Functionalized Benzofurans via Microwave-Promoted Tandem Claisen-Rearrangement/5-endo-dig Cyclization
Christiane Schultze
Universitaet Potsdam, Institut fuer Chemie, Karl-Liebknecht-Straße 24-25, Potsdam-Golm, D-14476 Germany
Search for more papers by this authorCorresponding Author
Bernd Schmidt
Universitaet Potsdam, Institut fuer Chemie, Karl-Liebknecht-Straße 24-25, Potsdam-Golm, D-14476 Germany
E-mail: [email protected]Search for more papers by this authorChristiane Schultze
Universitaet Potsdam, Institut fuer Chemie, Karl-Liebknecht-Straße 24-25, Potsdam-Golm, D-14476 Germany
Search for more papers by this authorCorresponding Author
Bernd Schmidt
Universitaet Potsdam, Institut fuer Chemie, Karl-Liebknecht-Straße 24-25, Potsdam-Golm, D-14476 Germany
E-mail: [email protected]Search for more papers by this authorAbstract
Ortho-allyloxy alkinyl benzenes undergo, upon microwave irradiation in dimethylformamide, a tandem sequence of Claisen-rearrangement and 5-endo-dig cyclization to furnish 7-allyl-substituted benzofurans. With terminal alkynes, chroman-4-ones and enaminoketones become the main products. A mechanistic proposal for this observation relies on a reaction of the starting material with the solvent dimethylformamide under the microwave conditions.
References and Notes
- 1Kappe, C. O. Angew Chem Int Ed 2004, 43, 6250.
- 2Kappe, C. O. Chimia 2006, 60, 308.
- 3Kappe, C. O. Chem Soc Rev 2008, 37, 1127.
- 4Schmidt, B.; Schultze, C. Eur J Org Chem 2018, 2018, 223.
- 5Schmidt, B.; Riemer, M. Synthesis 2016, 48, 141.
- 6Schultze, C.; Schmidt, B. J Org Chem 2018, 83, 5210.
- 7Konrádová, D.; Kozubíková, H.; Doležal, K.; Pospíšil, J. Eur J Org Chem 2017, 2017, 5204.
- 8Schultze, C.; Schmidt, B. Beilstein J Org Chem 2018, 14, 2991.
- 9Schmidt, B.; Riemer, M.; Schilde, U. Synlett 2014, 25, 2943.
- 10Schmidt, B.; Riemer, M.; Schilde, U. Eur J Org Chem 2015, 2015, 7602.
- 11Schmidt, B.; Riemer, M. Synthesis 2016, 48, 1399.
- 12Liu, C.; Huang, W.; Wang, M.; Pan, B.; Gu, Y. Adv Synth Catal 2016, 358, 2260.
- 13Huang, W.; Xu, J.; Liu, C.; Chen, Z.; Gu, Y. J Org Chem 2019, 84, 2941.
- 14Halina, K.; Malgorzata, S.; Monika, K. Curr Org Synth 2012, 9, 529.
- 15Damera, K.; Ke, B.; Wang, K.; Dai, C.; Wang, L.; Wang, B. RSC Adv 2012, 2, 9403.
- 16Liu, Y.; Lu, T.; Tang, W.-F.; Gao, J. RSC Adv 2018, 8, 28637.
- 17Sun, S.-X.; Wang, J.-J.; Xu, Z.-J.; Cao, L.-Y.; Shi, Z.-F.; Zhang, H.-L. Tetrahedron 2014, 70, 3798.
- 18Jacubert, M.; Hamze, A.; Provot, O.; Peyrat, J.-F.; Brion, J.-D.; Alami, M. Tetrahedron Lett 2009, 50, 3588.
- 19Sarbajna, A.; Pandey, P.; Rahaman, S. M. W.; Singh, K.; Tyagi, A.; Dixneuf, P. H.; Bera, J. K. ChemCatChem 2017, 9, 1397.
- 20Singh, C.; Prakasham, A. P.; Gangwar, M. K.; Butcher, R. J.; Ghosh, P. ACS Omega 2018, 3, 1740.
- 21Alonso-Marañón, L.; Martínez, M. M.; Sarandeses, L. A.; Gómez-Bengoa, E.; Pérez Sestelo, J. J Org Chem 2018, 83, 7970.
