Overexpression of plastidial thioredoxin f leads to enhanced starch accumulation in tobacco leaves
Ruth Sanz-Barrio
Instituto de Agrobiotecnología (IdAB), Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Pamplona, Spain
Search for more papers by this authorPatricia Corral-Martinez
Instituto para la Conservación y Mejora de la Agrobiodiversidad Valenciana (COMAV), Universidad Politécnica de Valencia, Ciudad Politécnica de la Innovación, Valencia, Spain
Search for more papers by this authorMaria Ancin
Instituto de Agrobiotecnología (IdAB), Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Pamplona, Spain
Search for more papers by this authorJose M. Segui-Simarro
Instituto para la Conservación y Mejora de la Agrobiodiversidad Valenciana (COMAV), Universidad Politécnica de Valencia, Ciudad Politécnica de la Innovación, Valencia, Spain
Search for more papers by this authorCorresponding Author
Inmaculada Farran
Instituto de Agrobiotecnología (IdAB), Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Pamplona, Spain
Correspondence (Tel +34 948 168 034;fax +34 948 232 191;email [email protected]) Search for more papers by this authorRuth Sanz-Barrio
Instituto de Agrobiotecnología (IdAB), Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Pamplona, Spain
Search for more papers by this authorPatricia Corral-Martinez
Instituto para la Conservación y Mejora de la Agrobiodiversidad Valenciana (COMAV), Universidad Politécnica de Valencia, Ciudad Politécnica de la Innovación, Valencia, Spain
Search for more papers by this authorMaria Ancin
Instituto de Agrobiotecnología (IdAB), Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Pamplona, Spain
Search for more papers by this authorJose M. Segui-Simarro
Instituto para la Conservación y Mejora de la Agrobiodiversidad Valenciana (COMAV), Universidad Politécnica de Valencia, Ciudad Politécnica de la Innovación, Valencia, Spain
Search for more papers by this authorCorresponding Author
Inmaculada Farran
Instituto de Agrobiotecnología (IdAB), Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Pamplona, Spain
Correspondence (Tel +34 948 168 034;fax +34 948 232 191;email [email protected]) Search for more papers by this authorSummary
Starch, the most abundant storage carbohydrate in plants, has been a major feedstock for first-generation biofuels. Growing fuel demands require, however, that the starch yields of energy crops be improved. Leaf starch is synthesised during the day and degraded at night to power nonphotosynthetic metabolism. Redox regulation has been associated with the coordination of the enzymes involved in starch metabolism, but neither the signals nor mechanisms that regulate this metabolism are entirely clear. In this work, the thioredoxin (Trx) f and m genes, which code for key enzymes in plastid redox regulation, were overexpressed from the plastid genome. Tobacco plants overexpressing Trx f, but not Trx m, showed an increase of up to 700% in leaf starch accumulation, accompanied by an increase in leaf sugars, specific leaf weight (SLW), and leaf biomass yield. To test the potential of these plants as a nonfood energy crop, tobacco leaves overexpressing Trx f were subjected to enzymatic hydrolysis, and around a 500% increase in the release of fermentable sugars was recorded. The results show that Trx f is a more effective regulator of photosynthetic carbon metabolism in planta than Trx m. The overexpression of Trx f might therefore provide a means of increasing the carbohydrate content of plants destined for use in biofuel production. It might also provide a means of improving the nutritional properties of staple food crops.
Supporting Information
Filename | Description |
---|---|
pbi12052-sup-0001-FigS1-S3.pdfapplication/PDF, 250.6 KB | Figure S1 Starch content in tobacco leaves is influenced by growth conditions. Figure S2 Redox state of endogenous and overexpressed Trx f in tobacco chloroplasts. Figure S3 Redox activation of AGPase in Trx m-overexpressing leaves. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Andrianov, V., Borisjuk, N., Pogrebnyak, N., Brinker, A., Dixon, J., Spitsin, S., Flynn, J., Matyszczuk, P., Andryszak, K., Laurelli, M., Golovkin, M. and Koprowski, H. (2009) Tobacco as a production platform for biofuel: overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass. Plant Biotechnol. J., 8, 277–287.
- Ballicora, M.A., Frueauf, J.B., Fu, Y., Schurmann, P. and Preiss, J. (2000) Activation of the potato tuber ADP-glucose pyrophosphorylase by thioredoxin. J. Biol. Chem., 275, 1315–1320.
- Balmer, Y., Vensel, W.H., Cai, N., Manieri, W., Schurmann, P., Hurkman, W.J. and Buchanan, B.B. (2006) A complete ferredoxin/thioredoxin system regulates fundamental processes in amyloplasts. Proc. Natl Acad. Sci. USA, 103, 2988–2993.
