x}}\overline{\widehat{f}^{12}} \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\\ & \le c(\delta, \eta ^1,\overline{\widehat{f}^{1}}) \int _I \Vert \overline{\mathbf {u}}^{12} \Vert _{W^{1,2}(\Omega)}^2 \, {d}t+ \delta \int _I \Vert \overline{\widehat{f}^{12}} \Vert _{W^{1,2}(\Omega;L^2_M(B))}^2 \, {d}t. \end{aligned} \end{equation}$$ ()
We also have that
I Ω × B J η 2 M u ¯ 12 f ̂ 1 ¯ + u ¯ 2 f ̂ 12 ¯ · x Ψ η 1 1 Ψ η 1 ( x J η 1 1 ) f ̂ 12 ¯ d q d x d t c ( η 1 , η 2 , f ̂ 1 ¯ ) I u ¯ 12 W 1 , 2 ( Ω ) 2 d t + c ( η 1 , η 2 , f ̂ 1 ¯ , u ¯ 2 ) I f ̂ 12 ¯ L 2 ( Ω ; L M 2 ( B ) ) 2 d t $$\begin{equation} \begin{aligned} \int _I&\int _{\Omega \times B} J_{\eta ^2} M{\left[\overline{\mathbf {u}}^{12}\overline{\widehat{f}^1} + \overline{\mathbf {u}}^2\overline{\widehat{f}^{12}} \right]} \cdot \nabla _{\mathbf {x}}\bm {\Psi }_{\eta ^1}^{-1}\circ \bm {\Psi }_{\eta ^1} (\nabla _{\mathbf {x}}J_{\eta ^1}^{-1})\overline{\widehat{f}^{12}} \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\\ & \le c(\eta ^1,\eta ^2,\overline{\widehat{f}^{1}}) \int _I \Vert \overline{\mathbf {u}}^{12} \Vert _{W^{1,2}(\Omega)}^2 \, {d}t+ c(\eta ^1,\eta ^2,\overline{\widehat{f}^{1}},\overline{\mathbf {u}}^2) \int _I \Vert \overline{\widehat{f}^{12}} \Vert _{L^2(\Omega;L^2_M(B))}^2 \, {d}t\end{aligned} \end{equation}$$ ()
as well as
I Ω × B M ( x Ψ η 2 1 Ψ η 2 ) ( x u ¯ 12 ) q f ̂ 1 ¯ + ( x u ¯ 2 ) q f ̂ 12 ¯ · q f ̂ 12 ¯ d q d x d t c ( δ , η 2 , f ̂ 1 ¯ ) I u ¯ 12 W 1 , 2 ( Ω ) 2 d t + c ( δ , η 2 ) I x u ¯ 2 L ( Ω ) f ̂ 12 ¯ L 2 ( Ω ; L M 2 ( B ) ) 2 d t + δ I f ̂ 12 ¯ L 2 ( Ω ; H M 1 ( B ) ) 2 d t . $$\begin{equation} \begin{aligned} \int _I&\int _{ \Omega \times B} M (\nabla _{\mathbf {x}}\bm {\Psi }_{\eta ^2}^{-1}\circ \bm {\Psi }_{\eta ^2})^\top {\left[(\nabla _{\mathbf {x}}\overline{\mathbf {u}}^{12}) \mathbf {q}\overline{\widehat{f}^1} + (\nabla _{\mathbf {x}}\overline{\mathbf {u}}^2) \mathbf {q}\overline{\widehat{f}^{12}} \right]} \cdot \nabla _{\mathbf {q}}\overline{\widehat{f}^{12}} \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\\ & \le c(\delta, \eta ^2,\overline{\widehat{f}^{1}}) \int _I \Vert \overline{\mathbf {u}}^{12} \Vert _{W^{1,2}(\Omega)}^2 \, {d}t+ c(\delta, \eta ^2) \int _I \Vert \nabla _{\mathbf {x}}\overline{\mathbf {u}}^{2}\Vert _{L^\infty (\Omega)} \Vert \overline{\widehat{f}^{12}} \Vert _{L^2(\Omega;L^2_M(B))}^2 \, {d}t\\ &+ \delta \int _I \Vert \overline{\widehat{f}^{12}} \Vert _{L^2(\Omega;H^1_M(B))}^2 \, {d}t. \end{aligned} \end{equation}$$ ()
Next, we obtain
I Ω × B M f ̂ 12 ¯ x f ̂ 12 ¯ · t Ψ η 1 1 Ψ η 1 + u ¯ 2 · x Ψ η 1 1 Ψ η 1 x f ̂ 12 ¯ d q d x d t + I Ω × B M ( x Ψ η 2 1 Ψ η 2 ) x Ψ η 2 1 Ψ η 2 x f ̂ 12 ¯ · J η 1 ( x J η 1 1 ) f ̂ 12 ¯ d q d x d t δ I x f ̂ 12 ¯ L 2 ( Ω ; L M 2 ( B ) ) 2 d t + c ( δ , η 1 , η 2 , f ̂ 1 ¯ , f ̂ 2 ¯ , u ¯ 2 ) I f ̂ 12 ¯ L 2 ( Ω ; L M 2 ( B ) ) 2 d t . $$\begin{equation} \begin{aligned} \int _I&\int _{\Omega \times B}M \overline{\widehat{f}^{12}} {\left(\nabla _{\mathbf {x}}\overline{\widehat{f}^{12}}\cdot \partial _t\bm {\Psi }_{\eta ^1}^{-1}\circ \bm {\Psi }_{\eta ^1} + \overline{\mathbf {u}}^2 \cdot \nabla _{\mathbf {x}}\bm {\Psi }_{\eta ^1}^{-1}\circ \bm {\Psi }_{\eta ^1} \nabla _{\mathbf {x}}\overline{\widehat{f}^{12}} \right)} \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\\ & + \int _I\int _{ \Omega \times B} M (\nabla _{\mathbf {x}}\bm {\Psi }_{\eta ^2}^{-1}\circ \bm {\Psi }_{\eta ^2})^\top \nabla _{\mathbf {x}}\bm {\Psi }_{\eta ^2}^{-1}\circ \bm {\Psi }_{\eta ^2}\nabla _{\mathbf {x}}\overline{\widehat{f}^{12}} \cdot J_{\eta ^1} (\nabla _{\mathbf {x}}J_{\eta ^1}^{-1})\overline{\widehat{f}^{12}} \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\\ & \le \delta \int _I \Vert \nabla _{\mathbf {x}}\overline{\widehat{f}^{12}} \Vert _{L^2(\Omega;L^2_M(B))}^2 \, {d}t+ c(\delta,\eta ^1,\eta ^2,\overline{\widehat{f}^{1}},\overline{\widehat{f}^{2}},\overline{\mathbf {u}}^2) \int _I \Vert \overline{\widehat{f}^{12}} \Vert _{L^2(\Omega;L^2_M(B))}^2 \, {d}t. \end{aligned} \end{equation}$$ ()
By combining the above with the ellipticity of ( x Ψ η 2 1 Ψ η 2 ) x Ψ η 2 1 Ψ η 2 $(\nabla _{\mathbf {x}}\bm {\Psi }_{\eta ^2}^{-1}\circ \bm {\Psi }_{\eta ^2})^\top \nabla _{\mathbf {x}}\bm {\Psi }_{\eta ^2}^{-1}\circ \bm {\Psi }_{\eta ^2}$ and applying Grönwall's lemma, we have shown that
f ̂ 12 ¯ Y ¯ 2 = sup I f ̂ 12 ¯ L 2 ( Ω ; L M 2 ( B ) ) 2 + I f ̂ 12 ¯ W 1 , 2 ( Ω ; L M 2 ( B ) ) 2 d t + I f ̂ 12 ¯ L 2 ( Ω ; H M 1 ( B ) ) 2 d t e c T I u ¯ 12 W 1 , 2 ( Ω ) 2 d t + I t η 12 W 1 , 2 ( ω ) 2 d t + sup I η 12 W 2 , 2 ( ω ) 2 $$\begin{equation} \begin{aligned} \Vert \overline{\widehat{f}^{12}} \Vert _{\overline{Y}}^2 &= \sup _{I} \Vert \overline{\widehat{f}^{12}} \Vert _{L^2(\Omega;L^2_M(B))}^2 + \int _I \Vert \overline{\widehat{f}^{12}} \Vert _{W^{1,2}(\Omega;L^2_M(B))}^2 \, {d}t+ \int _I \Vert \overline{\widehat{f}^{12}} \Vert _{L^2(\Omega;H^1_M(B))}^2 \, {d}t\\ & \le e^{cT} {\left(\int _I \Vert \overline{\mathbf {u}}^{12} \Vert _{W^{1,2}(\Omega)}^2 \, {d}t+ \int _I\Vert \partial _t\eta ^{12} \Vert _{W^{1,2} (\omega)}^2\, {d}t+ \sup _I\Vert \eta ^{12} \Vert _{W^{2,2} (\omega)}^2 \right)} \end{aligned} \end{equation}$$ ()
with a constant c = c ( η 1 , η 2 , f ̂ 1 ¯ , f ̂ 2 ¯ , u ¯ 1 , u ¯ 2 ) $c=c(\eta ^1, \eta ^2,\overline{\widehat{f}^{1}},\overline{\widehat{f}^{2}},\overline{\mathbf {u}}^1,\overline{\mathbf {u}}^2)$ .
Now, let us consider the two solutions ( η 1 , u 1 , π 1 ) $(\eta ^1,\mathbf {u}^1,\pi ^1)$ and ( η 2 , u 2 , π 2 ) $(\eta ^2,\mathbf {u}^2,\pi ^2)$ of (3.3) and (3.2) with datasets
( f , g , η 0 , η , u 0 , S q ( 1 ) ) and ( f , g , η 0 , η , u 0 , S q ( 2 ) ) , $$\begin{equation*} (\mathbf {f}, g, \eta _0, \eta _\star, \mathbf {u}_0, \mathbb {S}_\mathbf {q}(\hbar ^1))\quad \text{and}\quad (\mathbf {f}, g, \eta _0, \eta _\star, \mathbf {u}_0, \mathbb {S}_\mathbf {q}(\hbar ^2)), \end{equation*}$$
