CO2-Alkanolamine Reaction Kinetics: A Review of Recent Studies
P. D. Vaidya
University of Dortmund, Department of Biochemical and Chemical Engineering, Dortmund, Germany
Search for more papers by this authorE. Y. Kenig
University of Dortmund, Department of Biochemical and Chemical Engineering, Dortmund, Germany
Search for more papers by this authorP. D. Vaidya
University of Dortmund, Department of Biochemical and Chemical Engineering, Dortmund, Germany
Search for more papers by this authorE. Y. Kenig
University of Dortmund, Department of Biochemical and Chemical Engineering, Dortmund, Germany
Search for more papers by this authorAbstract
Alkanolamines are the most popular absorbents used to remove CO2 from process gas streams. Therefore, the CO2 reaction with alkanolamines is of considerable importance. The aim of this article is to provide an overview on the kinetics of the reaction of CO2 with aqueous solutions of alkanolamines. The various reaction mechanisms that are used to interpret experimental kinetic data – zwitterion, termolecular and base-catalyzed hydration – are discussed in detail. Recently published data on reaction kinetics of individual amine systems and their mixtures are considered. In addition, the kinetic behavior of several novel amine-based solvents that have been proposed in the literature is analyzed. Generally, the reaction of CO2 with primary, secondary and sterically hindered amines is governed by the zwitterion mechanism, whereas the reaction with tertiary amines is described by the base-catalyzed hydration of CO2.
References
- 1 A. Kohl, R. Nielsen, Gas Purification, 5th ed., Gulf Publishing Company, Houston 1997.
- 2 T. Chakravarty, U. K. Phukan, R. H. Weiland, Chem. Eng. Prog. 1985, 81 (4), 32.
- 3 M. Appl, U. Wagner, H. J. Henrici, K. Kuessner, K. Voldamer, E. Fuerest, US Patent 4,336, 233, 1982.
- 4 G. Sartori, D. W. Savage, Ind. Eng. Chem. Fundam. 1983, 22, 239.
- 5
V. V. Mahajani,
J. B. Joshi,
Gas Sep. Purif.
1988,
2,
50.
10.1016/0950-4214(88)80013-6 Google Scholar
- 6 G. F. Versteeg, L. A. J. van Dijck, W. P. M. van Swaaij, Chem. Eng. Comm. 1996, 144, 113.
- 7 M. Caplow, J. Am. Chem. Soc. 1968, 90, 6795.
- 8 P. V. Danckwerts, Chem. Eng. Sci. 1979, 34, 443.
- 9 M. M. Sharma, Ph.D. Thesis, Cambridge University 1964.
- 10 M. M. Sharma, Trans. Faradey Soc. 1965, 61, 681.
- 11 D. D. Perrin, Dissociation Constants of organic bases in aqueous solutions, Butterworths, London 1965.
- 12 J. E. Crooks, J. P. Donnellan, J. Chem. Soc., Perkin Trans. 1989, 2, 331.
- 13 E. F. da Silva, H. F. Svendsen, Ind. Eng. Chem. Res. 2004, 43, 3413.
- 14 T. L. Donaldson, Y. N. Nguyen, Ind. Eng. Chem. Fundam. 1980, 19, 260.
- 15 E. Jorgensen, C. Faurholt, Acta Chem. Scand. 1954, 8, 1141.
- 16 J. Benitez-Garcia, G. Ruiz-Ibanez, H. A. Al-Ghawas, O. C. Sandall, Chem. Eng. Sci. 1991, 46, 2927.
- 17 W.-C. Yu, G. Astarita, D. W. Savage, Chem. Eng. Sci. 1985, 40, 1585.
- 18 A. Aboudheir, P. Tontiwachwuthikul, A. Chakma, R. Idem, Chem. Eng. Sci. 2003, 58, 5195.
- 19 A. Aboudheir, P. Tontiwachwuthikul, A. Chakma, R. Idem, Ind. Eng. Chem. Res. 2004, 43, 2568.
- 20 L. Kucka, J. Richter, E. Y. Kenig, A. Gorak, Sep. Purif. Technol. 2003, 31, 163.