- Baroja-Fernandez, E., Munoz, F.J., Montero, M., Etxeberria, E., Sesma, M.T., Ovecka, M., Bahaji, A., Ezquer, I., Li, J., Prat, S. and Pozueta-Romero, J. (2009) Enhancing sucrose synthase activity in transgenic potato (Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield. Plant Cell Physiol., 50, 1651–1662.
- Buchanan, B.B. and Balmer, Y. (2005) Redox regulation: a broadening horizon. Annu. Rev. Plant Biol., 56, 187–220.
- Ceccoli, R.D., Blanco, N.E., Segretin, M.E., Melzer, M., Hanke, G.T., Scheibe, R., Hajirezaei, M.R., Bravo-Almonacid, F.F. and Carrillo, N. (2012) Flavodoxin displays dose-dependent effects on photosynthesis and stress tolerance when expressed in transgenic tobacco plants. Planta, 236, 1447–1458.
- Corneille, S., Lutz, K., Svab, Z. and Maliga, P. (2001) Efficient elimination of selectable marker genes from the plastid genome by the CRE-lox site-specific recombination system. Plant J., 27, 171–178.
- Daniell, H. (1997) Transformation and foreign gene expression in plants by microprojectile bombardment. Methods Mol. Biol., 62, 463–489.
- Ezquer, I., Li, J., Ovecka, M., Baroja-Fernandez, E., Munoz, F.J., Montero, M., Diaz de Cerio, J., Hidalgo, M., Sesma, M.T., Bahaji, A., Etxeberria, E. and Pozueta-Romero, J. (2010) Microbial volatile emissions promote accumulation of exceptionally high levels of starch in leaves in mono- and dicotyledonous plants. Plant Cell Physiol., 51, 1674–1693.
- Farran, I., Rio-Manterola, F., Iniguez, M., Garate, S., Prieto, J. and Mingo-Castel, A.M. (2008) High-density seedling expression system for the production of bioactive human cardiotrophin-1, a potential therapeutic cytokine, in transgenic tobacco chloroplasts. Plant Biotechnol. J., 6, 516–527.
- Fu, Y., Ballicora, M.A., Leykam, J.F. and Preiss, J. (1998) Mechanism of reductive activation of potato tuber ADP-glucose pyrophosphorylase. J. Biol. Chem., 273, 25045–25052.
- Geigenberger, P. (2011) Regulation of starch biosynthesis in response to a fluctuating environment. Plant Physiol., 155, 1566–1577.
- Geigenberger, P., Lerchi, J., Stitt, M. and Sonnewald, U. (1996) Phloem-specific expression of pyrophosphatase inhibits long distance transport of carbohydrates and amino acids in tobacco plants. Plant Cell Environ., 19, 43–55.
- Geigenberger, P., Kolbe, A. and Tiessen, A. (2005) Redox regulation of carbon storage and partitioning in response to light and sugars. J. Exp. Bot., 56, 1469–1479.
- Glaring, M.A., Skryhan, K., Kotting, O., Zeeman, S.C. and Blennow, A. (2012) Comprehensive survey of redox sensitive starch metabolising enzymes in Arabidopsis thaliana. Plant Physiol. Biochem., 58, 89–97.
- Hädrich, N., Hendriks, J.H., Kotting, O., Arrivault, S., Feil, R., Zeeman, S.C., Gibon, Y., Schulze, W.X., Stitt, M. and Lunn, J.E. (2012) Mutagenesis of cysteine 81 prevents dimerization of the APS1 subunit of ADP-glucose pyrophosphorylase and alters diurnal starch turnover in Arabidopsis thaliana leaves. Plant J., 70, 231–242.
- Hendriks, J.H., Kolbe, A., Gibon, Y., Stitt, M. and Geigenberger, P. (2003) ADP-glucose pyrophosphorylase is activated by posttranslational redox-modification in response to light and to sugars in leaves of Arabidopsis and other plant species. Plant Physiol., 133, 838–849.
- Kotting, O., Pusch, K., Tiessen, A., Geigenberger, P., Steup, M. and Ritte, G. (2005) Identification of a novel enzyme required for starch metabolism in Arabidopsis leaves. The phosphoglucan, water dikinase. Plant Physiol., 137, 242–252.
- Kotting, O., Santelia, D., Edner, C., Eicke, S., Marthaler, T., Gentry, M.S., Comparot-Moss, S., Chen, J., Smith, A.M., Steup, M., Ritte, G. and Zeeman, S.C. (2009) STARCH-EXCESS4 is a laforin-like Phosphoglucan phosphatase required for starch degradation in Arabidopsis thaliana. Plant Cell, 21, 334–346.
