On the linearization of the microplane model
Abstract
The paper addresses the microplane model in the context of localization analysis. Capable of reproducing experimental results of concrete specimens, the microplane model includes anisotropic damage in a natural and conceptually simple and explicit way. However, the efficiency of former microplane implementations suffers from the expense of the solution procedure being based on the secant stiffness method. Within this paper, the macroscopic constitutive equation derived by kinematically constraining the microplane strains to the macroscopic strain tensor is consistently linearized resulting in quadratic convergence of the Newton–Raphson iteration for the equilibrium equations. A fully three-dimensional model will be presented and linearized incorporating the two-dimensional case in a natural fashion. Furthermore, the localization criterion is analysed, indicating locally the onset of localization in terms of the acoustic tensor. Several examples demonstrate the features of the microplane model in predicting the material behaviour of concrete in tension and compression as well as in shear. © 1998 John Wiley & Sons, Ltd.