respectively, and let u ¯ i = u i Ψ η i $\overline{\mathbf {u}}^i=\mathbf {u}^i\circ \bm {\Psi }_{\eta ^i}$ and ¯ i = i Ψ η i $\overline{\hbar }^i=\hbar ^i\circ \bm {\Psi }_{\eta ^i}$ , for i = 1 , 2 $i=1,2$ , be the transformations onto the fixed reference domain. Since x u ¯ i = x u i Ψ η i x Ψ η i $\nabla _{\mathbf {x}}\overline{\mathbf {u}}^i = \nabla _{\mathbf {x}}\mathbf {u}^i\circ \bm {\Psi }_{\eta ^i}\nabla _{\mathbf {x}}\bm {\Psi }_{\eta ^i}$ , i = 1 , 2 $i=1,2$ , by setting η 12 : = η 1 η 2 $\eta ^{12}:=\eta ^1-\eta ^2$ , u ¯ 12 : = u ¯ 1 u ¯ 2 $\overline{\mathbf {u}}^{12}:=\overline{\mathbf {u}}^1-\overline{\mathbf {u}}^2$ , π ¯ 12 : = π ¯ 1 π ¯ 2 $\overline{\pi }^{12}:=\overline{\pi }^1-\overline{\pi }^2$ and ¯ 12 : = ¯ 1 ¯ 2 $\overline{\hbar }^{12}:=\overline{\hbar }^1-\overline{\hbar }^2$ , we obtain
I x u ¯ 12 L 2 ( Ω ) 2 d t I x u 1 x Ψ η 1 Ψ η 1 1 ( x u 2 Ψ η 2 ) Ψ η 1 1 x Ψ η 2 Ψ η 1 1 L 2 ( Ω η 1 ) 2 d t I x u 1 ( x Ψ η 1 Ψ η 1 1 x Ψ η 2 Ψ η 1 1 ) L 2 ( Ω η 1 ) 2 d t + I ( x u 1 ( x u 2 Ψ η 2 ) Ψ η 1 1 ) x Ψ η 2 Ψ η 1 1 L 2 ( Ω η 1 ) 2 d t = : K 1 + K 2 , $$\begin{equation} \begin{aligned} \int _I\Vert \nabla _{\mathbf {x}}\overline{\mathbf {u}}^{12} \Vert _{L^2(\Omega)}^2 \, {d}t&\lesssim \int _I\Vert \nabla _{\mathbf {x}}\mathbf {u}^1\nabla _{\mathbf {x}}\bm {\Psi }_{\eta ^1}\circ \bm {\Psi }_{\eta ^1}^{-1}-(\nabla _{\mathbf {x}}\mathbf {u}^2\circ \bm {\Psi }_{\eta ^2})\circ \bm {\Psi }_{\eta ^1}^{-1}\nabla _{\mathbf {x}}\bm {\Psi }_{\eta ^2}\circ \bm {\Psi }_{\eta ^1}^{-1} \Vert _{L^2(\Omega _{\eta ^1})}^2\, {d}t\\ & \lesssim \int _I\Vert \nabla _{\mathbf {x}}\mathbf {u}^1(\nabla _{\mathbf {x}}\bm {\Psi }_{\eta ^1}\circ \bm {\Psi }_{\eta ^1}^{-1}-\nabla _{\mathbf {x}}\bm {\Psi }_{\eta ^2}\circ \bm {\Psi }_{\eta ^1}^{-1}) \Vert _{L^2(\Omega _{\eta ^1})}^2\, {d}t\\ &+ \int _I\Vert (\nabla _{\mathbf {x}}\mathbf {u}^1-(\nabla _{\mathbf {x}}\mathbf {u}^2\circ \bm {\Psi }_{\eta ^2})\circ \bm {\Psi }_{\eta ^1}^{-1})\nabla _{\mathbf {x}}\bm {\Psi }_{\eta ^2}\circ \bm {\Psi }_{\eta ^1}^{-1} \Vert _{L^2(\Omega _{\eta ^1})}^2\, {d}t\\ & =:K_1+K_2, \end{aligned} \end{equation}$$ ()
where
K 1 I x u 1 L 4 ( Ω η 1 ) 2 J η 1 x ( Ψ η 1 Ψ η 2 ) L 4 ( Ω ) 2 d t I u 1 W 2 , 2 ( Ω η 1 ) 2 Ψ η 1 Ψ η 2 W 2 , 2 ( Ω ) 2 d t T sup I u 1 W 2 , 2 ( Ω η 1 ) 2 sup I η 1 η 2 W 2 , 2 ( ω ) 2 T sup I η 1 η 2 W 2 , 2 ( ω ) 2 $$\begin{equation} \begin{aligned} K_1& \lesssim \int _I\Vert \nabla _{\mathbf {x}}\mathbf {u}^1\Vert _{L^4(\Omega _{\eta ^1})}^2\Vert J_{\eta ^1} \nabla _{\mathbf {x}}(\bm {\Psi }_{\eta ^1} - \bm {\Psi }_{\eta ^2}) \Vert _{L^4(\Omega)}^2\, {d}t\\ & \lesssim \int _I\Vert \mathbf {u}^1\Vert _{W^{2,2}(\Omega _{\eta ^1})}^2\Vert \bm {\Psi }_{\eta ^1} - \bm {\Psi }_{\eta ^2} \Vert _{W^{2,2}(\Omega)}^2\, {d}t\\ & \lesssim T\sup _I\Vert \mathbf {u}^1\Vert _{W^{2,2}(\Omega _{\eta ^1})}^2\sup _I\Vert \eta ^1 - \eta ^2 \Vert _{W^{2,2}(\omega)}^2\\ &\lesssim T\sup _I\Vert \eta ^1 - \eta ^2 \Vert _{W^{2,2}(\omega)}^2 \end{aligned} \end{equation}$$ ()
and
K 2 I x u 1 x u ¯ 2 Ψ η 1 1 L 2 ( Ω η 1 ) 2 d t . $$\begin{equation} \begin{aligned} K_2 \lesssim \int _I\Vert \nabla _{\mathbf {x}}\mathbf {u}^1- \nabla _{\mathbf {x}}\overline{\mathbf {u}}^2 \circ \bm {\Psi }_{\eta ^1}^{-1} \Vert _{L^2(\Omega _{\eta ^1})}^2\, {d}t. \end{aligned} \end{equation}$$ ()
Also,
I u ¯ 12 L 2 ( Ω ) 2 d t = I u 1 u ¯ 2 Ψ η 1 1 L 2 ( Ω η 1 ) 2 d t . $$\begin{equation} \begin{aligned} &\int _I\Vert \overline{\mathbf {u}}^{12} \Vert _{L^2(\Omega)}^2 \, {d}t= \int _I\Vert \mathbf {u}^1- \overline{\mathbf {u}}^2\circ \bm {\Psi }_{\eta ^1}^{-1} \Vert _{L^2(\Omega _{\eta ^1})}^2 \, {d}t. \end{aligned} \end{equation}$$ ()
It, therefore, follows from (5.14)–(5.17) that for T 1 $T\ll 1$ ,
I u ¯ 12 W 1 , 2 ( Ω ) 2 d t + I t η 12 W 1 , 2 ( ω ) 2 d t + sup I η 12 W 2 , 2 ( ω ) 2 I u 1 u ¯ 2 Ψ η 1 1 W 1 , 2 ( Ω η 1 ( t ) ) 2 d t + I t η 12 W 1 , 2 ( ω ) 2 d t + sup I η 12 W 2 , 2 ( ω ) 2 $$\begin{equation} \begin{aligned} \int _I & \Vert \overline{\mathbf {u}}^{12} \Vert _{W^{1,2}(\Omega)}^2 \, {d}t+ \int _I\Vert \partial _t\eta ^{12} \Vert _{W^{1,2} (\omega)}^2\, {d}t+ \sup _I\Vert \eta ^{12} \Vert _{W^{2,2} (\omega)}^2 \\ &\lesssim \int _{I }\Vert \mathbf {u}^1- \overline{\mathbf {u}}^2\circ \bm {\Psi }_{\eta ^1}^{-1}\Vert _{W^{1,2}(\Omega _{\eta ^1(t)})}^2 \, {d}t+ \int _I\Vert \partial _t\eta ^{12} \Vert _{W^{1,2} (\omega)}^2\, {d}t+ \sup _I\Vert \eta ^{12} \Vert _{W^{2,2} (\omega)}^2 \end{aligned} \end{equation}$$ ()
However, by [14, Remark 5.2],
I u 1 u ¯ 2 Ψ η 1 1 W 1 , 2 ( Ω η 1 ( t ) ) 2 d t + I t η 12 W 1 , 2 ( ω ) 2 d t + sup I η 12 W 2 , 2 ( ω ) 2 I S q ( 1 ¯ 2 Ψ η 1 1 ) L 2 ( Ω η 1 ( t ) ) 2 d t $$\begin{equation} \begin{aligned} \int _{I }\Vert \mathbf {u}^1- \overline{\mathbf {u}}^2\circ \bm {\Psi }_{\eta ^1}^{-1}\Vert _{W^{1,2}(\Omega _{\eta ^1(t)})}^2 \, {d}t&+ \int _I\Vert \partial _t\eta ^{12} \Vert _{W^{1,2} (\omega)}^2\, {d}t+ \sup _I\Vert \eta ^{12} \Vert _{W^{2,2} (\omega)}^2 \\ &\lesssim \int _{I } \Vert \mathbb {S}_\mathbf {q}(\hbar ^1-\overline{\hbar }^2\circ \bm {\Psi }_{\eta ^1}^{-1}) \Vert _{L^2(\Omega _{\eta ^1(t)})}^2\, {d}t\end{aligned} \end{equation}$$ ()
where
I S q ( 1 ¯ 2 Ψ η 1 1 ) L 2 ( Ω η 1 ( t ) ) 2 d t = I S q ( ¯ 12 ) L 2 ( Ω ) 2 d t . $$\begin{align*} \int _{I } \Vert \mathbb {S}_\mathbf {q}(\hbar ^1-\overline{\hbar }^2\circ \bm {\Psi }_{\eta ^1}^{-1}) \Vert _{L^2(\Omega _{\eta ^1(t)})}^2\, {d}t= \int _{I } \Vert \mathbb {S}_\mathbf {q}(\overline{\hbar }^{12}) \Vert _{L^2(\Omega)}^2 \, {d}t. \end{align*}$$
If we now combine (5.13) with (5.18) and (5.19) and the fact that
I S q ( ¯ 12 ) L 2 ( Ω ) 2 d t c ( δ ) T sup I ¯ 12 L 2 ( Ω ; L M 2 ( B ) ) 2 + δ I ¯ 12 L 2 ( Ω ; H M 1 ( B ) ) 2 d t , $$\begin{equation} \begin{aligned} \int _{I } \Vert \mathbb {S}_\mathbf {q}(\overline{\hbar }^{12}) \Vert _{L^2(\Omega)}^2 \, {d}t&\le c(\delta)T \sup _I \Vert \overline{\hbar }^{12} \Vert _{L^2(\Omega;L^2_M(B))}^2 + \delta \int _I \Vert \overline{\hbar }^{12} \Vert _{L^2(\Omega;H^1_M(B))}^2 \, {d}t, \end{aligned} \end{equation}$$ ()
we obtain
f ̂ 12 ¯ Y ¯ 2 c e c T ( c ( δ ) T + δ ) ¯ 12 Y ¯ 2 1 2 ¯ 12 Y ¯ 2 $$\begin{equation} \begin{aligned} \Vert \overline{\widehat{f}^{12}} \Vert _{\overline{Y}}^2 &\le c\,e^{cT}(c(\delta)T +\delta)\Vert \overline{\hbar }^{12} \Vert _{\overline{Y}}^2 \le \tfrac{1}{2}\Vert \overline{\hbar }^{12} \Vert _{\overline{Y}}^2 \end{aligned} \end{equation}$$ ()
choosing first δ $\delta$ and then T $T$ accordingly. The existence of the desired fixed point now follows.