- 21 P. D. Vaidya, V. V. Mahajani, Ind. Eng. Chem. Res. 2005, 44, 1868.
- 22 M. Al-Juaied, G. T. Rochelle, Ind. Eng. Chem. Res. 2006, 45, 2473.
- 23 E. B. Rinker, S. S. Ashour, O. C. Sandall, Ind. Eng. Chem. Res. 1996, 35, 1107.
- 24 R. Cadours, D. Roquet, G. Perdu, Ind. Eng. Chem. Res. 2007, 46, 233.
- 25 F. Camacho et al., Ind. Eng. Chem. Res. 2005, 44, 7451.
- 26 S. H. Ali, S. Q. Merchant, M. A. Fahim, Sep. Purif. Technol. 2002, 27, 121.
- 27 J. Li, A. Henni, P. Tontiwachwuthikul, Ind. Eng. Chem. Res. 2007, 46, 4426.
- 28 T. Mimura, T. Suda, I. Iwaki, A. Honda, H. Kumazawa, Chem. Eng. Comm. 1998, 170, 245.
- 29 S. Xu, Y-W. Wang, F. D. Otto, A. E. Mather, Chem. Eng. Sci. 1996, 51, 841.
- 30 J.-H. Yoon et al., Chem. Eng. Sci. 2003, 58, 5229.
- 31 S. J. Yoon et al., Ind. Eng. Chem. Res. 2002, 41, 3651.
- 32 J.-J. Ko, M.-H. Li, Chem. Eng. Sci. 2000, 55, 4139.
- 33 P. D. Vaidya, E. Y. Kenig, in Proc. of 10th Conf. on Process Integration, Modelling and Optimization for Energy Saving and Pollution Reduction (Ed: J. Klemes), AIDIC Servizi S.r.l., Ischia 2007.
- 34 S. Bishnoi, G. T. Rochelle, Chem. Eng. Sci. 2000, 55, 5531.
- 35 H.-B. Liu, C.-F. Zhang, G.-W. Xu, Ind. Eng. Chem. Res. 1999, 38, 4032.
- 36 X. Zhang, C.-F. Zhang, S.-J. Qin, Z.-S. Zheng, Ind. Eng. Chem. Res. 2001, 40, 3785.
- 37 S. Ma'mun, V. Y. Dindore, H. F. Svendsen, Ind. Eng. Chem. Res. 2007, 46, 385.
- 38 W. Bouhamra, E. Alper, Chem. Eng. Technol. 2000, 23 (5), 421.
- 39 P. D. Vaidya, E. Y. Kenig, 2007, 62, in print.
- 40 S. Ma'mun, H. F. Svendsen, K. A. Hoff, O. Juliussen, Energy Convers. Manage. 2007, 48, 251.
- 41 C.-H. Liao, M.-H. Li, Chem. Eng. Sci. 2002, 57, 4569.
- 42 N. Ramachandran, A. Aboudheir, R. Idem, P. Tontiwachwuthikul, Ind. Eng. Chem. Res. 2006, 45, 2608.
- 43 E. B. Rinker, S. S. Ashour, O. C. Sandall, Ind. Eng. Chem. Res. 2000, 39, 4346.
- 44 X. Zhang, C.-F. Zhang, Y. Liu, Ind. Eng. Chem. Res. 2002, 41, 1135.
- 45 X. Zhang, C.-F. Zhang, S.-J. Qin, Z.-S. Zheng, Ind. Eng. Chem. Res. 2001, 40, 3785.
- 46 J. Xiao, C.-W. Li, M.-H. Li, Chem. Eng. Sci. 2000, 55, 161.
- 47 D. J. Seo, W. H. Hong, Ind. Eng. Chem. Res. 2000, 39, 2062.
- 48 W.-C. Sun, C.-B. Yong, M.-H. Li, Chem. Eng. Sci. 2005, 60, 503.
- 49 P. D. Vaidya, E. Y. Kenig, Ind. Eng. Chem. Res. 2007, 46, in print.