- Kötting, O., Kossmann, J., Zeeman, S.C. and Lloyd, J.R. (2010) Regulation of starch metabolism: the age of enlightenment? Curr. Opin. Plant Biol., 13, 321–329.
- Krapp, A. and Stitt, M. (1995) An evaluation of direct and indirect mechanisms for the “sink-regulation” of photosynthesis in spinach: changes in gas exchange, carbohydrates, metabolites, enzyme activities and steady-state transcript levels after cold-girdling source leaves. Planta, 195, 313–323.
- Krapp, A., Quick, W.P. and Stitt, M. (1991) Ribulose-1,5-bisphosphate carboxylase-oxygenase, other Calvin-cycle enzymes, and chlorophyll decrease when glucose is supplied to mature spinach leaves via the transpiration stream. Planta, 186, 58–69.
- Lemaire, S.D., Michelet, L., Zaffagnini, M., Massot, V. and Issakidis-Bourguet, E. (2007) Thioredoxins in chloroplasts. Curr. Genet., 51, 343–365.
- Li, J., Ezquer, I., Bahaji, A., Montero, M., Ovecka, M., Baroja-Fernandez, E., Munoz, F.J., Merida, A., Almagro, G., Hidalgo, M., Sesma, M.T. and Pozueta-Romero, J. (2011) Microbial volatile-induced accumulation of exceptionally high levels of starch in Arabidopsis leaves is a process involving NTRC and starch synthase classes III and IV. Mol. Plant Microbe Interact., 24, 1165–1178.
- Li, J., Almagro, G., Munoz, F.J., Baroja-Fernandez, E., Bahaji, A., Montero, M., Hidalgo, M., Sanchez-Lopez, A.M., Ezquer, I., Sesma, M.T. and Pozueta-Romero, J. (2012) Post-translational redox modification of ADP-glucose pyrophosphorylase in response to light is not a major determinant of fine regulation of transitory starch accumulation in arabidopsis leaves. Plant Cell Physiol., 53, 433–444.
- Luo, T., Fan, T., Liu, Y., Rothbart, M., Yu, J., Zhou, S., Grimm, B. and Luo, M. (2012) Thioredoxin redox regulates ATPase activity of magnesium chelatase CHLI subunit and modulates redox-mediated signaling in tetrapyrrole biosynthesis and homeostasis of reactive oxygen species in pea plants. Plant Physiol., 159, 118–130.
- Martín, C., Fernández, T., García, R., Carrillo, E., Marcet, M., Galbe, M. and Jönsson, L.J. (2002) Preparation of hydrolysates from tobacco stalks and ethanolic fermentation by Saccharomyces cerevisiae. World J. Microbiol. Biot., 18, 857–862.
- Meyer, Y., Buchanan, B.B., Vignols, F. and Reichheld, J.P. (2009) Thioredoxins and glutaredoxins: unifying elements in redox biology. Annu. Rev. Genet., 43, 335–367.
- Michalska, J., Zauber, H., Buchanan, B.B., Cejudo, F.J. and Geigenberger, P. (2009) NTRC links built-in thioredoxin to light and sucrose in regulating starch synthesis in chloroplasts and amyloplasts. Proc. Natl Acad. Sci. USA, 106, 9908–9913.
- Mikkelsen, R., Mutenda, K.E., Mant, A., Schurmann, P. and Blennow, A. (2005) Alpha-glucan, water dikinase (GWD): a plastidic enzyme with redox-regulated and coordinated catalytic activity and binding affinity. Proc. Natl Acad. Sci. USA, 102, 1785–1790.
- Mojović, L., Pejin, D., Grujić, O., Markov, S., Pejin, J., Rakin, M., Vukašinović, M., Nikolić, S. and Savić, D. (2009) Progress in the production of bioethanol on starch-based feedstocks. Chem. Ind. Chem. Eng. Quart., 15, 211–226.
- Peltier, J.B., Cai, Y., Sun, Q., Zabrouskov, V., Giacomelli, L., Rudella, A., Ytterberg, A.J., Rutschow, H. and van Wijk, K.J. (2006) The oligomeric stromal proteome of Arabidopsis thaliana chloroplasts. Mol. Cell. Proteomics, 5, 114–133.
- Preiss, J., Ball, K., Smith-White, B., Iglesias, A., Kakefuda, G. and Li, L. (1991) Starch biosynthesis and its regulation. Biochem. Soc. Trans., 19, 539–547.
- Raines, C.A. (2003) The Calvin cycle revisited. Photosynth. Res., 75, 1–10.