6 THE 2D CO-ROTATIONAL MODEL

6.1 Solving the equation for the solute

In this section, for a known moving domain Ω ζ $\Omega _{\zeta }$ and a known solenoidal velocity field w $\mathbf {w}$ with skew-symmetric gradient W ( w ) = 1 2 ( x w x w ) $\mathcal {W}(\mathbf {w})=\frac{1}{2}(\nabla _{\mathbf {x}}\mathbf {w}-\nabla _{\mathbf {x}}\mathbf {w}^\top)$ , we aim to construct a strong solution of the Fokker–Planck equation
M t f ̂ + ( w · x ) f ̂ + div q W ( w ) q M f ̂ = Δ x ( M f ̂ ) + div q M q f ̂ $$\begin{align} M{\left(\partial _t \widehat{f} + (\mathbf {w}\cdot \nabla _{\mathbf {x}}) \widehat{f}\right)} + \mathrm{div}_{\mathbf {q}}{\left(\mathcal {W}(\mathbf {w}) \mathbf {q}M\widehat{f} \right)} = \Delta _{\mathbf {x}}(M\widehat{f}) + \mathrm{div}_{\mathbf {q}}{\left(M \nabla _{\mathbf {q}}\widehat{f} \right)} \end{align}$$ ()
in I × Ω ζ × B $I\times \Omega _\zeta \times B$ , where the Maxwellian M $M$ is given by
M ( q ) = e U 1 2 | q | 2 B e U 1 2 | q | 2 d q , U ( s ) = b 2 log 1 2 s b , s [ 0 , b / 2 ) $$\begin{align*} M(\mathbf {q}) = \frac{\text{e}^{-U {\left(\frac{1}{2}\vert \mathbf {q} \vert ^2 \right)} }}{\int _B\text{e}^{-U {\left(\frac{1}{2}\vert \mathbf {q} \vert ^2 \right)} }\,\mathrm{d}\mathbf {q}},\quad U (s) = -\frac{b}{2} \log {\left(1- \frac{2s}{b} \right)}, \quad s\in [0,b/2) \end{align*}$$
with b > 2 $b>2$ . Equation (6.1) is complemented with the conditions
f ̂ ( 0 , · , · ) = f ̂ 0 0 in Ω ζ 0 × B , $$\begin{align} &\widehat{f}(0, \cdot, \cdot) =\widehat{f}_0 \ge 0 \quad \text{in }\Omega _{\zeta _0} \times B, \end{align}$$ ()
x f ̂ · n ζ = 0 on I × Ω ζ × B , $$\begin{align} & \nabla _{\mathbf {x}}\widehat{f}\cdot \mathbf {n}_\zeta =0 \quad \text{on }I \times \partial \Omega _\zeta \times B, \end{align}$$ ()
M q f ̂ W ( w ) q f ̂ · q | q | = 0 on I × Ω ζ × B ¯ . $$\begin{align} &M{\left(\nabla _{\mathbf {q}}\widehat{f} - \mathcal {W}(\mathbf {w}) \mathbf {q}\widehat{f} \right)} \cdot \frac{\mathbf {q}}{\vert \mathbf {q}\vert } =0 \quad \text{on }I \times \Omega _\zeta \times \partial \overline{B}. \end{align}$$ ()
Let us start with a precise definition of what we mean by a strong solution.

Definition 6.1.Assume that the triplet ( f ̂ 0 , ζ , w ) $(\widehat{f}_0,\zeta, \mathbf {w})$ satisfies

f ̂ 0 W 1 , 2 Ω ζ ( 0 ) ; L M 2 ( B ) , w L 2 ( I ; W div x 2 , 2 ( Ω ζ ) ) , $$\begin{align} \widehat{f}_0\in W^{1,2}{\left(\Omega _{\zeta (0)}; L^2_M(B) \right)}, \qquad \mathbf {w}\in L^2(I; W^{2,2}_{\mathrm{div}_{\mathbf {x}}}(\Omega _{\zeta })), \end{align}$$ ()
ζ W 1 , ( I ; W 1 , 2 ( ω ) ) L ( I ; W 3 , 2 ( ω ) ) , $$\begin{align} \zeta \in W^{1,\infty }(I;W^{1,2}(\omega)) \cap L^{\infty }(I;W^{3,2}(\omega)), \end{align}$$ ()
w φ ζ = ( t ζ ) n on I × ω , ζ L ( I × ω ) < L . $$\begin{align} \mathbf {w} \circ \bm {\varphi }_{\zeta } =(\partial _t\zeta)\mathbf {n}\quad \text{on }I \times \omega, \quad \Vert \zeta \Vert _{L^\infty (I\times \omega)}<L. \end{align}$$ ()
We call f ̂ $\widehat{f}$ a strong solution of (6.1) with data ( f ̂ 0 , ζ , w ) $(\widehat{f}_0,\zeta, \mathbf {w})$ if
  • (a) f ̂ $\widehat{f}$ satisfies
    f ̂ L I ; W 1 , 2 ( Ω η ( t ) ; L M 2 ( B ) ) L 2 I ; W 2 , 2 ( Ω η ( t ) ; L M 2 ( B ) ) L 2 I ; W 1 , 2 ( Ω η ( t ) ; H M 1 ( B ) ) ; $$\begin{align*} \widehat{f}&\in L^{\infty }{\left(I;W^{1,2}(\Omega _{\eta (t)};L^2_M(B)) \right)} \cap L^{2}{\left(I;W^{2,2}(\Omega _{\eta (t)};L^2_M(B)) \right)} \\ & \qquad \qquad \qquad \cap L^{2}{\left(I;W^{1,2}(\Omega _{\eta (t)};H^1_M(B)) \right)}; \end{align*}$$
  • (b) for all φ C ( I ¯ × R 3 × B ¯ ) $ \varphi \in C^\infty (\overline{I}\times \mathbb {R}^3 \times \overline{B})$ , we have
    I d d t Ω ζ × B M f ̂ φ d q d x d t = I Ω ζ × B M f ̂ t φ + M w f ̂ · x φ x f ̂ · x φ d q d x d t + I Ω ζ × B M W ( w ) q f ̂ M q f ̂ · q φ d q d x d t . $$\begin{equation} \begin{aligned} \int _I \frac{\mathrm{d}}{\, {d}t} \int _{\Omega _{\zeta }\times B}M \widehat{f} \, \varphi \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t&=\int _I\int _{\Omega _{\zeta }\times B}{\left(M \widehat{f} \,\partial _t \varphi + M\mathbf {w} \widehat{f} \cdot \nabla _{\mathbf {x}}\varphi - \nabla _{\mathbf {x}}\widehat{f} \cdot \nabla _{\mathbf {x}}\varphi \right)} \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\\ &\quad\, + \int _I\int _{ \Omega _{\zeta }\times B} {\left(M \mathcal {W}(\mathbf {w}) \mathbf {q}\widehat{f}- M \nabla _{\mathbf {q}}\widehat{f} \right)} \cdot \nabla _{\mathbf {q}}\varphi \, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t. \end{aligned} \end{equation}$$ ()

We now formulate our result on the existence of a unique strong solution of (6.1).

Theorem 6.2.Let ( f ̂ 0 , ζ , w ) $(\widehat{f}_0,\zeta, \mathbf {w})$ satisfy (6.5)–(6.7)

Then, there is a unique strong solution f ̂ $\widehat{f}$ of (6.1)–(6.4), in the sense of Definition 6.1, such that

+ sup I f ̂ ( t ) W 1 , 2 ( Ω ζ ; L M 2 ( B ) ) 2 + I f ̂ W 2 , 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t + I f ̂ W 1 , 2 ( Ω ζ ; H M 1 ( B ) ) 2 d t exp c I w W 2 , 2 ( Ω ζ ) 2 d t + c I t ζ W 1 / 3 , 2 ( ω ) 12 / 5 d t f ̂ 0 W 1 , 2 ( Ω ζ ( 0 ) ; L M 2 ( B ) ) 2 $$\begin{equation} \begin{aligned} &+ \sup _I \Vert \widehat{f}(t) \Vert _{W^{1,2}(\Omega _{\zeta };L^2_M(B))}^2+ \int _I \Vert \widehat{f} \Vert _{W^{2,2}(\Omega _{\zeta };L^2_M(B))}^2 \, {d}t+ \int _I \Vert \widehat{f} \Vert _{W^{1,2}(\Omega _{\zeta };H^1_M(B))}^2 \, {d}t\\ &\quad \lesssim \exp {\left(c\int _I \Vert \mathbf {w} \Vert _{W^{2,2}(\Omega _{\zeta })}^2 \, {d}t+ c \int _I\Vert \partial _t\zeta \Vert _{W^{1/3,2}(\omega)}^{12/5}\, {d}t\right)} \Vert \widehat{f}_0 \Vert _{W^{1,2}(\Omega _{\zeta (0)};L^2_M(B))}^2 \end{aligned} \end{equation}$$ ()
holds with a constant depending on sup I w L 2 ( Ω ζ ) $\sup _I\Vert \mathbf {w}\Vert _{L^2(\Omega _{\zeta })}$ , sup I ζ W 1 , ( ω ) $\sup _I\Vert \zeta \Vert _{W^{1,\infty }(\omega)}$ and f ̂ 0 L ( Ω ζ ( 0 ) ; L M 2 ( B ) ) $\Vert \widehat{f}_0\Vert _{L^\infty (\Omega _{\zeta (0)};L^2_M(B))}$ .