- 22Isono, N.; Lautens, M. Org Lett 2009, 11, 1329.
- 23Fürstner, A.; Davies, P. W. J Am Chem Soc 2005, 127, 15024.
- 24Watanabe, K.; Mino, T.; Ishikawa, E.; Okano, M.; Ikematsu, T.; Yoshida, Y.; Sakamoto, M.; Sato, K.; Yoshida, K. Eur J Org Chem 2017, 2017, 2359.
- 25Ohno, S.; Takamoto, K.; Fujioka, H.; Arisawa, M. Org Lett 2017, 19, 2422.
- 26Watanabe, K.; Mino, T.; Ikematsu, T.; Hatta, C.; Yoshida, Y.; Sakamoto, M. Org Chem Front 2016, 3, 979.
- 27Schultze, C.. Dissertation, University of Potsdam, Germany, 2018.
- 28Jeon, J. G.; Lee, J. J.; Hallym University, Industry Academic Cooperation Foundation, S Korea South Korea, 2015; p. 10.
- 29Watanabe, K.; Mino, T.; Masuda, C.; Yoshida, Y.; Sakamoto, M. Eur J Org Chem 2019, 2019, 1635.
- 30Chen, Z.; Pitchakuntla, M.; Jia, Y. Nat Prod Rep 2019, 36, 666.
- 31Delost, M. D.; Smith, D. T.; Anderson, B. J.; Njardarson, J. T. J Med Chem 2018, 61, 10996.
- 32Naik, R.; Harmalkar, D. S.; Xu, X.; Jang, K.; Lee, K. Eur J Med Chem 2015, 90, 379.
- 33Salomé, C.; Narbonne, V.; Ribeiro, N.; Thuaud, F.; Serova, M.; de Gramont, A.; Faivre, S.; Raymond, E.; Désaubry, L. Eur J Med Chem 2014, 74, 41.
- 34Müller, S.; Liepold, B.; Roth, G. J.; Bestmann, H. J. Synlett 1996, 1996, 521.
- 35Li, D.-Y.; Wei, Y.; Marek, I.; Tang, X.-Y.; Shi, M. Chem Sci 2015, 6, 5519.
- 36Liang, B.; Dai, M.; Chen, J.; Yang, Z. J Org Chem 2005, 70, 391.
- 37Fu, J.; Shang, H.; Wang, Z.; Chang, L.; Shao, W.; Yang, Z.; Tang, Y. Angew Chem Int Ed 2013, 52, 4198.
- 38Arisawa, M.; Terada, Y.; Takahashi, K.; Nakagawa, M.; Nishida, A. J Org Chem 2006, 71, 4255.
- 39Miege, F.; Meyer, C.; Cossy, J. Angew Chem Int Ed 2011, 50, 5932.
- 40Balakrishna, C.; Kandula, V.; Gudipati, R.; Yennam, S.; Devi, P. U.; Behera, M. Synlett 2018, 29, 1087.
- 41Elassar, A.-Z. A.; El-Khair, A. A. Tetrahedron 2003, 59, 8463.
- 42Miura, T.; Funakoshi, Y.; Tanaka, T.; Murakami, M. Org Lett 2014, 16, 2760.
- 43Jung, D. J.; Jeon, H. J.; Kim, J. H.; Kim, Y.; Lee, S.-G. Org Lett 2014, 16, 2208.
- 44Yoneyama, H.; Numata, M.; Uemura, K.; Usami, Y.; Harusawa, S. J Org Chem 2017, 82, 5538.
- 45Xiao, Y.-C.; Moberg, C. Org Lett 2016, 18, 308.
- 46Cai, L.; Yang, D.; Sun, Z.; Tao, X.; Cai, L.; Pike, V. W. Chin J Chem 2011, 29, 1059.
- 47Pelphrey, P. M.; Popov, V. M.; Joska, T. M.; Beierlein, J. M.; Bolstad, E. S. D.; Fillingham, Y. A.; Wright, D. L.; Anderson, A. C. J Med Chem 2007, 50, 940.
- 48Fischer, J.; Savage, G. P.; Coster, M. J. Org Lett 2011, 13, 3376.