- Sanz-Barrio, R., Fernandez-San Millan, A., Corral-Martinez, P., Segui-Simarro, J.M. and Farran, I. (2011) Tobacco plastidial thioredoxins as modulators of recombinant protein production in transgenic chloroplasts. Plant Biotechnol. J., 9, 639–650.
- Sanz-Barrio, R., Fernandez-San Millan, A., Carballeda, J., Corral-Martinez, P., Segui-Simarro, J.M. and Farran, I. (2012) Chaperone-like properties of tobacco plastid thioredoxins f and m. J. Exp. Bot., 63, 365–379.
- Schillberg, S., Fischer, R. and Emans, N. (2003) ‘Molecular farming’ of antibodies in plants. Naturwissenschaften, 90, 145–155.
- Schürmann, P. and Buchanan, B.B. (2008) The ferredoxin/thioredoxin system of oxygenic photosynthesis. Antioxid. Redox Signal., 10, 1235–1274.
- Silver, D.M., Silva, L.P., Issakidis-Bourguet, E., Glaring, M.A., Schriemer, D.C. and Moorhead, G.B. (2013) Insight into the redox regulation of the phosphoglucan phosphatase SEX4 involved in starch degradation. FEBS J., 280, 538–548.
- Smith, A.M. (2008) Prospects for increasing starch and sucrose yields for bioethanol production. Plant J., 54, 546–558.
- Smith, A.M., Zeeman, S.C. and Smith, S.M. (2005) Starch degradation. Annu. Rev. Plant Biol., 56, 73–98.
- Sokolov, L.N., Dejardin, A. and Kleczkowski, L.A. (1998) Sugars and light/dark exposure trigger differential regulation of ADP-glucose pyrophosphorylase genes in Arabidopsis thaliana (thale cress). Biochem. J., 336, 681–687.
- Sokolov, L.N., Dominguez-Solis, J.R., Allary, A.L., Buchanan, B.B. and Luan, S. (2006) A redox-regulated chloroplast protein phosphatase binds to starch diurnally and functions in its accumulation. Proc. Natl Acad. Sci. USA, 103, 9732–9737.
- Sparla, F., Costa, A., Lo Schiavo, F., Pupillo, P. and Trost, P. (2006) Redox regulation of a novel plastid-targeted beta-amylase of Arabidopsis. Plant Physiol., 141, 840–850.
- Staub, J.M., Garcia, B., Graves, J., Hajdukiewicz, P.T., Hunter, P., Nehra, N., Paradkar, V., Schlittler, M., Carroll, J.A., Spatola, L., Ward, D., Ye, G. and Russell, D.A. (2000) High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat. Biotechnol., 18, 333–338.
- Stitt, M., Lunn, J. and Usadel, B. (2010) Arabidopsis and primary photosynthetic metabolism - more than the icing on the cake. Plant J., 61, 1067–1091.
- Tamoi, M., Nagaoka, M., Miyagawa, Y. and Shigeoka, S. (2006) Contribution of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase to the photosynthetic rate and carbon flow in the Calvin cycle in transgenic plants. Plant Cell Physiol., 47, 380–390.
- Thormahlen, I., Ruber, J., E, V.O.N.R.-L., Ehrlich, S.M., Massot, V., Hummer, C., Tezycka, J., Issakidis-Bourguet, E. and Geigenberger, P. (2013) Inactivation of thioredoxin f1 leads to decreased light activation of ADP-glucose pyrophosphorylase and altered diurnal starch turnover in leaves of Arabidopsis plants. Plant Cell Environ., 36, 16–29.
- Valerio, C., Costa, A., Marri, L., Issakidis-Bourguet, E., Pupillo, P., Trost, P. and Sparla, F. (2010) Thioredoxin-regulated beta-amylase (BAM1) triggers diurnal starch degradation in guard cells, and in mesophyll cells under osmotic stress. J. Exp. Bot., 62, 545–555.
- Verma, D., Kanagaraj, A., Jin, S., Singh, N.D., Kolattukudy, P.E. and Daniell, H. (2010) Chloroplast-derived enzyme cocktails hydrolyse lignocellulosic biomass and release fermentable sugars. Plant Biotechnol. J., 8, 332–350.
- Zeeman, S.C., Smith, S.M. and Smith, A.M. (2007) The diurnal metabolism of leaf starch. Biochem. J., 401, 13–28.
- Zou, Z., Eibl, C. and Koop, H.U. (2003) The stem-loop region of the tobacco psbA 5′UTR is an important determinant of mRNA stability and translation efficiency. Mol. Genet. Genomics, 269, 340–349.