We will obtain a solution of (6.1) by way of a limit to the following approximation:
M t f ̂ n + ( w · x ) f ̂ n + div q W ( w ) q M f ̂ n = Δ x ( M f ̂ n ) + div q M q f ̂ n . $$\begin{equation} \begin{aligned} M{\left(\partial _t \widehat{f}^n + (\mathbf {w}\cdot \nabla _{\mathbf {x}}) \widehat{f}^n\right)} + \mathrm{div}_{\mathbf {q}}{\left(\mathcal {W}(\mathbf {w})\mathbf {q}M\widehat{f}^n \right)} &= \Delta _{\mathbf {x}}(M \widehat{f}^n) + \mathrm{div}_{\mathbf {q}}{\left(M \nabla _{\mathbf {q}}\widehat{f}^n \right)}. \end{aligned} \end{equation}$$ ()
Here, we solve the equation under the boundary conditions
x f ̂ n · n ζ = 0 on I × Ω ζ × B , M q f ̂ n W ( w ) q f ̂ n · q | q | = 0 on I × Ω ζ × B ¯ , $$\begin{align*} & \nabla _{\mathbf {x}}\widehat{f}^n\cdot \mathbf {n}_\zeta =0 \quad \text{on }I \times \partial \Omega _\zeta \times B, \\ &M{\left(\nabla _{\mathbf {q}}\widehat{f}^n - \mathcal {W}(\mathbf {w}) \mathbf {q}\widehat{f}^n \right)} \cdot \frac{\mathbf {q}}{\vert \mathbf {q}\vert } =0 \quad \text{on }I \times \Omega _\zeta \times \partial \overline{B}, \end{align*}$$
and consider the same initial condition f ̂ n ( 0 ) = f ̂ 0 $\widehat{f}^n(0)=\widehat{f}_0$ .

Remark 6.3.Unlike the case where W ( w ) $\mathcal {W}(\mathbf {w})$ is replaced by x w $\nabla _{\mathbf {x}}\mathbf {w}$ considered in Section 4, we do not require a cutoff χ n ( q ) C c 1 ( B ) $\chi ^n(\mathbf {q})\in C^1_c(B)$ here since div q W ( w ) q M f ̂ n = W ( w ) q M · q f ̂ n L 2 ( B ) $\mathrm{div}_{\mathbf {q}}\left(\mathcal {W}(\mathbf {w})\mathbf {q}M\widehat{f}^n \right) = \mathcal {W}(\mathbf {w})\mathbf {q}M\cdot \nabla _{\mathbf {q}}\widehat{f}^n \in L^2(B)$ holds for the co-rotational case.

In the following couple of lemmas, we will derive estimates for (6.10) which are uniform with respect to n $n$ . They transfer directly to (6.1) as the latter is linear.

The first of two results leading to the proof of Theorem 6.2 is the following.

Lemma 6.4.Let ( f ̂ 0 , ζ , w ) $(\widehat{f}_0,\zeta, \mathbf {w})$ satisfy (6.5)–(6.7) and let f ̂ n $\widehat{f}^n$ be the corresponding solution to (6.10). Then, we have

sup I f ̂ n ( t ) L 2 ( Ω ζ ; L M 2 ( B ) ) 2 + I f ̂ n W 1 , 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t + I f ̂ n L 2 ( Ω ζ ; H M 1 ( B ) ) 2 d t f ̂ 0 L 2 ( Ω ζ ( 0 ) ; L M 2 ( B ) ) 2 $$\begin{equation} \begin{aligned} \sup _I \Vert \widehat{f}^n(t) \Vert _{L^2(\Omega _{\zeta };L^2_M(B))}^2 &+ \int _I \Vert \widehat{f}^n \Vert _{W^{1,2}(\Omega _{\zeta };L^2_M(B))}^2 \, {d}t+ \int _I \Vert \widehat{f}^n \Vert _{L^2(\Omega _{\zeta };H^1_M(B))}^2 \, {d}t\\ &\lesssim \Vert \widehat{f}_0 \Vert _{L^2(\Omega _{\zeta (0)};L^2_M(B))}^2 \end{aligned} \end{equation}$$ ()
uniformly in n N $n\in \mathbb {N}$ .

Proof.Before we begin, we first note that since

  • div q ( W ( w ) q ) = 0 $\mathrm{div}_{\mathbf {q}}(\mathcal {W}(\mathbf {w}) \mathbf {q})=0$ ,
  • q M = M q U = M b q b | q | 2 $\nabla _{\mathbf {q}}M=-M\nabla _{\mathbf {q}}U=-M\frac{b\mathbf {q}}{b-\vert \mathbf {q}\vert ^2}$ ,
  • ( W ( w ) q ) · q = 0 $(\mathcal {W}(\mathbf {w}) \mathbf {q})\cdot \mathbf {q}=0$ ,
for any q 1 $q\ge 1$ , we have that
B div q W ( w ) q M f ̂ n ( f ̂ n ) q d q = B W ( w ) q M · q f ̂ n ( f ̂ n ) q d q = 1 q + 1 B W ( w ) q M · q ( f ̂ n ) q + 1 d q = 1 q + 1 B div q W ( w ) q M ( f ̂ n ) q + 1 d q . $$\begin{equation} \begin{aligned} \int _B \mathrm{div}_{\mathbf {q}}{\left(\mathcal {W}(\mathbf {w})\mathbf {q}M\widehat{f}^n \right)}(\widehat{f}^n)^q\, {d} \mathbf {q}&= \int _B \mathcal {W}(\mathbf {w})\mathbf {q}M\cdot \nabla _{\mathbf {q}}\widehat{f}^n (\widehat{f}^n)^q\, {d} \mathbf {q}\\ &= \frac{1}{q+1} \int _B \mathcal {W}(\mathbf {w})\mathbf {q}M\cdot \nabla _{\mathbf {q}}(\widehat{f}^n)^{q+1}\, {d} \mathbf {q}\\ & = \frac{1}{q+1} \int _B \mathrm{div}_{\mathbf {q}}{\left(\mathcal {W}(\mathbf {w})\mathbf {q}M(\widehat{f}^n)^{q+1} \right)}\, {d} \mathbf {q}. \end{aligned} \end{equation}$$ ()
We only require q = 1 $q=1$ at this point. The case q > 1 $q>1$ will be used in Remark 6.5.

Now, if we test (6.10) with f ̂ n $ \widehat{f}^n$ and integrate the resulting equation over the ball B $B$ , we obtain by using the boundary conditions that

1 2 t f ̂ n L M 2 ( B ) 2 + 1 2 ( w · x ) f ̂ n L M 2 ( B ) 2 + x f ̂ n L M 2 ( B ) 2 + f ̂ n H M 1 ( B ) 2 = 0 . $$\begin{equation} \begin{aligned} \frac{1}{2}\partial _t\Vert \widehat{f}^n \Vert _{L^2_M(B)}^2 + \frac{1}{2}(\mathbf {w}\cdot \nabla _{\mathbf {x}})\Vert \widehat{f}^n \Vert _{L^2_M(B)}^2 &+ \Vert \nabla _{\mathbf {x}}\widehat{f}^n \Vert _{L^2_M(B)}^2 + \Vert \widehat{f}^n\Vert _{H^1_M(B)}^2 = 0. \end{aligned} \end{equation}$$ ()
If we now integrate (6.13) over spacetime and apply Reynolds transport theorem (using also (6.7)), we obtain (6.11). $\Box$

Remark 6.5.The proof of Lemma 6.4 can be repeated for powers q 2 $q\ge 2$ of f ̂ n $\widehat{f}^n$ obtaining (ignoring the dissipative terms and using (6.12))

sup I f ̂ n ( t ) L q ( Ω ζ ; L M 2 ( B ) ) q f ̂ 0 L q ( Ω ζ ( 0 ) ; L M 2 ( B ) ) q $$\begin{equation} \begin{aligned} \sup _I \Vert \widehat{f}^n(t) \Vert _{L^q(\Omega _{\zeta };L^2_M(B))}^q\lesssim \Vert \widehat{f}_0 \Vert _{L^q(\Omega _{\zeta (0)};L^2_M(B))}^q \end{aligned} \end{equation}$$ ()
uniformly in n N $n\in \mathbb {N}$ . Checking that the q $q$ -dependent constant does not explode, we obtain the maximum principle
sup I f ̂ n ( t ) L ( Ω η ; L M 2 ( B ) ) f ̂ 0 L ( Ω ζ ( 0 ) ; L M 2 ( B ) ) ; $$\begin{equation} \begin{aligned} \sup _I \Vert \widehat{f}^n(t) \Vert _{L^\infty (\Omega _\eta;L^2_M(B))}\lesssim \Vert \widehat{f}_0 \Vert _{L^\infty (\Omega _{\zeta (0)};L^2_M(B))}; \end{aligned} \end{equation}$$ ()
a minimum principle can be proved similarly, but it is not needed for our purposes.

Next, we show the following lemma.

Lemma 6.6.Let ( f ̂ 0 , ζ , w ) $(\widehat{f}_0,\zeta, \mathbf {w})$ satisfy (6.5)–(6.7) and let f ̂ n $\widehat{f}^n$ be the corresponding solution to (6.10). Then, we have

sup I x f ̂ n ( t ) L 2 ( Ω ζ ; L M 2 ( B ) ) 2 + I Δ x f ̂ n L 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t + I x f ̂ n L 2 ( Ω ζ ; H M 1 ( B ) ) 2 d t exp c I w W 2 , 2 ( Ω ζ ) 2 d t + c I t ζ W 1 / 3 , 2 ( ω ) 12 / 5 d t f ̂ 0 W 1 , 2 ( Ω ζ ( 0 ) ; L M 2 ( B ) ) 2 $$\begin{equation} \begin{aligned} &\sup _I \Vert \nabla _{\mathbf {x}}\widehat{f}^n(t) \Vert _{L^2(\Omega _{\zeta };L^2_M(B))}^2+ \int _I \Vert \Delta _{\mathbf {x}}\widehat{f}^n \Vert _{L^2(\Omega _{\zeta };L^2_M(B))}^2 \, {d}t+ \int _I \Vert \nabla _{\mathbf {x}}\widehat{f}^n \Vert _{L^2(\Omega _{\zeta };H^1_M(B))}^2 \, {d}t\\ & \qquad \quad \lesssim \exp {\left(c\int _I \Vert \mathbf {w} \Vert _{W^{2,2}(\Omega _{\zeta })}^2 \, {d}t+ c \int _I\Vert \partial _t\zeta \Vert _{W^{1/3,2}(\omega)}^{12/5}\, {d}t\right)} \Vert \widehat{f}_0 \Vert _{W^{1,2}(\Omega _{\zeta (0)};L^2_M(B))}^2 \end{aligned} \end{equation}$$ ()
uniformly in n N $n\in \mathbb {N}$ , where the hidden constant also depends on sup I w L 2 ( Ω ζ ) $\sup _I\Vert \mathbf {w}\Vert _{L^2(\Omega _{\zeta })}$ , sup I ζ W 1 , ( ω ) $\sup _I\Vert \zeta \Vert _{W^{1,\infty }(\omega)}$ and f ̂ 0 L ( Ω ζ ( 0 ) ; L M 2 ( B ) ) $\Vert \widehat{f}_0\Vert _{L^\infty (\Omega _{\zeta (0)};L^2_M(B))}$ .

Proof.Now, we test (6.10) with Δ x f ̂ n $\Delta _{\mathbf {x}}\widehat{f}^n$ . First of all, note that by (6.3), the Reynolds transport theorem and (6.7),

I Ω ζ × B M t f ̂ n Δ x f ̂ n d q d x d t = 1 2 I Ω ζ n ζ · ( ( t ζ ) n ) φ ζ 1 x f ̂ n L M 2 ( B ) 2 d H 1 d t 1 2 I d d t x f ̂ n L 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t , $$\begin{equation} \begin{aligned} \int _I\int _{\Omega _{\zeta }\times B}M \partial _t \widehat{f}^n \Delta _{\mathbf {x}}\widehat{f}^n\, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t&= \frac{1}{2} \int _I\int _{\partial \Omega _{\zeta }} \mathbf {n}_\zeta \cdot ((\partial _t\zeta)\mathbf {n})\circ \bm {\varphi }_\zeta ^{-1} \Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert _{L^2_M(B)}^2\,{d}\mathcal {H}^1\, {d}t\\ &\quad \, - \frac{1}{2}\int _I\frac{\,{d}}{\, {d}t} \Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert _{L^2(\Omega _{\zeta };L^2_M(B))}^2\, {d}t, \end{aligned} \end{equation}$$ ()
where, by interpolation, the trace theorem and Young's inequality,
| I Ω ζ n ζ · ( ( t ζ ) n ) φ ζ 1 x f ̂ n L M 2 ( B ) 2 d H 1 d t | I n ζ · ( ( t ζ ) n ) φ ζ 1 L 6 ( Ω ζ ) x f ̂ n L 12 / 5 ( Ω ζ ; L M 2 ( B ) ) 2 d t I t ζ W 1 / 3 , 2 ( ω ) x f ̂ n W 7 / 12 , 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t I t ζ W 1 / 3 , 2 ( ω ) x f ̂ n L 2 ( Ω ζ ; L M 2 ( B ) ) 5 / 6 x f ̂ n W 1 , 2 ( Ω ζ ; L M 2 ( B ) ) 7 / 6 d t δ I x f ̂ n W 1 , 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t + c ( δ ) I t ζ W 1 / 3 , 2 ( ω ) 12 / 5 x f ̂ n L 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t . $$\begin{equation} \begin{aligned} \bigg \vert \int _I&\int _{\partial \Omega _{\zeta }}\mathbf {n}_\zeta \cdot ((\partial _t\zeta)\mathbf {n})\circ \bm {\varphi }_\zeta ^{-1}\Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert _{L^2_M(B)}^2\,{d}\mathcal {H}^1\, {d}t\bigg \vert \\ &\lesssim \int _I\Vert \mathbf {n}_\zeta \cdot ((\partial _t\zeta)\mathbf {n})\circ \bm {\varphi }_\zeta ^{-1}\Vert _{L^6(\partial \Omega _{\zeta })}\Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert _{L^{12/5}(\partial \Omega _{\zeta };L^2_M(B))}^2 \, {d}t\\ & \lesssim \int _I\Vert \partial _t\zeta \Vert _{W^{1/3,2}(\omega)}\Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert _{W^{7/12,2}(\Omega _{\zeta };L^2_M(B))}^2 \, {d}t\\ & \lesssim \int _I\Vert \partial _t\zeta \Vert _{W^{1/3,2}(\omega)}\Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert _{L^2(\Omega _{\zeta };L^2_M(B))}^{5/6} \Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert _{W^{1,2}(\Omega _{\zeta };L^2_M(B))}^{7/6} \, {d}t\\ & \le \delta \int _I \Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert _{W^{1,2}(\Omega _{\zeta };L^2_M(B))}^2 \, {d}t+ c(\delta) \int _I\Vert \partial _t\zeta \Vert _{W^{1/3,2}(\omega)}^{12/5}\Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert _{L^2(\Omega _{\zeta };L^2_M(B))}^2 \, {d}t. \end{aligned} \end{equation}$$ ()
Next, by Ladyszenskaya's inequality,
| I Ω ζ × B M ( w · x ) f ̂ n Δ x f ̂ n d q d x d t | I w L 4 ( Ω ζ ) x f ̂ n L 4 ( Ω ζ ; L M 2 ( B ) ) x 2 f ̂ n L 2 ( Ω ζ ; L M 2 ( B ) ) d t I w L 2 ( Ω ζ ) 1 / 2 x w L 2 ( Ω ζ ) 1 / 2 x f ̂ n L 2 ( Ω ζ ; L M 2 ( B ) ) 1 / 2 x 2 f ̂ n L 2 ( Ω ζ ; L M 2 ( B ) ) 3 / 2 d t δ I x 2 f ̂ n L 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t + c ( δ ) I x w L 2 ( Ω ζ ) 2 x f ̂ n L 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t . $$\begin{equation} \begin{aligned} \bigg \vert \int _I\int _{\Omega _{\zeta }\times B}&M (\mathbf {w}\cdot \nabla _{\mathbf {x}}) \widehat{f}^n \Delta _{\mathbf {x}}\widehat{f}^n\, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\bigg \vert \\ &\le \int _I \Vert \mathbf {w} \Vert _{L^4(\Omega _{\zeta })} \Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert _{L^4(\Omega _{\zeta };L^2_M(B))} \Vert \nabla _{\mathbf {x}}^2 \widehat{f}^n\Vert _{L^2(\Omega _{\zeta };L^2_M(B))}\, {d}t\\ &\lesssim \int _I \Vert \mathbf {w} \Vert ^{1/2}_{L^2(\Omega _{\zeta })}\Vert \nabla _{\mathbf {x}}\mathbf {w} \Vert ^{1/2}_{L^2(\Omega _{\zeta })} \Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert ^{1/2}_{L^2(\Omega _{\zeta };L^2_M(B))} \Vert \nabla _{\mathbf {x}}^2 \widehat{f}^n\Vert _{L^2(\Omega _{\zeta };L^2_M(B))}^{3/2}\, {d}t\\ &\le \delta \int _I\Vert \nabla _{\mathbf {x}}^2 \widehat{f}^n\Vert _{L^2(\Omega _{\zeta };L^2_M(B))}^2 \, {d}t+ c(\delta) \int _I\Vert \nabla _{\mathbf {x}}\mathbf {w}\Vert _{L^2(\Omega _{\zeta })}^2\Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert _{L^2(\Omega _{\zeta };L^2_M(B))}^2 \, {d}t. \end{aligned} \end{equation}$$ ()
For the dissipative term, we obtain
I Ω ζ × B Δ x ( M f ̂ n ) Δ x f ̂ n d q d x d t = I Δ x f ̂ n L 2 ( Ω ζ ; L M 2 ( B ) ) d t . $$\begin{align} \int _I\int _{\Omega _{\zeta }\times B} \Delta _{\mathbf {x}}(M \widehat{f}^n) \Delta _{\mathbf {x}}\widehat{f}^n\, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t= \int _I\Vert \Delta _{\mathbf {x}}\widehat{f}^n\Vert _{L^2(\Omega _{\zeta };L^2_M(B))}\, {d}t. \end{align}$$ ()
Finally, we have by (6.3)
I Ω ζ × B div q W ( w ) q M f ̂ n Δ x f ̂ n d q d x d t = γ I Ω ζ × B γ W ( w ) q M f ̂ n : γ q f ̂ n d q d x d t = γ I Ω ζ × B ( γ W ( w ) ) q M f ̂ n : γ q f ̂ n d q d x d t + γ I Ω ζ × B W ( w ) q M γ f ̂ n : γ q f ̂ n d q d x d t . $$\begin{align*} \int _I&\int _{\Omega _{\zeta }\times B}\mathrm{div}_{\mathbf {q}}{\left(\mathcal {W}(\mathbf {w}) \mathbf {q}M\widehat{f}^n\right)}\Delta _{\mathbf {x}}\widehat{f}^n\, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\nonumber \\ & =\sum _\gamma \int _I\int _{\Omega _{\zeta }\times B}\partial _\gamma {\left(\mathcal {W}(\mathbf {w}) \mathbf {q}M\widehat{f}^n\right)}:\partial _\gamma \nabla _{\mathbf {q}}\widehat{f}^n\, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\nonumber \\ & =\sum _\gamma \int _I\int _{\Omega _{\zeta }\times B} {\left((\partial _\gamma \mathcal {W}(\mathbf {w})) \mathbf {q}M\widehat{f}^n\right)}:\partial _\gamma \nabla _{\mathbf {q}}\widehat{f}^n\, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\nonumber \\ &\quad\, +\sum _\gamma \int _I\int _{\Omega _{\zeta }\times B} {\left(\mathcal {W}(\mathbf {w}) \mathbf {q}M\partial _\gamma \widehat{f}^n\right)}:\partial _\gamma \nabla _{\mathbf {q}}\widehat{f}^n\, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\nonumber . \end{align*}$$
The last term vanishes again because of the skew-symmetry of W ( w ) $\mathcal {W}(\mathbf {w})$ , while the first one is bounded by (employing the maximum principle, cf. (6.15))
I x 2 w L 2 ( Ω ζ ) f ̂ n L ( Ω ζ ; L M 2 ( B ) ) x f ̂ n L 2 ( Ω ζ ; H M 1 ( B ) ) d t δ I x f ̂ n L 2 ( Ω ζ ; H M 1 ( B ) ) 2 d t + c ( δ ) I w W 2 , 2 ( Ω ζ ) 2 d t , $$\begin{align} & \int _I\Vert \nabla _{\mathbf {x}}^2\mathbf {w}\Vert _{L^2(\Omega _{\zeta })}\Vert \widehat{f}^n\Vert _{L^\infty (\Omega _{\zeta };L^2_M(B))} \Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert _{L^2(\Omega _{\zeta };H^1_M(B))}\, {d}t\nonumber \\ & \le \delta \int _I\Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert _{L^2(\Omega _{\zeta };H^1_M(B))}^2\, {d}t+c(\delta) \int _I\Vert \mathbf {w}\Vert _{W^{2,2}(\Omega _{\zeta })}^2\, {d}t, \end{align}$$ ()
where δ > 0 $\delta >0$ . Finally, we note that
I Ω ζ × B div q M q f ̂ n Δ x f ̂ n d q d x d t = I x f ̂ n L 2 ( Ω ζ ; H M 1 ( B ) ) 2 d t $$\begin{align} -\int _I&\int _{\Omega _{\zeta }\times B}\mathrm{div}_{\mathbf {q}}{\left(M \nabla _{\mathbf {q}}\widehat{f}^n \right)}\Delta _{\mathbf {x}}\widehat{f}^n\, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t=-\int _I\Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert _{L^2(\Omega _{\zeta };H^1_M(B))}^2\, {d}t \end{align}$$ ()
as a consequence of (6.3). By combining (6.18)–(6.22) we obtain (6.16) uniformly in n N $n\in \mathbb {N}$ . $\Box$

As far as the temporal regularity is concerned we have the following result.

Lemma 6.7.Let ( f ̂ 0 , ζ , w ) $(\widehat{f}_0,\zeta, \mathbf {w})$ satisfy (6.5)–(6.7) and let f ̂ n $\widehat{f}^n$ be the corresponding solution to (6.10). Suppose further that f 0 L 2 ( Ω ζ ( 0 ) ; L M 2 ( B ) ) $\widetilde{f}_0\in L^{2}(\Omega _{\zeta (0)};L^2_M(B))$ , where f 0 $\widetilde{f}_0$ is given by

M f 0 = Δ x ( M f ̂ 0 ) + div q M q f ̂ 0 M ( w ( 0 ) · x ) f ̂ 0 div q ( x w ( 0 ) ) q M f ̂ 0 . $$\begin{equation} \begin{aligned} M \widetilde{f}_0 &= \Delta _{\mathbf {x}}(M \widehat{f}_0) + \mathrm{div}_{\mathbf {q}}{\left(M \nabla _{\mathbf {q}}\widehat{f}_0 \right)} - M (\mathbf {w}(0)\cdot \nabla _{\mathbf {x}}) \widehat{f}_0 - \mathrm{div}_{\mathbf {q}}{\left((\nabla _{\mathbf {x}}\mathbf {w}(0)) \mathbf {q}M\widehat{f}_0 \right)} . \end{aligned} \end{equation}$$ ()
Then, we have
sup I t f ̂ n ( t ) L 2 ( Ω ζ ; L M 2 ( B ) ) 2 + I t f ̂ n W 1 , 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t + I t f ̂ n L 2 ( Ω ζ ; H M 1 ( B ) ) 2 d t sup I t ζ W 1 , 2 ( ω ) 2 I x f ̂ n W 1 , 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t + I x t w L 2 ( Ω ζ ) 2 d t + sup I x f ̂ n L 2 ( Ω ζ ; L M 2 ( B ) ) 2 I x 2 f ̂ n L 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t $$\begin{equation} \begin{aligned} \sup _I \Vert \partial _t\widehat{f}^n(t) &\Vert _{L^2(\Omega _{\zeta };L^2_M(B))}^2 + \int _I \Vert \partial _t\widehat{f}^n \Vert _{W^{1,2}(\Omega _{\zeta };L^2_M(B))}^2 \, {d}t+ \int _I \Vert \partial _t\widehat{f}^n \Vert _{L^2(\Omega _{\zeta };H^1_M(B))}^2 \, {d}t\\ &\lesssim \sup _I\Vert \partial _t\zeta \Vert _{W^{1,2}(\omega)}^2 \int _I \Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert _{W^{1,2}(\Omega _{\zeta };L^2_M(B))}^2\, {d}t+\int _I \Vert \nabla _{\mathbf {x}}\partial _t \mathbf {w}\Vert _{L^2(\Omega _{\zeta })}^{2}\, {d}t\\ & +\sup _I \Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert _{L^2(\Omega _{\zeta };L^2_M(B))}^2\int _I\Vert \nabla _{\mathbf {x}}^2 \widehat{f}^n\Vert ^{2}_{L^2(\Omega _{\zeta };L^2_M(B))}\, {d}t\end{aligned} \end{equation}$$ ()
uniformly in n N $n\in \mathbb {N}$ , where the hidden constant also depends on sup I w L 2 ( Ω ζ ) $\sup _I\Vert \mathbf {w}\Vert _{L^2(\Omega _{\zeta })}$ , sup I t w L 2 ( Ω ζ ) $\sup _I\Vert \partial _t\mathbf {w}\Vert _{L^2(\Omega _{\zeta })}$ , sup I ζ W 1 , ( ω ) $\sup _I\Vert \zeta \Vert _{W^{1,\infty }(\omega)}$ and f ̂ 0 L ( Ω ζ ( 0 ) ; L M 2 ( B ) ) $\Vert \widehat{f}_0\Vert _{L^\infty (\Omega _{\zeta (0)};L^2_M(B))}$ .

Proof.Now, set f n : = t f ̂ n $\widetilde{f}^n:=\partial _t\widehat{f}^n$ and consider the following equation:

M t f n + ( w · x ) f n + div q W ( w ) q M f n Δ x ( M f n ) div q M q f n = M ( t w · x ) f ̂ n + div q W ( t w ) q M f ̂ n $$\begin{equation} \begin{aligned} M{\left(\partial _t \widetilde{f}^n + (\mathbf {w}\cdot \nabla _{\mathbf {x}}) \widetilde{f}^n\right)} &+ \mathrm{div}_{\mathbf {q}}{\left(\mathcal {W}(\mathbf {w}) \mathbf {q}M\widetilde{f}^n \right)} - \Delta _{\mathbf {x}}(M \widetilde{f}^n) - \mathrm{div}_{\mathbf {q}}{\left(M \nabla _{\mathbf {q}}\widetilde{f}^n \right)} \\ & = - M (\partial _t\mathbf {w}\cdot \nabla _{\mathbf {x}}) \widehat{f}^n + \mathrm{div}_{\mathbf {q}}{\left(\mathcal {W}(\partial _t\mathbf {w}) \mathbf {q}M\widehat{f}^n \right)} \end{aligned} \end{equation}$$ ()
in I × Ω ζ × B $I\times \Omega _\zeta \times B$ subject to
f n ( 0 , · , · ) = f 0 0 in Ω ζ 0 × B , $$\begin{align} &\widetilde{f}^n(0, \cdot, \cdot) =\widetilde{f}_0 \ge 0 \quad \text{in }\Omega _{\zeta _0} \times B, \end{align}$$ ()
x f n · n ζ = x f ̂ n · t n ζ on I × Ω ζ × B , $$\begin{align} & \nabla _{\mathbf {x}}\widetilde{f}^n\cdot \mathbf {n}_\zeta =-\nabla _{\mathbf {x}}\widehat{f}^n\cdot \partial _t\mathbf {n}_\zeta \quad \text{on }I \times \partial \Omega _\zeta \times B, \end{align}$$ ()
M q f n · q | q | = 0 on I × Ω ζ × B ¯ $$\begin{align} & M\nabla _{\mathbf {q}}\widetilde{f}^n \cdot \frac{\mathbf {q}}{\vert \mathbf {q}\vert } =0 \quad \text{on }I \times \Omega _\zeta \times \partial \overline{B} \end{align}$$ ()
and where f 0 $\widetilde{f}_0$ satisfies (4.9). We now test (6.25) with f n $\widetilde{f}^n$ . Since the left-hand side of (6.25) is of the same form as (6.10), we obtain similar to (6.13)
I Ω ζ 1 2 t f n L M 2 ( B ) 2 + 1 2 ( w · x ) f n L M 2 ( B ) 2 + x f n L M 2 ( B ) 2 + 1 2 f n H M 1 ( B ) 2 d x d t = I Ω ζ × B M t n ζ · x f ̂ n f n d q d x d t + I Ω ζ × B ( t W ( w ) ) q M f ̂ n · q f n d q d x d t I Ω ζ × B M ( t w · x ) f ̂ n f n d q d x d t , $$\begin{equation} \begin{aligned} \int _I\int _{\Omega _{\zeta }} &{\left(\frac{1}{2}\partial _t\Vert \widetilde{f}^n \Vert _{L^2_M(B)}^2 + \frac{1}{2}(\mathbf {w}\cdot \nabla _{\mathbf {x}})\Vert \widetilde{f}^n \Vert _{L^2_M(B)}^2 + \Vert \nabla _{\mathbf {x}}\widetilde{f}^n \Vert _{L^2_M(B)}^2 + \frac{1}{2} \Vert \widetilde{f}^n\Vert _{H^1_M(B)}^2 \right)}\, {d} \mathbf {x}\, {d}t\\ & = - \int _I\int _{\partial \Omega _{\zeta }\times B} M\partial _t\mathbf {n}_\zeta \cdot \nabla _{\mathbf {x}}\widehat{f}^n \widetilde{f}^n\, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\\ &\quad\, + \int _I\int _{\Omega _{\zeta }\times B} (\partial _t\mathcal {W}(\mathbf {w})) \mathbf {q}M\widehat{f}^n \cdot \nabla _{\mathbf {q}}\widetilde{f}^n\, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t- \int _I\int _{\Omega _{\zeta }\times B} M (\partial _t\mathbf {w}\cdot \nabla _{\mathbf {x}}) \widehat{f}^n \widetilde{f}^n\, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t, \end{aligned} \end{equation}$$ ()
where the second term on the right-hand side is due to (6.27). For the boundary term, we use the trace theorem and Lemma 6.6 to obtain
| I Ω ζ × B M t n ζ · x f ̂ n f n d q d x d t | I f n L 4 ( Ω ζ ; L M 2 ( B ) ) t ζ W 1 , 2 ( ω ) x f ̂ n L 4 ( Ω ζ ; L M 2 ( B ) ) d t δ I f n W 1 , 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t + c ( δ ) sup I t ζ W 1 , 2 ( ω ) 2 I x f ̂ n W 1 , 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t . $$\begin{align*} \bigg \vert \int _I&\int _{\partial \Omega _{\zeta }\times B} M\partial _t\mathbf {n}_\zeta \cdot \nabla _{\mathbf {x}}\widehat{f}^n \widetilde{f}^n\, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\bigg \vert \\ &\le \int _I \Vert \widetilde{f}^n\Vert _{L^{4}(\partial \Omega _{\zeta };L^2_M(B))}\Vert \partial _t\zeta \Vert _{W^{1,2}(\omega)} \Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert _{L^{4}(\partial \Omega _{\zeta };L^2_M(B))}\, {d}t\\ &\le \delta \int _I \Vert \widetilde{f}^n\Vert _{W^{1,2}(\Omega _{\zeta };L^2_M(B))}^2\, {d}t+c(\delta)\sup _I\Vert \partial _t\zeta \Vert _{W^{1,2}(\omega)}^2 \int _I \Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert _{W^{1,2}(\Omega _{\zeta };L^2_M(B))}^2\, {d}t. \end{align*}$$
Next, we use (6.5) and the maximum principle (6.15) to infer
| I Ω ζ × B W ( t w ) q M f ̂ n · q f n d q d x d t | c ( δ ) I Ω ζ | t x w | 2 f ̂ n L M 2 ( B ) 2 d x d t + δ I f n L 2 ( Ω ζ ; H M 1 ( B ) ) 2 d t c ( δ ) I t x w L 2 ( Ω ζ ) 2 d t + δ I f n L 2 ( Ω ζ ; H M 1 ( B ) ) 2 d t . $$\begin{equation} \begin{aligned} \bigg \vert \int _I&\int _{ \Omega _{\zeta }\times B} \mathcal {W}(\partial _t\mathbf {w}) \mathbf {q}M\widehat{f}^n \cdot \nabla _{\mathbf {q}}\widetilde{f}^n\, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\bigg \vert \\ &\le c(\delta) \int _I\int _{ \Omega _{\zeta }} \vert \partial _t\nabla _{\mathbf {x}}\mathbf {w}\vert ^2 \Vert \widehat{f}^n\Vert _{L^2_M(B)}^2\, {d} \mathbf {x}\, {d}t+\delta \int _I\Vert \widetilde{f}^n\Vert _{L^2(\Omega _{\zeta };H^1_M(B))}^2\, {d}t\\ & \le c(\delta) \int _I \Vert \partial _t\nabla _{\mathbf {x}}\mathbf {w}\Vert _{L^2(\Omega _{\zeta })}^2\, {d}t+\delta \int _I\Vert \widetilde{f}^n\Vert _{L^2(\Omega _{\zeta };H^1_M(B))}^2\, {d}t. \end{aligned} \end{equation}$$ ()
Finally, we use Lemma 6.4 to also obtain
| I Ω ζ × B M ( t w · x ) f ̂ n f n d q d x d t | I t w L 4 ( Ω ζ ) x f ̂ n L 4 ( Ω ζ ; L M 2 ( B ) ) f n L 2 ( Ω ζ ; L M 2 ( B ) ) d t I t w L 2 ( Ω ζ ) 1 / 2 t x w L 2 ( Ω ζ ) 1 / 2 x f ̂ n L 2 ( Ω ζ ; L M 2 ( B ) ) 1 / 2 x 2 f ̂ n L 2 ( Ω ζ ; L M 2 ( B ) ) 1 / 2 f n L 2 ( Ω ζ ; L M 2 ( B ) ) d t I t x w L 2 ( Ω ζ ) 1 / 2 x f ̂ n L 2 ( Ω ζ ; L M 2 ( B ) ) 1 / 2 x 2 f ̂ n L 2 ( Ω ζ ; L M 2 ( B ) ) 1 / 2 f n L 2 ( Ω ζ ; L M 2 ( B ) ) d t I t x w L 2 ( Ω ζ ) 2 d t + sup I x f ̂ n L 2 ( Ω ζ ; L M 2 ( B ) ) 2 I x 2 f ̂ n L 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t + I f n L 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t . $$\begin{align*} \bigg \vert \int _I\int _{ \Omega _{\zeta }\times B}& M (\partial _t\mathbf {w}\cdot \nabla _{\mathbf {x}}) \widehat{f}^n \widetilde{f}^n\, {d} \mathbf {q}\, {d} \mathbf {x}\, {d}t\bigg \vert \\ &\lesssim \int _I \Vert \partial _t \mathbf {w}\Vert _{L^4(\Omega _{\zeta })} \Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert _{L^4(\Omega _{\zeta };L^2_M(B))}\Vert \widetilde{f}^n\Vert _{L^2(\Omega _{\zeta };L^2_M(B))}\, {d}t\\ &\lesssim \int _I \Vert \partial _t \mathbf {w}\Vert ^{1/2}_{L^2(\Omega _{\zeta })}\Vert \partial _t \nabla _{\mathbf {x}}\mathbf {w}\Vert ^{1/2}_{L^2(\Omega _{\zeta })}\Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert ^{1/2}_{L^2(\Omega _{\zeta };L^2_M(B))}\Vert \nabla _{\mathbf {x}}^2 \widehat{f}^n\Vert ^{1/2}_{L^2(\Omega _{\zeta };L^2_M(B))}\Vert \widetilde{f}^n\Vert _{L^2(\Omega _{\zeta };L^2_M(B))}\, {d}t\\ &\lesssim \int _I \Vert \partial _t\nabla _{\mathbf {x}}\mathbf {w}\Vert ^{1/2}_{L^2(\Omega _{\zeta })}\Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert ^{1/2}_{L^2(\Omega _{\zeta };L^2_M(B))}\Vert \nabla _{\mathbf {x}}^2 \widehat{f}^n\Vert ^{1/2}_{L^2(\Omega _{\zeta };L^2_M(B))}\Vert \widetilde{f}^n\Vert _{L^2(\Omega _{\zeta };L^2_M(B))}\, {d}t\\ &\lesssim \int _I \Vert \partial _t\nabla _{\mathbf {x}}\mathbf {w}\Vert _{L^2(\Omega _{\zeta })}^{2}\, {d}t+ \sup _I \Vert \nabla _{\mathbf {x}}\widehat{f}^n\Vert _{L^2(\Omega _{\zeta };L^2_M(B))}^2\int _I\Vert \nabla _{\mathbf {x}}^2 \widehat{f}^n\Vert ^{2}_{L^2(\Omega _{\zeta };L^2_M(B))}\, {d}t\\ &+\int _I\Vert \widetilde{f}^n\Vert _{L^2(\Omega _{\zeta };L^2_M(B))}^2\, {d}t. \end{align*}$$
Subsequently, we use Reynold's transport and Gronwall's lemma yielding the claim. $\Box$

6.2 The fully coupled system

We consider now the set of equations
t 2 η t Δ y η + Δ y 2 η = g n T φ η n η det ( y φ η ) , $$\begin{align} \partial _t^2\eta -\partial _t\Delta _{\mathbf {y}}\eta + \Delta _{\mathbf {y}}^2\eta &=g-\mathbf {n}^\top \mathbb {T}\circ \bm {\varphi }_\eta \mathbf {n}_\eta \det (\nabla _{\mathbf {y}}\bm {\varphi }_\eta) , \end{align}$$ ()
t u + ( u · x ) u = Δ x u x π + f + div x S q ( f ̂ ) , $$\begin{align} \partial _t \mathbf {u}+ (\mathbf {u}\cdot \nabla _{\mathbf {x}})\mathbf {u} &= \Delta _{\mathbf {x}}\mathbf {u}-\nabla _{\mathbf {x}}\pi + \mathbf {f}+ \mathrm{div}_{\mathbf {x}}\mathbb {S}_\mathbf {q}(\widehat{f}), \end{align}$$ ()
div x u = 0 , $$\begin{align} \mathrm{div}_{\mathbf {x}}\mathbf {u}&=0, \end{align}$$ ()
M t f ̂ + ( u · x ) f ̂ + div q ( W ( u ) ) q M f ̂ = Δ x ( M f ̂ ) + div q M q f ̂ , $$\begin{align} M{\left(\partial _t \widehat{f} + (\mathbf {u}\cdot \nabla _{\mathbf {x}}) \widehat{f}\right)} + \mathrm{div}_{\mathbf {q}}{\left((\mathcal {W}(\mathbf {u})) \mathbf {q}M\widehat{f} \right)} &= \Delta _{\mathbf {x}}(M \widehat{f}) + \mathrm{div}_{\mathbf {q}}{\left(M \nabla _{\mathbf {q}}\widehat{f} \right)}, \end{align}$$ ()
where
T = ( x u + x u ) π I 2 × 2 + S q ( f ̂ ) , S q ( f ̂ ) = B M ( q ) f ̂ ( t , x , q ) q U ( 1 2 | q | 2 ) q d q , $$\begin{align*} \mathbb {T}=(\nabla _{\mathbf {x}}\mathbf {u}+\nabla _{\mathbf {x}}\mathbf {u}^\top)-\pi \mathbb {I}_{2\times 2}+\mathbb {S}_\mathbf {q}(\widehat{f}),\quad \mathbb {S}_\mathbf {q}(\widehat{f}) = \int _B M(\mathbf {q}) \widehat{f} (t, \mathbf {x},\mathbf {q})\nabla _{\mathbf {q}}U(\tfrac{1}{2}\vert \mathbf {q}\vert ^2) \otimes \mathbf {q} \, {d} \mathbf {q}, \end{align*}$$
subject to initial conditions u 0 , η 0 , η , f ̂ 0 $\mathbf {u}_0,\eta _0,\eta _\star,\widehat{f}_0$ and boundary conditions
u φ η = ( t η ) n on I × ω , $$\begin{align} &\mathbf {u}\circ \bm {\varphi }_{\eta } =(\partial _t\eta)\mathbf {n}\quad \text{on }I \times \omega,\end{align}$$ ()
x f ̂ · n η = 0 on I × Ω η × B , $$\begin{align} & \nabla _{\mathbf {x}}\widehat{f}\cdot \mathbf {n}_\eta =0 \quad \text{on }I \times \partial \Omega _\eta \times B, \end{align}$$ ()
M q f ̂ W ( u ) q f ̂ · q | q | = 0 on I × Ω η × B ¯ . $$\begin{align} &M{\left(\nabla _{\mathbf {q}}\widehat{f} - \mathcal {W}(\mathbf {u}) \mathbf {q}\widehat{f} \right)} \cdot \frac{\mathbf {q}}{\vert \mathbf {q}\vert } =0 \quad \text{on }I \times \Omega _\eta \times \partial \overline{B}. \end{align}$$ ()
A weak solution to (6.31)–(6.37) can be defined as in Definition 2.2 (simply replacing x u $\nabla _{\mathbf {x}}\mathbf {u}$ by W ( u ) $\mathcal {W}(\mathbf {u})$ in the last integral of (d)). Its existence follows again from [12]; indeed replacing x u $\nabla _{\mathbf {x}}\mathbf {u}$ by W ( u ) $\mathcal {W}(\mathbf {u})$ does not alter the arguments there. We speak about a strong solution, if a weak solution satisfies
η W 2 , 2 I ; L 2 ( ω ) W 1 , 2 I ; W 2 , 2 ( ω ) L I ; W 3 , 2 ( ω ) L 2 I ; W 4 , 2 ( ω ) , u W 1 , 2 I ; L 2 ( Ω η ( t ) ) L 2 I ; W 2 , 2 ( Ω η ( t ) ) , π L 2 I ; L 2 ( Ω η ( t ) ) , f ̂ L I ; W 1 , 2 ( Ω η ( t ) ; L M 2 ( B ) ) L 2 I ; W 2 , 2 ( Ω η ( t ) ; L M 2 ( B ) ) L 2 I ; W 1 , 2 ( Ω η ( t ) ; H M 1 ( B ) ) . $$\begin{align*} \eta &\in W^{2,2}{\left(I;L^{2}(\omega) \right)}\cap W^{1,2}{\left(I;W^{2,2}(\omega) \right)}\cap L^{\infty }{\left(I;W^{3,2}(\omega) \right)}\cap L^{2}{\left(I;W^{4,2}(\omega) \right)},\\ \mathbf {u}&\in W^{1,2} {\left(I; L^{2}(\Omega _{\eta (t)}) \right)}\cap L^{2}{\left(I;W^{2,2}(\Omega _{\eta (t)}) \right)},\quad \pi \in L^2{\left(I;L^{2}(\Omega _{\eta (t)}) \right)}, \\ \widehat{f} & \in L^{\infty }{\left(I;W^{1,2}(\Omega _{\eta (t)};L^2_M(B)) \right)} \cap L^{2}{\left(I;W^{2,2}(\Omega _{\eta (t)};L^2_M(B)) \right)} \\ &\qquad \qquad \cap L^{2}{\left(I;W^{1,2}(\Omega _{\eta (t)};H^1_M(B)) \right)}. \end{align*}$$
and ( u , π ) $(\mathbf {u},\pi)$ solves the momentum equation a.a. in I × Ω η $I\times \Omega _\eta$ . We have the following result:

Theorem 6.8.Let ( f , g , η 0 , η , u 0 , f ̂ 0 ) $(\mathbf {f}, g, \eta _0, \eta _\star, \mathbf {u}_0, \widehat{f}_0)$ be a dataset satisfying

f L 2 I ; L loc 2 ( R 3 ) , g L 2 I ; W 1 , 2 ( ω ) , η 0 W 3 , 2 ( ω ) with η 0 L ( ω ) < L , η W 1 , 2 ( ω ) , f ̂ 0 L 2 Ω η 0 ; H M 1 ( B ) L Ω η 0 ; L M 2 ( B ) , u 0 W div x 1 , 2 ( Ω η 0 ) is such that u 0 φ η 0 = η n on ω . $$\begin{equation} \begin{aligned} &\mathbf {f}\in L^2{\left(I; L^2_{\mathrm{loc}}(\mathbb {R}^3)\right)},\quad g \in L^2{\left(I; W^{1,2}(\omega)\right)}, \quad \eta _0 \in W^{3,2}(\omega) \text{ with } \Vert \eta _0 \Vert _{L^\infty (\omega)} < L, \\ &\eta _\star \in W^{1,2}(\omega), \quad \widehat{f}_0\in L^2{\left(\Omega _{\eta _0};H^1_M(B)\right)}\cap L^\infty {\left(\Omega _{\eta _{0}};L^2_M(B)\right)}, \\ &\mathbf {u}_0\in W^{1,2}_{\mathrm{\mathrm{div}_{\mathbf {x}}}}(\Omega _{\eta _0}) \text{ is such that }\mathbf {u}_0 \circ \bm {\varphi }_{\eta _0} =\eta _\star \mathbf {n}\text{ on } \omega . \end{aligned} \end{equation}$$ ()
There is a unique strong solution ( η , u , π , f ̂ ) $(\eta, \mathbf {u}, \pi, \widehat{f})$ of (6.31)–(6.37). The interval of existence is of the form I = ( 0 , t ) $I = (0, t)$ , where t < T $t < T$ only in case Ω η ( s ) $\Omega _{\eta (s)}$ approaches a self-intersection when s t $s\rightarrow t$ or it degenerates (namely, if lim s t y φ η ( s , y ) = 0 $\lim _{s\rightarrow t}\partial _y\bm {\varphi }_\eta (s,y)=0$ or lim s t n ( y ) · n η ( s ) ( y ) = 0 $\lim _{s\rightarrow t}\mathbf {n}(y)\cdot \mathbf {n}_{\eta (s)}(y)=0$ for some y ω $y\in \omega$ ).

Proof.Take a weak solution ( η , u , f ̂ ) $(\eta, \mathbf {u}, \widehat{f})$ to (6.31)–(6.37) which exists according to [12]. By [11] with right-hand side div x S ( f ̂ ) L 2 ( I ; L 2 ( Ω η ) ) $\mathrm{div}_{\mathbf {x}}\mathbb {S}(\widehat{f})\in L^2(I;L^2(\Omega _\eta))$ there is a strong solution ( η , u , π ) $(\eta, \mathbf {u}, \pi)$ to the fluid–structure system (which belongs to the correct function space). By weak–strong uniqueness (see [14, Remark 5.2]) it must coincide with the weak solution. By Lemma 6.6, we also get spatial regularity of f ̂ $\widehat{f}$ such that the constructed solution lives in the claimed function spaces and the proof is complete. $\Box$

Remark 6.9. (Temporal regularity)Having (as in the proof of Theorem 6.8 above) the weak solution from [11] at hand, we apply Lemma 6.6 and, eventually, Lemma 6.7. By Lemma 6.7 we get

sup I t f ̂ n ( t ) L 2 ( Ω η ( t ) ; L M 2 ( B ) ) 2 + I t f ̂ n W 1 , 2 ( Ω η ( t ) ; L M 2 ( B ) ) 2 d t + I t f ̂ n L 2 ( Ω ζ ; H M 1 ( B ) ) 2 d t 1 + sup I t ζ W 1 , 2 ( ω ) 2 + I t x u L 2 ( Ω η ( t ) ) 2 d t . $$\begin{equation} \begin{aligned} \sup _I \Vert \partial _t\widehat{f}^n(t) \Vert _{L^2(\Omega _{\eta (t)};L^2_M(B))}^2&+ \int _I \Vert \partial _t\widehat{f}^n \Vert _{W^{1,2}(\Omega _{\eta (t)};L^2_M(B))}^2 \, {d}t+ \int _I \Vert \partial _t\widehat{f}^n \Vert _{L^2(\Omega _{\zeta };H^1_M(B))}^2 \, {d}t\\ &\lesssim 1+ \sup _I\Vert \partial _t\zeta \Vert _{W^{1,2}(\omega)}^2+\int _I \Vert \partial _t\nabla _{\mathbf {x}}\mathbf {u}\Vert _{L^2(\Omega _{\eta (t)})}^{2}\, {d}t. \end{aligned} \end{equation}$$ ()
If a flat reference geometry is considered (the case of elastic plates), by [54, Theorem 4.4] the right-hand side is controlled by the initial data and I t f ̂ n ( t ) L 2 ( Ω ζ ; L M 2 ( B ) ) 2 d t $\int _I\Vert \partial _t\widehat{f}^n(t) \Vert _{L^2(\Omega _{\zeta };L^2_M(B))}^2\, {d}t$ hence the estimate can be closed by Gronwall's lemma. Again by [54, Theorem 4.4] one gets temporal regularity for the fluid. In conclusion, for elastic shells one obtains
f ̂ W 1 , ( I ; L 2 ( Ω η ; L M 2 ( B ) ) ) W 1 , 2 ( I ; L 2 ( Ω η ; H M 1 ( B ) ) W 1 , 2 ( I ; L 2 ( Ω η ; L M 2 ( B ) ) ) , u W 1 , ( I ; L 2 ( Ω η ) ) W 1 , 2 ( I ; W 1 , 2 ( Ω η ) ) . $$\begin{align*} \widehat{f}&\in W^{1,\infty }(I;L^2(\Omega _\eta;L^2_M(B)))\cap W^{1,2}(I;L^2(\Omega _\eta;H^1_M(B))\cap W^{1,2}(I;L^2(\Omega _\eta;L^2_M(B))),\\ \mathbf {u}&\in W^{1,\infty }(I;L^2(\Omega _\eta))\cap W^{1,2}(I;W^{1,2}(\Omega _\eta)). \end{align*}$$
The same result certainly applies when considering the problem in a fixed fluid-domain (as the estimate from [54, Theorem 4.4] is well-known then). However, it remains open whether the result from [54] holds for elastic shells to conclude in the same way.

ACKNOWLEDGMENTS

The authors would like to thank S. Schwarzacher for valuable suggestions concerning the compatibility conditions fluid–structure interaction.

Open access funding enabled and organized by Projekt DEAL.

    ENDNOTES

    • 1 Note that there is no dissipation in the shell equation in [12]. It makes, however, the analysis easier and can thus be incorporated without any problems.
    • 2 Setting h = h η ( u ¯ ) , h = h η ( u ¯ ) $h=h_\eta (\overline{\mathbf {u}}), \mathbf {h}=\mathbf {h}_\eta (\overline{\mathbf {u}})$ and H = H η ( u ¯ , π ¯ ) $\mathbf {H}=\mathbf {H}_\eta (\overline{\mathbf {u}},\overline{\pi })$ with the definitions from Section 3.1, this is equivalent to (2.8).
    • 3 One can certainly obtain a corresponding result for any interpolation parameter in (0,1).
    • 4 Maximum principles for parabolic equations in moving domains were also proved in [12, 15, 16].
    • 5 Self-intersection and degeneracy are excluded if η L t , y < L $\Vert \eta \Vert _{L^\infty _{t,y}}<L$ , cf. (2.1).
    • 6 The result of [54] applies even without dissipation in the structure equation.

      The full text of this article hosted at iucr.org is unavailable due to technical difficulties.